miércoles, 01 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Superconductividad

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Subir Sachdev

 

“Hace algunos años me hallé a mi mismo en un lugar completamente inesperado: una conferencia sobre teoría de cuerdas. Mi campo de investigación es la materia condensada, el estudio de materiales como metales y superconductores a tewmperaturas próximas al cero absoluto. Esta disciplina se halla todo lo lejos de la teoría de cuerdas como podría estarlo sin salirse de la física. La Teoría de cuerdas intenta describir la Naturaleza a energía muhco mayores a las que puedan alcanzarse en los laboratorios terrestres o, de hecho, en cualquier lugar del universo conocido. Quines a ella se dedican estudian las exóticas leyes que gobiernan los agujeros negros y postulan que el universo posee otras dimensiones espaciales, además de las tres que podemos ver. Para ellos, la Gravedad constituye la interacción dominante de la Naturaleza. Para mí, no desempaña ningún papel.”

La mecánica cuántica fue desarrollada en el siglo XX para describir el movimiento de un electrón en un átomo de hidrógeno. Más tarde, Einstein y otros señalaron que la teoría cuántica de un par de electrones no tenía funciones intuitivas que encontraron difícil de aceptar: dos separatedelectrons bien pueden tener sus estados cuánticos “enredado”, indicando que hablan el uno al otro la mecánica cuántica, incluso a pesar de que están muy separados. Hoy en día, el entrelazamiento cuántico no es visto como un sutil efecto microscópico de interés sólo para unos pocos físicos, sino como un ingrediente crucial necesaria para una comprensión completa de las muchas fases de la materia. Un cristal puede tener unos billones de billones de electrones entrelazados unos con otros, y los diferentes patrones de entrelazamiento conducir a fases que son imanes, metales, o superconductores. Voy a dar una simple discusión de estas y otras características notables de la mecánica cuántica de un trillón de trillones de electrones, y de su importancia para una variedad de materiales tecnológicamente importantes. La teoría también tiene conexiones sorprendentes e inesperados a la teoría de cuerdas: notablemente, esto se conecta el movimiento de los electrones dentro de un plano de un cristal en el laboratorio, a la teoría de los agujeros negros astrofísicos similares a los estudiados por Chandrasekhar

Si hay algo que le gusta a la ciencia es estudiar los extremos de la naturaleza, incluso a veces forzarlos un poco. Cada vez construimos telescopios para ver más lejos, naves para viajar más rápido, combustibles de mayor rendimiento, etc. Y uno de los aspectos de la naturaleza que no se escapa de está búsqueda de los límites extremos es la temperatura.

Efectivamente, porque en el año 1997 el premio Nobel de física fue a parar a tres investigadores: Steven Chu (Universidad de Standford, California), Claude Cohen (Collage de France and Ecole Normale, Paris) y william D. Phillips (National Institute of Standards an Technology, Maryland), por el desarrollo de técnicas para lograr las temperaturas más bajas jamás alcanzadas.

Vortices cuánticos en un condensado rotante de átomos de sodio

Esta investigación abrió la puerta a todo un nuevo campo de investigación. Gracias a ella estamos conociendo mejor la estructura más íntima de la materia, y lo que es más importante comenzando a controlarla.

Vórtices cuánticos en un condensado rotante de átomos de sodio. Pero sigamos con el Profesor Sachdev que, nos sigue contando:

“Estas diferencias entre los físicos de cuerdas y los de la materia condensada, se plasman en un abismo cultural. Los investigadores de teorías de cuerdas gozán de una excelente reputación, por lo que asistí a aquella conferencia con un temor casi reverencial a su pericia matemática. Había invertido meses en la lectura de artículos y libros sobre el tema, a menudo quedándome empantanado. Estsaba seguro de que sería rechazado como un advenedizo ignorante. Por su parte, los teóricos de cuerdas tenían dificultades con algunos de los conceptos más simples de mi campo. Llegué a verme dibujando esquemas que con anterioridad solo había empleado con mis estudiantes de doctorado primerizos.

Varios científicos encabezados por el físico de Oxford Ian Walmsley han conseguido relacionar y hacer vibrar a dos diamantes en el proceso conocido como entrelazamiento cuántico. El misterioso proceso, al que el propio Eisntein no supo darle comprensión completa, supone el mayor avance hasta la fecha y abre las puertas de la computación cuántica.

Así pues, ¿porque había asistido? Durante los últimos años, los expertos en materia condensada hemos observado que algunos materiales pueden comportarse de un modo que hasta ahora juzgábamos imposible.  Se trata de fases marcadamente cuánticas de la materia cuya estructura se caracteriza por la aparición de uno de los fenómenos más chocantes de la naturaleza: el entrelazamiento cuántico. En un célebre artículo escrito en 1935, Albert Einstein, Boris Podolski y Nathan Rosen señalaron que la teoría cuántica implicaba  la existencia de ciertas conexiones “espeluzmantes” entre partículas. Cuando aparecen, las partículas se coordinan sin que haya entre ellas una acción física directa. Einstein y sus colaboradores consideraron el caso de dos electrones, pero un metal o un superconductor contienen muchísimos más: del orden de 1023, en una muestra de laboratorio típica. La complejidad que exhiben algunos materiales resulta sobrecogedora, y a ella he dedicado gran parte de mi carrera. Pero el problema no se reduce a lo meramente académico:

http://1.bp.blogspot.com/_CqeGoT0SgBg/TAMFcDZXu8I/AAAAAAAAAJM/CggmgTaJ8zQ/s1600/lab2tj2.jpg

    Se trabajo con superconductores de baja y de alta temperatura. Bueno, al menos se está intentando saber más de ambos métodos. Los superconductores revisten una enorme importancia técnica, por lo que se han dedicado ingentes esfuerzos a entender sus propiedades y su potencial.

Hace unos años descubrimos que la Teoría de cuerdas nos brindaba una manera completamnete inesperada de enfocar el problema. En su camino hacia una formulación que unifique las interacciones cuánticas entre partículas y la Teoría de la Gravedad de Einstein, los físicos de cuerdas se han topado con lo que ellos denominan “dualidades”: relaciones ocultas entre áreas de la física muy apartadas entre sí. Las dualidades que nos interesan relacionan dos tipos de teorías: por un lado, las que funcionan bien cuando los fenómenos cuánticos no resultan significativos pero la gravedad es muy intensa; por otro lado, aquellas que describen efectos cuánticos fuertes en situaciones con campos gravitatorios débiles [vease “El Espacio, ¿una ilusión”, por Juan Maldacena; Investigación y Ciencia, enero 2006]. Esta equivalencia permite traducir los hallazgos hallados en un campo al otro. Gracias a ella, descubrimos que podíamos expresar nuestras preguntas sobre el entrelazamiento en términos de un problema gravitatorio para, después, servirnos de los descubrimientos que los físicos de cuerdas habían realizado sobre las matemáticas de los agujeros negros. Un ejemplo de epnsamiento refinado al máximo.

                                                                        Fases Ocultas

Para entender ese círculo de ideas debemos volver por un momento a la física del bachillerato. Según esta, las fases de la materia corresponden a los estados sólidos, líquido y gaseoso. Un sólido posee tamaño y forma fijos; un líquido toma la forma del recipiente que lo contiene;, aunque se parecen en este último aspecto a los líquidos, pueden alterar su volumen con facilidad. Aunque se trata de conceptos simples, hasta principios del siglo XX carecíamos de un entendimiento preciso de las fases de la materia. Los átomos se disponen de manera ordenada en los sólidos cristalinos, pero pueden moverse en líquidos y gases.

Sin embargo, las tres fases anteriores no bastan en absoluto para describir todos los aspectos de la materia. Un sólido no se compone solo de una red de átomos, sino también de un emjanbre de electrones. Cada átomo libera unos pocos electrones que pueden pulular por todo el cristal. Cuando conectamos una bateria a un pedazo de metal, la corriente eléctrica fluye por él.

Casi todos los metales obedecen la ley de Ohm: la intensidad de la corriente es igual al voltaje aplicado dividido por la resistencia del material. Los aislantes, como el teflón, presentan una resistencia muy elevada; en los metales, la resistencia es baja. Los superconductores destacan por poseer una resistencia inconmensurablemente pequeña. En 1911, Helke Kamerlingh Onnes descubrió el fenómeno al refrigerar mercurio sólido a 4 grtados Kelvin (269 grados Celcius bajo cero). Hoy conocemos materiales en los que la superconductividad aparece a temperaturas mucho mayores (hasta 138 grados Celcius bajo cero).

Aunque tal vez no resulte obvio, aislantes y superconductores representan fases diferentes de la materia. El enjambre de electrones que los caracteriza adquiere en cada caso propiedades distintas. Durante las dos últimas décadas, hemos descubierto que los sólidos poseen fases electrónicas adicionales. Entre ellas, una especialmente interesante que, de tan insólita, ni siquiera tiene nombre: los físicos hemos dado en llamarla “metal extraño”. Se caracteriza por una dependencia inusual entre su resistencia eléctrica y su temperatura.”

 

 

Durante décadas, los físicos han estado tratando de conciliar las dos teorías principales que describen el comportamiento físico. La primera, la teoría de Einstein de la relatividad general, utiliza la gravedad – Las fuerzas de atracción – para explicar el comportamiento de los objetos con masas grandes, tales como la caída de los árboles o los planetas en órbita. Sin embargo, a nivel atómico y subatómico, las partículas con masas despreciables se describen mejor con otra teoría: la mecánica cuántica.

Una “teoría del todo” que unificara a la relatividad general con la mecánica cuántica abarcaría todas las interacciones físicas, sin importar el tamaño del objeto. Uno de los candidatos más populares para una teoría unificada es la teoría de cuerdas, desarrollada por primera vez a finales de 1960 y principios de 1970.

La teoría de cuerdas explica que los electrones y los quarks (los bloques de construcción de las partículas más grandes) son cadenas unidimensionales oscilantes, no objetos sin dimensiones como tradicionalmente se pensaba.

Los físicos están divididos sobre si la teoría de cuerdas es una teoría viable del todo, pero muchos están de acuerdo que ofrece una nueva manera de mirar a los fenómenos físicos que han demostrado ser de otro modo difíciles de describir. En la última década, los físicos han usado la teoría de cuerdas para construir una conexión entre la gravedad y la mecánica cuántica, conocida como “Gauge / dualidad gravedad”.

Hallan un posible nuevo estado de la materia en superconductores

Hace unos 20 años que los científicos encontraron un inexplicable vacío en la estructura electrónica de ciertos supeconductores de alta temperatura. Ahora, una nueva investigación realizada por un equipo liderado por el físico Zhi-Xun Shen podría haber descubierto las razones de este misterio: la brecha podría evidenciar la existencia de un nuevo estado de la materia. El descubrimiento podría servir para conseguir materiales que presenten superconductividad a temperatura ambiente, algo que seguramente cambiaría nuestras vidas.

Hallan un posible nuevo estado de la materia en superconductores
Greg Stewart, SLAC
Una recreación del fenómeno

Es posible que uno de los misterios más antiguos que poseen los materiales superconductores haya sido resuelto. Desde hace unos 20 años que los científicos saben que, a determinadas temperaturas, los materiales superconductores presentan un vacío inexplicable en sus estructuras electrónicas. Este fenómeno podría ser explicado por la presencia de un nuevo estado -previamente desconocido- de la materia. O al menos, esta conclusión es a la que ha llegado un equipo de científicos liderado por el físico Zhi-Xun Shen, del Instituto de Stanford para la Ciencia de los materiales y energía (SIMES), que es una empresa conjunta del Departamento de energía (DOE) SLAC National Accelerator Laboratory y la Universidad de Stanford.

Zhi-Xun Shen está convencido que este trabajo proporciona la más fuerte evidencia encontrada hasta la fecha de la existencia de un nuevo estado de la materia. Además, la investigación podría brindar las claves necesarias para lograr materiales superconductores capaces de funcionar a temperatura ambiente.

                Zhi-Xun Shen

Los supeconductores no presentan resistencia al paso de la energía eléctrica, permitiendo la construcción de electroimanes extremadamente potentes, como los utilizados en trenes de levitación magnética o aceleradores de partículas como el LHC. Sin embargo, estos materiales solo mantienen sus propiedades a temperaturas muy bajas, a menudo cercanas al cero absoluto. Los detalles del trabajo de Zhi-Xun Shen fueron publicados en el número 25 de marzo de la revista Science, y en él se destaca que uno de los obstáculos más importante que impiden el desarrollo de superconductores a altas temperaturas es el hecho de que aún los que poseen esa propiedad a temperaturas bastante mayores que cero absoluto deben ser refrigerados a mitad de camino a 0 grados Kelvin antes de que funcionen. Conseguir que un material presenten superconductividad a temperatura ambiente sin necesidad de este enfriamiento previo haría posible la distribución de electricidad sin pérdidas y muchos otros adelantos que, en conjunto, cambiarían nuestras vidas.

los principios físicos de la superconductividad no se comprendieron hasta 1957, cuando los físicos estadounidenses John Bardeen, Leon N. Cooper y John R. Schrieffer propusieron una teoría que ahora se conoce como teoría BCS por las iniciales de sus apellidos, y por la que sus autores recibieron el Premio Nobel de Física en 1972. La teoría BCS describe la superconductividad como un fenómeno cuántico, en el que los electrones de conducción se desplazan en pares, que no muestran resistencia eléctrica. Esta teoría explicaba satisfactoriamente la superconducción a altas temperaturas en los metales, pero no en los materiales cerámicos. En 1962, el físico británico Brian Josephson estudió la naturaleza cuántica de la superconductividad y predijo la existencia de oscilaciones en la corriente eléctrica que fluye a través de dos superconductores separados por una delgada capa aislante en un campo eléctrico o magnético. Este fenómeno, conocido como efecto Josephson, fue posteriormente confirmado experimentalmente.

Los científicos han usado electroimanes para generar campos magnéticos desde hace mucho tiempo. Haciendo fluir corriente eléctrica por un anillo conductor se induce campo magnético. Sustituyendo el conductor por un superconductor y enfriándolo a la temperatura necesaria, podría ser posible generar campos magnéticos mucho mas potentes debido a la falta de resistencia, y por tanto de generación de calor en el anillo. Sin embargo, esto no pudo hacerse en un principio. Cuando el campo magnético alcanzaba una determinada intensidad, el superconductor perdía sus propiedades y se comportaba como un conductor ordinario. Hasta la década de los cuarenta no se resolvieron los problemas de los campos magnéticos y solo muy recientemente se ha superado el problema de las bajas temperaturas.

Superconductividad eléctrica

 

John Bardeen, Leon N. Cooper y John R. Schrieffer

Otras veces hemos explicado aquí que los Bosones no obedecen al Principio de exclusión de Pauli, por lo que todos los pares de electrones de un superconductor pueden englobarse en el estado de mínima energía, lo que da lugar a un fenómeno conocido como condensación de Bose-Eintein. Vendría a ser como verter agua en un vaso y observar que, en vez de llenarse, se forma una fina capa de hielo en el fondo que absorbe tanta agua como tenemos sin aumentar su espesor.

Si a un material de tales características le aplicamos un voltaje, veremos que este promociona los pares de electrones hacia un estado que posee una diminuta cantidad de energía adicional, con lo que se genera una corriente eléctrica. Dicho estado de energía superior se encuentra por lo demás vacío, por lo que nada impide el flujo de pares y el superconductor transmite la corriente sin oponer resistencia.

Puntos Críticos

A principio de los ochenta, el éxito de la mecánica cuántica a la hora de explicar las propiedades de los metales, aislantes, superconductores y otros materiales, como los semiconductores (la base de la electrónica moderna) generó -la engañosa- sensación de que ya no quedaban grandes descubrimientos que hacer. Esa convicción se vino abajo cuando aparecieron los superconductores de altas temperaturas.

Un ejemplo nos lo proporciona el arseniuro de hierro y bario cuando una fracción del arsénico ha sido reemplazada por fósforo.  A bajas temperaturas este material se comporta como un superconductor. Se cree que obedece a una teoría similar a la propuesta por BCS, pero en la que los pares de electrones no se crean por las vibraciones de la red cristalina, sino por efectos debidos a la física del espín.

Seguir ahondando en este tema de la superconductividad, nos llevaría muy lejos hasta comprobar, que no conocemos esencialmente lo que la materia es y, lo que de ella podemos espewrar en circunstancias especiales. Nada es lo que parece a primera vista y, cuando conozcamos bien ese mundo extraño y misterioso que llamamos mecánica cuántica… ¿Qué podremos encontrar? Seguramente, allí estarán esos fantásticos y maravillosos “mundos” largamente buscados por los físicos y en los que, ¡Oh! ¡sorpresa! aparecerán las predicciones de la Teoría de cuerdas a la que no podemos llegar por no disponer de la energía necesaria.

El trabajo tiene varias fuentes pero, de manera muy especial, señaló aquí la Revista Investigación y ciencia en su artículo sobre el reportaje de  Subir Sachdev que, entre otros datos recogidos al azar, conforman el presente trabajo que, de mi parte, contiene sólo algunos apuntes que tratan de conexionar el conjunto.

Publica: emilio silvera

 

¡Seguimos avanzando!

Autor por Emilio Silvera    ~    Archivo Clasificado en ¡Necesitamos saber!    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Se han anunciado los diez descubrimientos más importantes de la física en 2011, seleccionados por la revista Physics World. Los diez avances más importantes identificados en la lista fueron compilados por el equipo editorial de Physics World, quienes revisaron más de 350 artículos de noticias y avances en las ciencias físicas publicados en physicsworld.com en 2011.
1er lugar: Cambio de la medición cuántica

El trabajo de Steinberg destacó porque desafía la noción generalizada de que la mecánica cuántica nos prohíbe tener conocimiento de los caminos tomados por los fotones individuales a medida que viajan a través de dos ranuras muy próximas entre sí para crear un patrón de interferencia.Esta interferencia es exactamente lo que cabría esperar si pensamos en la luz como una onda electromagnética. Pero la mecánica cuántica también nos permite pensar en la luz como fotones – aunque con la consecuencia extraña de que si se determina que los fotones viajan a través de hendiduras individuales, entonces el patrón de interferencia desaparece. Mediante el uso de mediciones débiles, Steinberg y su equipo, fueron capaces de ganar un poco de información acerca de los caminos tomados por los fotones sin destruir el modelo.

En el experimento, la doble rendija se sustituye por un divisor de haz y un par de fibras ópticas. Un solo fotón golpea el divisor de haz y se desplaza por la derecha o la izquierda de la fibra. Después de salir de los extremos muy próximos de las fibras paralelas, se crea un patrón de interferencia en una pantalla del detector.

2do lugar: Medición de la función de onda

El segundo lugar va a otro grupo dirigido por Jeff Lundeen del Consejo de Investigación Nacional de Canadá en Ottawa – un ex colega de Steinberg – quien ha utilizado la medición débil para trazar la función de onda de un conjunto de fotones idénticos sin tener que destruir ninguna de ellas. La función de onda normalmente desaparece cuando se busca obtener su información. Para calcular una función de onda, los científicos normalmente recopilan grandes cantidades de medidas indirectas usando una técnica conocida como tomografía de estado cuántico.

3er lugar: Encubrimiento en el espacio-tiempo
Llegando al tercer lugar están los dos equipos – uno en la Universidad de Cornell en los EE.UU. con Alexander Gaeta a la cabeza, y el otro en el Imperial College de Londres, dirigida por Martin McCall. A principios de 2011 el equipo de McCall publicó un análisis teórico de cómo un acontecimiento en el espacio y el tiempo puede ser encubierto. Unos meses más tarde, Gaeta y sus colegas construyeron un dispositivo que utiliza dos “lentes de tiempo parcial” para hacer precisamente eso.
4to lugar: Medir el universo usando agujeros negros
El cuarto lugar en la lista va a Darach Watson y sus colegas de la Universidad de Copenhague, Dinamarca, y la Universidad de Queensland, Australia, que han encontrado una forma de utilizar un agujero negro supermasivo como “candelas estándar “para hacer mediciones precisas de distancias cósmicas. El trabajo es importante porque estos agujeros se pueden encontrar en casi todo el universo; a diferencia de las supernovas (que se utilizan actualmente como candelas estándar), la luz de un agujero negro permanece por largos períodos de tiempo.
5to lugar: Convertir la oscuridad en luz

Christopher Wilson y sus colegas de la Universidad Tecnológica de Chalmers en Suecia, junto con los físicos en Japón, Australia y los EE.UU. se embolsaron el quinto lugar, por ser los primeros en ver el efecto Casimir dinámico en el laboratorio. El efecto se produce cuando un espejo se mueve muy rápidamente a través de un vacío haciendo que los pares de fotones virtuales – que siempre aparecen y luego se aniquilan – se separen para crear fotones reales que pueden ser detectados. Así como también arroja nueva luz sobre el efecto Casimir, el uso de un dispositivo superconductor de interferencia cuántica (SQUID), como el espejo usado en el experimento, es un hecho extremadamente inteligente que merece ser tomado en cuenta.

6to lugar: Tomando la temperatura de los inicios del univero
Justo después del Big Bang, el universo era una sopa complicada de quarks y gluones libres que finalmente se condensaron para formar los protones y neutrones que vemos hoy en día. El sexto lugar en nuestro top 10 va a un equipo de físicos en los EE.UU., India y China, que ha hecho el mejor cálculo hasta ahora de esta temperatura de condensación: dos billones de grados Kelvin. Además de proporcionar importantes conocimientos sobre el universo en sus inicios, el trabajo también avanza nuestra comprensión de la cromodinámica cuántica, que describe las propiedades de los neutrones, protones y otros hadrones.
El séptimo lugar es otorgado al equipo internacional de físicos que trabajan en el experimento Tokai a Kamioka (T2K) en Japón. Los investigadores dispararon un haz de neutrinos muón 300 kilometros bajo tierra a un detector, donde se encontró que seis neutrinos habían cambiado (oscilado) en neutrinos electrón. La medición no es suficiente para reclamar el descubrimiento de la oscilación neutrino muón a electrón, sin embargo es la mejor prueba de como un “sabor” de los neutrinos pueden oscilar en otro.


8vo lugar: láser de vida trajo a la vida

En un hecho fascinante de la biofísica, Malte Reúna y Seok Hyun Yun de la Harvard Medical School en EE.UU. lograron hacer un láser a partir de una célula biológica de vida. Para ello utilizaron el resplandor de una luz azul intensa sobre las moléculas de proteína en el interior de una célula del riñón embrionario, provocando asi que las moléculas generaran una luz verde intensa, direccional y monocromática. Este asombroso fenómeno podría ser utilizado para en un futuro distinguir las células cancerosas de las sanas.


9no lugar: Ordenador cuántico hecho en un solo chip

El noveno lugar corresponde a Matteo Mariantoni y sus colegas en la Universidad de California en Santa Bárbara por ser el primero en implementar un procesador cuántico (con arquitectura von Neumann) cuya memoria podría ser utilizada para almacenar datos e instrucciones, y hacer posible la realización de cálculos complejos que están mucho más allá del poder de las computadoras convencionales. Este avance en la computación cuántica marca un hito similar al ocurrido en el diseño de la computación convencional en los años ’40. Su desarrollo nos acerca a la creación de ordenadores cuánticos prácticos que resolver problemas reales.


10mo lugar: ver las reliquias puras del Big Bang

Michele Fumagalli y Xavier Prochaska, de la Universidad de California, Santa Cruz y John O’Meara de la Universidad de Saint Michael en Vermont se quedaron con el lugar 10 para ser los primeros en avistar nubes de gas que son reliquias puras del Big Bang. A diferencia de otras nubes en el universo distante (que parecen contener los elementos creados por las estrellas) estas nubes contienen sólo el hidrógeno, helio y litio creado por el Big Bang. Este hecho, además de confirmar las predicciones de la teoría las nubes del Big Bang, proporcionan una visión única de los materiales de los que fueron hechas las primeras estrellas y galaxias.

Fuente: Physics World
por Hamish Johnston, editor de physicsworld.com

Traducido por: Juan Carlos Jiménez

Todo está relacionado… De una u otra manera

Autor por Emilio Silvera    ~    Archivo Clasificado en La estructura del Espacio    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Desde que la Ciencia moderna puede recordar, la conjetura de un universo continuo ha sido una verdad más que evidente e irrefutable. La materia, la energía y también el espacio-tiempo han sido así considerados y, sin embargo, llegaron nuevos descubrimientos que nos llevaron a saber, que todo, en el universo está cuantizado y, andamos a la búsqueda de saber, si también lo está el espaciotiempo.
Si nos trasladamos al ámbito de la mecánica cuántica, todo allí parece diferente y resulta estar cuantizado, la energía se emite en pequeños paquetes que se llaman cuantos y de ahí, el nombre de ésta teoría tan extraña que nos habla de lo que pasa en los pequeños ámbitos del universo.
Hay una combianción de c, G y h (las constantes universales que además dan los regímenes relativistas, gravitatorios y cuánticos) que tiene dimensiones de longitud. A esta longitud se la denomina longitud de Planck. Sin embargo, no es cierto que eso implique que el espaciotiempo sea discreto en esencia, lo que implica es que no podemos medir distancias por debajo de esta longitud. Por lo tanto, no es que el espaciotiempo sea discreto por la existencia de esta longitud de Planck.
Todos hemos repasado algunas veces, más o menos a fondo, la Teoría de la Relatividad General que nos dice que, las propiedades geométricas del espacio no son, ni están conformadas de una manera aleatoria, sino que, por el contrario, están sujetas y están condicionadas por la materia. Así, hablar de la estructura del Universo sin tener en cuenta esta premisa que nos lleva a considerar que, la geometría del universa viene dada por la materia que contiene, sería infundado y no ajustado a los conocimientos que actualmente tenemos. Hay que conocer el estado de la materia y las conformaciones -grandes y pequeñas estructuras que conforman en nuestro universo-, para saber de la geometría espacial.
Si la Gravedad es muy débil en una situación dada, las curvas del espacio-tiempo serán, también pequeñas en consonancia con dicha debilidad de la fuerza y, entonces, la RG deberá incluir a la RE como una aproximación de primer orden, como un caso especial en el cual la RG debe reducirse a la formulación matemática de un espacio-tiempo plano, es decir, deben reducirse a las tenasformaciones de Lorentz.
Cualquier sistema de geometría que no está basado en el postulado paralelo de Euclídes, que dice que una línea y sólo una línea se puede trazar a través de un punto fuera de una línea dada, paralela a esa línea. La geometría Euclidiana trata de la geometría de nuestro mundo diario. El postulado paralelo de Euclídes parece intuitivamente claro, pero nadie ha sido capaz de demostrarlo.Si sustituimos el postulado paralelo de Euclídes con el supuesto que existe más de una línea paralela a una línea dada a través de un punto dado, tenemos una geometría no Euclidiana llamada geometría hiperbólica. Si asumimos que no existen líneas paralelas, tenemos una geometría no Euclidiana llamada geometría elíptica.
Queremos saber como el Universo es, y, para ello, aunque tenemos la Relatividad General que nos dice que en presencia de grandes masas el Universo se curva y su geometría se ve sometida a dicha presencia, a pesar de ello, no dejamos de buscar y queremos saber si, eso que los cosmólogos llaman Omega Negro -la cantidad de materia que existe en el Universo- nos dice, de una vez por todas si estamos en un universo plano, abierto o cerrado.
Cabría imaginar que nuestro mundo se comporta en el espacio geométrico como una superficie que está irregularmente curvada pero que en ningún punto se aparta significativamente de un plano, lo mismo que ocurre, por ejemplo, con la superficie de un lago rizado por las débiles ondas que crean el suave viento. A un mundo de esta especie podríamos llamarlo con toda propiedad cuasi-euclidiano, y sería espacialmente infinito. Los cálculos indican, sin embargo que, la densidad media de materia tendría que ser nula y, no es ese, precisamente el caso de nuestro mundo en el que la materia, está por todas partes y, lo queramos o no, genera gravedad y genera curvatura que se dejan sentir, en nosotros mismos, en la Luna y en todos los cuerpos que nos circundan.
    Deformación de la malla espacio-tiempo
De la misma manera que en presencia de grandes masas y debido a la fuerza de Gravedad que generan, es afectada la malla espacio-temporal, de la misma manera digo, también se ha podido comprobar que, la luz, aparentemente sin masa, también es curvada cuando pasa cerca de un estrella.
Ya Hawking había hablado de la la incidencia que la gravedad podría tener en la propagación de la luz, Su primera explicación ni a él mismo dejo satisfecho y, finalmente, tuvo que adminitr que los rayos de luz que pasaban cerca de un cuerpo masivo, como una estrella, serían desviados por el campo gravitatoria que esta genera. Es decir, lo mismo que decía Einstein en su RG.
Como se está a la búsqueda de la Teoría Cuántica de la Gravedad, una de las preguntas más comunes es: ¿Desempeñan los campos gravitatorios un papel esencial en la estructura de las partículas elementales de la materia?
Realmente, consideradas de manera individuales, las partículas más o menos elementales e incluso los átomos, tienen una incidencia ínfima de la gravedad, ya que, las pequeñas masas que las conforman -infinitesimales- son tan insignificantes a a nivel individual que la Gravedad casi podría ser despreciada. De hecho, cuando llegamos a los ámbitos cuánticos, la Gravedad, hace mutis por el foro y, sólo se consideran parámetros electromagnéticos y de fuerzas nucleares fuerte y débil que sí, inciden, de lleno y con mucha potencia en esos pequeños objetos.
Está claro que ni la teoría Newtoniana ni tampoco la Relativista de la gravitación han llevado hasta ahora a ningún avance en la teoría de la constitución de la materia y, sin embargo, se piensa que, las formaciones elementales que van a constituir los átomos se mantienen unidas por fuerzas gravitatorias que, aún no hemos podido medir por no tener la tecnología necesaria para ello.
El avance proporciona evidencia para apoyar una idea polémica, llamada la generación de múltiples excitón (MEG), que es la teoría de que es posible que un electrón que ha absorbido la energía de la luz, llamado un excitón, puede transferir esa energía a más de un electrón, consiguiendo más electricidad con la misma cantidad de luz absorbida.
Los puntos cuánticos son átomos artificiales que los electrones se limitan a un espacio pequeño. Ellos tienen un comportamiento atómico como que da lugar a inusuales propiedades electrónicas a nanoescala. Estas propiedades únicas pueden ser particularmente valiosos en la adaptación de la forma en la luz interactúa con la materia.

            Gustav Mie

Ese ha sido uno de las grandes esfuerzos realizados por desarrollar una teoría que diera cuenta del equilibrio de la electricidad que constituye el electrón y, los trabajos de Mie, han sido apoyados por toda la comunidad de los físicos teóricos, él se basa principalmente en la introducción de un tensor- energía de términos suplementarios que dependen de las componentes del potencial electromagnético, además de los términos de energía de la teoría de Maxwell-Lorentz. Estos nuevos términos que en el espacio exterior no son importantes, son sin embargo efectivos en el interior de los electrones al mantener el equilibrio frente a la repulsión eléctrica.

A pesar de la belleza de la estructura formal de esta teoría, erigida por Mie, Hilbelt y Weyl, sus resultados físicos hasta ahora han sido insatisfactorios. Por una partew, la multiplicidad de posibilidades es desalentadora, y por otra parte dichos términos adicionales no han podido ser formulados de una manera tan simple que la solución pudiera ser satisfactoria,

Hasta ahora la Teoría de la Relatividad General no ha realizado ningún cambio en este esteado de la cuestión. Si por el momento no consideramos el término cosmológico

Gμν  =  ½δμν G = KT μν

Donde G denota el Tensor de curvatura de Riemann contraído, G es el escalar de curvatura formado por contracción repetida, y Tμν el Tensor de energía de “materia”. En fin, explicar toda la ecuación puede llegar a ser engorroso y es toda una larga historia que no siempre entretiene al personal. Así que, lo dejamos.

Muchos son los conceptos que tendríamos que explicar aquí para dilucidar todas estas cuestiones que, implicadas en estas teorías, nos llevan a la sinemática, la simultaneidad, transformaciones de coordenadas, relatividad de longitudes y tiempos, adición de velocidades, lo que nos dijo Maxwell y Lorentz. transformación de nergía en rayos luminosos, la gravedad y la propagación de la luz, la naturaleza física de los campos gravitatorios… y un sin fin de cuestiones que, hacen necesario un gran volumen y, también, un amplio dominio de conocimientos de los que carezco.

Lo cierto es que, la Teoría de la Gravedad, nos lleva a imaginar situaciones que podrían ser y, en alguna ocasión, se nos puede presentar como posibles caminos para solucionar cuestiones que, en el mundo físico que conocemos, nos parecen irresolubles pero… En física, amigos míos, lo imposible parece posble.

¡Encontrar la solución para burlar la velocidad de la luz, y, atravesanso portales mágicos, ir a otras galaxias! Es cierto que la mente está muy delante de los hechos pero… Cuando se piensa en algo, ahí queda la posibilidad de plasmarlo en una realidad.

Al menos por el momento, no podemos saber si nuestro Universo es único. Sin embargo, hemos pensado en la posiblidad de que pudiera ser uno de tantos. Como nunca nadie pudo estar en otro Universo, tenemos que imaginarlos y basados en la realidad del nuestro, ralizamos conjeturas y comparaciones con otros que podrìan ser. ¿Quién puede asegurar que nuestro Universo es único? Realmente nadie puede afirmar tal cosa e incluso, estando limitados a un mundo de cuatro dimendiones espacio-temporales, no contamos con las condiciones físicas necesarias para poder captar (si es que lo hay), ese otro universo paralelo o simbiótico que presentimos junto al nuestro y que sospechamos que está situado en ese “vacío” que no hemnos llegado a comprender. Sin embnargo, podríamos conjeturar que, ambos universos, se necesitan mutuamente, el uno sin el otro no podría existir y, de esa manera, estaríamos en un universo dual dentro de la paradoja de no poder conocernos mutuamente, al menos de momento, al carecer de los conocimientos necesarios para ello.

emilio silvera

¡La Astronomía! Que nos pasea por el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

      Si tenemos suerte y podemos perdurar como especie, en las estrellas, en otros mundos,  está el futuro de la especie Humana, allí están los nuevos planetas  que deben habitar los que detrás de nosotros vendrán, y, cuando nuestro Sol esté moribundo y a punto de ser una Gigante roja, para entonces, ya no estaremos aquí y habremos podido conquistar el espacio. Esta nueva manera de mirar el universo nos da nuevas ideas, no todo el espacio son agujeros negros, estrellas de neutrones, galaxias y desconocidos planetas; la verdad es que casi todo el universo está vacío y sólo en algunas regiones tiene agrupaciones de materia en forma de estrellas y otros objetos estelares y cosmológicos; muchas de sus propiedades y características más sorprendentes (su inmenso tamaño y su enorme edad, la soledad y oscuridad del espacio…) son condiciones necesarias para que existan observadores inteligentes como nosotros.

http://farm3.staticflickr.com/2778/4309056486_5eeb36bf17_z.jpg?zz=1

                                     Intrincadas conformaciones físicas que no podemos explicar

No debería sorprendernos la vida extraterrestre; si existe, pudiera ser tan rara y lejana para nosotros como en realidad nos ocurre aquí mismo en la Tierra, donde compartimos hábitat con otros seres vivos con los que hemos sido incapaces de comunicarnos, a pesar de que esas formas de vida, como la nuestra, están basadas también en el carbono. No se puede descartar formas de vida inteligente basadas en otros elementos, como por ejemplo, el silicio.

La baja densidad media de materia en el universo significa que si agregáramos material en estrellas o galaxias, deberíamos esperar que las distancias medias entre objetos fueran enormes.

Leer más

¿Cómo llegó o surgió la vida en la Tierra?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La pregunta que se hace en el título del presente trabajo ha sido planteada por muchos pero… ¡Nunca ha sido contestada! En algún momento durante los primeros mil millones de años de existencia de nuestro planeta, la Tierra, parece que la vida ya estaba presente en ella según los datos que hemos podido obtener de fósiles presentes en las rocas más viejas halladas en nuestro mundo.

Científicos estudiaron rocas de Australia y encontraron fósiles con trazas de bacterias de hace 3.490 millones de años atrás en Pilbara, Australia, como mil millones de años después de la datación de la formación de la Tierra. Ya estaban ahí esas formas de vida que, también ahora podemos encontrar en cualquier parte de nuestro mundo y que siempre nos causa asombro al comprobar el poder de adaptación que llegan a mostrarnos.

 

Buscando información al respecto, nos encontramos con toda clase de noticias:
“El fuerte ataque de los cometas podría haber sido la razón del nacimiento de la vida en la Tierra. Así opinan los investigadores de la NASA que presentaron un informe en la reciente conferencia de la Sociedad Química Americana.
Anteriormente, existía una teoría según cual los compuestos de proteínas se originaron tras el ‘bombardeo’ de la Tierra con meteoritos helados. Esta nueva investigación arroja luz sobre este misterio. Los resultados del estudio mostraron que los aminoácidos que se consideran como la base de las proteínas, no solo persistían en las fuertes colisiones de cometas, sino que también comenzaron a interactuar unos con otros bajo la influencia de la energía del impacto.
Las proteínas son un componente necesario de todos los seres vivos del planeta. Precisamente esa teoría de las colisiones explica por qué se originó la vida en la Tierra tan rápido. De acuerdo con los científicos, hace aproximadamente 3.800 millones de años la Tierra experimentó un fuerte ataque de los cometas desprendían sus fragmentos y asteroides con una velocidad de 25.000 kilómetros por hora.”

        El pasado de la Tierra fue muy violento y las condiciones reinantes eran muy distintas a las que hoy podemos disfrutar

Ya sabemos que los pueblos antiguos acudían a las divinidades para dar una explicación de la presencia de la vida. A medida que el tiempo fue pasando y la Humanidad adquiría nuevos conocimientos, se pensó en la hipótesis de que la vida, habiéndo surgido por todo el Universo, llegó aquí bien comuflada en un gran meteorito o cometa. La posibilidad (quizás la más creíble), es la de que hace unos 3.800 millones de años, la Tierra estaba sometida a una serie de sucesos violentos de radiación, vulcanismo, meteoritos, atmósfera viciada y otros que hicieron posible cambios complejos que llevaron a reacciones químicas-biológicas que dieron como el resultado la creación de aquella especie de plasma vivo que posibilitó el surgir de aquella primera célula replicante y, a partir de ahí, comenzó la aventura de la vida en nuestro planeta.

Nuestro amigo Abdel, en su página Universo para todos, nos cuenta:

“Científicos estadounidenses encontraron fragmentos de moléculas orgánicas que integran el ADN, así como sus análogos que no forman parte de los ácidos nucleicos, en la composición de los meteoritos.

Según informa la NASA, los especialistas del Centro Aeroespacial Goddard estudiaron 12 meteoritos ricos en carbono que pertenecen a la clase de los condritos carbonáceos —la mayoría de los meteoritos hallados hasta la fecha en la Tierra son condritos—.

En la composición de estos cuerpos celestes, los investigadores detectaron dos tipos de las llamadas bases nitrogenadas, la adenina y la guanina, que integran el ADN (en el código genético corresponden a las letras A y G, respectivamente).

Además, en dos meteoritos los investigadores encontraron por primera vez huellas de las moléculas relacionadas con bases nitrogenadas, que prácticamente no tienen uso en la biología. Estas moléculas, denominadas análogos de las bases nitrogenadas, evidencian su procedencia extraterrestre, indica el informe. ”

Al analizar la nieve y el suelo en el lugar de la caída de los meteoritos, los expertos no encontraron estas sustancias. En cuanto a la adenina y la guanina, las detectaron en cantidades considerablemente menores que en la composición de las rocas cósmicas. Este hecho indica la procedencia extraterrestre de dichos compuestos orgánicos, deducen los científicos.”

Sabemos que en el principio en la Tierra no existía vida. Restos de todos los tamaños bombardeaban el planeta durante su nacimiento, calentaron y fundieron sus capas exteriores y los océanos de lava inundaban la superficie del joven planeta. Si existía algún tipo de vida en aquellos fragmentos de materia a partir de las cuales se fue formando la Tierra, esa vida, es evidente que se destruyó en un baño de fuego en la creación de aquel planeta igneo que tardó algunos millones de años en poder enfriarse.

Aquella superficie fundida de la Tierra bebé se fue enfriando y solidificando. Los gases atrapados en el interior de la corteza al formarse ésta buscaron una salida hasta la superficie para crear la primera y viciada atmósfera del planeta. El vapor liberado de la lava se enfrió y se condensó en forma de charcas de agua templada en la superficie. La enrarecida y densa atmósfera desencadenó un tumulto de tormentas y aparato eléctrico seguido de lluvias interminables. Se formaron los océanos del planeta.

Mil millones de años más tarde, aquella Tierra de violento sucesos, se fue calmando y, de alguna manera, todos aquellos acontecimientos dieron lugar a que, la situación del planeta bañado por la luz y el calos de una también joven estrella, posibilitara los cambios de transisicón de la materia que, de inerte pasó a ser animada y, con el tiempo…

Mil conjeturas han surgido en torno a la presencia de la vida en nuestro planeta y, la hipótesis basada basada en los hechos que tenemos más a mano, nos llevan a pensar que la vida -microbios, plantas y aninales-, se pudo formar a partir de las mismas moléculas básicas. Estas moléculas denominadas aminoácidos y nucleótidos, constituyen los bloques fundadores de la materia viva que conocemos.

Es cierto, como hemos podido leer más arriba, que muchos de estos constituyentes han sido también hallados en meteoritos y nebulosas que están lejos de la Tierra, en el espacio exterior y, tal verdad, nos lleva a pensar en el hecho cierto de que el Universo es sólo uno, y, en cualquiera de sus regiones suceden las mismas cosas que sucedieron en la nuestra. La energía y la materia se ve forzada a los cambios de fases que las fuerzas de la Naturaleza impone independientemente del lugar en el que nos podamos encontrar.

Todos recordamos aquel experimento que asombró al mundo por sus resultados. Demostró que esos bloques generadores de la vida se habían formado probablemente en muy grandes cantidades en la atmósfera y superficie de la Tierra cuando era un joven planeta. Caidos desde la atmósfera a los océanos, esas molñéculas básicas formaron aquel caldo nutricio de materiales forjadores de la vida. Se produjeron choques entre moléculas vecinas de ese caldo primordial y, en ocasiones, dos o tres pequeñas moléculas se enganchoron entre sí para formar moléculas mayores y más complejas que se unieron debido al azar de unas condiciones y circunstancias que, en el universo, han podido proliferar en miles de planetas que, como la Tierra, estuviera calentado por una estrella y situado en la adecuada distancia para permitir, que la vida prevaleciera.

Pasaron millones de años, tuvieron lugar incontables colisiones, de manera gradual, a partir de aquellos enciuentros al azar y de diversa índole y calidad, llegaron a surgir las primeras células replicantes de una rica variedad que fueron las semillas de lo que vendría después con el devenir del tiempo y que, según hemos podido constatar en las viejas rocas de la Tierra, hiceron posible la aparición de aquellas primeras y rústicas formas de vida que, aún hoy, nos podemos encontrar en algunos lugares del planeta en los que, las condiciones extremas, no parecían las más idóneas para que, la vida, pudiera estar presente y, sin embargo, ahí están.

Así, aquellas primeras moléculas autorreproductoras, de alguna manera, podríamos decir que fueron “las madres, las copias y las hijas”. Las moléculas “hijas” herederon esa característica mágica de aquella primera molécula “madre”.  Y, siendo así (que lo es), una molécula se convirtió en dos; aquellas dos en cuatro, después en ocho y en dieciseis y en treinta y dos… hasta el “infinito” que hemos podido llegar a conocer al saber que, millones de ellas, pueden estar situadas en la cabeza de un alfiler… y, también, en cualquier lugsar del espacio exterior.

          Espectro de agua y moléculas orgánicas en la Nebulosa de Orión, obtenido por HIFI

El Observatorio Espacial Herschel de la ESA ha descubierto la huella química de varias moléculas orgánicas – necesarias para la formación de la vida – en la Nebulosa de Orión, una cercana región de formación de estrellas en nuestra galaxia, la Vía Láctea. Este detallado espectro, obtenido con el Instrumento Heterodino para el Infrarrojo Lejano (HIFI) – uno de los tres instrumentos de Herschel – muestra el filón de información que aportará Herschel-HIFI sobre la formación de moléculas orgánicas en el espacio.

En la Tierra, la molécula autorreproductora constituyó el comienzo de una sucesión de incontables generaciones que, a través de imperceptibles cambios mínimos en cada nueva generación, condujeron desde lo simple a lo complejo: de los microbios al ser humano. Aquello fue el principio de la paternidad; fue el principio de la evolución biológica; fue, en definitiva, el principio de la vida que, según yo creo, no es cosa esclusiva de nuestro planeta y, quien no quiera verlo así… ¡Está ciego o es…, de entendederas cortas!

emilio silvera