martes, 21 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡El Universo! ¿Llegaremos a conocerlo?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo, Los misterios del Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 http://aidu.rafaelgq.com/wp-content/uploads/2010/04/13.-espacio-tiempo-relativo.jpg

Hay que entender que el espacio-tiempo es la descripción en cuatro dimensiones del universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo.

De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que eventos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar. El tiempo puede ser medido, por tanto, de manera relativa, como lo son las posiciones en el espacio (Euclides) tridimensional, y esto puede conseguirse mediante el concepto de espacio-tiempo. La trayectoria de un objeto en el espacio-tiempo se denomina por el nombre de línea de universo. La relatividad general nos explica lo que es un espacio-tiempo curvo con las posiciones y movimientos de las partículas de materia.

 http://www.zamandayolculuk.com/cetinbal/PU/tiempo_curvatura_espacio.jpg

La curvatura del espacio-tiempo es la propiedad del espacio-tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos. La relatividad general de Einstein, nos explica y demuestra que el espacio-tiempo está íntimamente relacionado con la distribución de materia en el universo, y nos dice que el espacio se curva en presencia de masas considerables como planetas, estrellas o galaxias (entre otros).

 http://lh4.ggpht.com/_3TLAMAO0Kkg/S9M6LeLXJFI/AAAAAAAAAH0/pF4Xp31INwA/First_angle_projection%5B2%5D.png

En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180°. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es, en esencia, lo que ocurre en relatividad general.

En los modelos cosmológicos más sencillos basados en los modelos de Friedmann, la curvatura de espacio-tiempo está relacionada simplemente con la densidad media de la materia, y se describe por una función matemática denominada métrica de Robertson-Walker. Si un universo tiene una densidad mayor que la densidad crítica, se dice que tiene curvatura positiva, queriendo decir que el espacio-tiempo está curvado sobre sí mismo, como la superficie de una esfera; la suma de los ángulos de un triángulo que se dibuje sobre la esfera es entonces mayor que 180°. Dicho universo sería infinito y se expandiría para siempre, es el universo abierto. Un universo de Einstein-de Sitter tiene densidad crítica exacta y es, por consiguiente, espacialmente plano (euclideo) infinito en el espacio y en el tiempo.

 http://1.bp.blogspot.com/-bxbdSqjqWf8/Th3ZXbfdTPI/AAAAAAAA0GA/DTf34tPvd_Y/s1600/abell-hubble-566x580.jpg

Representación gráfica de los espacios que dan lugar a los tres posibles formas de universo antes referida en función de la densidad crítica que hará un universo plano, un universo abierto o un universo curvo y cerrado.

Hemos mencionado antes la relatividad del tiempo que para el mismo suceso será distinto en función de quién sea el que cronometre; por ejemplo, el tiempo transcurre más despacio para el astronauta que en nave espacial viaja a velocidades próximas a c, la velocidad de la luz. Según la teoría de la relatividad especial de Einstein, en el caso antes señalado, el tiempo del astronauta viajero avanza más lentamente en un factor que denotamos con la ecuación , cuando lo mide un sistema de referencia que viaja a una velocidad v relativa al otro sistema de referencia; c es la velocidad de la luz. Este principio ha sido verificado de muchas maneras; por ejemplo, comparando las vidas medias de los muones rápidos, que aumentan con la velocidad de las partículas en una cantidad predicha en este factor de la anterior ecuación.

 

Un ejemplo sencillo de la dilatación del tiempo es la conocida paradoja de los gemelos. Uno viaja al espacio y el otro lo espera en la Tierra. El primero hace un viaje a la velocidad de la luz hasta Alfa de Centauri y regresa. Cuando baja de la nave espacial, tiene 8’6 años más que cuando partió de la Tierra. Sin embargo, el segundo gemelo que esperó en el planeta Tierra, al regreso de su hermano, era ya un viejo jubilado. El tiempo transcurrido había pasado más lento para el gemelo viajero.

Otra curiosidad de la relatividad especial es la que expresó Einstein mediante su famosa fórmula de E = mc2, que nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. La bomba atómica demuestra la certeza de esta ecuación.

El gráfico de los distintos “triángulos” anteriores, que es una muestra de las tres posibles maneras en que puede estar conformado nuestro universo, dependerá finalmente, de la densidad critica (al menos, eso es lo que suponemos hoy).

La densidad crítica está referida a la densidad media de materia requerida para que la gravedad detenga la expansión de nuestro universo. Así que si la densidad es baja se expandirá para siempre, mientras que una densidad muy alta colapsará finalmente. Si tiene exactamente la densidad crítica ideal, de alrededor de 10-29 g/cm3, es descrito por el modelo al que antes nos referimos conocido como de Einstein-de Sitter, que se encuentra en la línea divisoria de estos dos extremos. La densidad media de materia que puede ser observada directamente en nuestro universo representa sólo el 20% del valor crítico. Puede haber, sin embargo, una gran cantidad de materia oscura que elevaría la densidad hasta el valor crítico. Las teorías de universo inflacionario predicen que la densidad presente debería ser muy aproximada a la densidad crítica; estas teorías requieren la existencia de materia oscura.

                                         Por suponer que no quede

Conforme a lo antes dicho, la densidad media de materia está referida al hecho de distribuir de manera uniforme toda la materia contenida en las galaxias a lo largo de todo el universo. Aunque las estrellas y los planetas son más densos que el agua (alrededor de 1 g/cm3), la densidad media cosmológica es extremadamente baja, como se dijo antes, unos 10-29 g/cm3, o 10-5 átomos/cm3, ya que el universo está formado casi exclusivamente de espacios vacíos, virtualmente vacíos, entre las galaxias. La densidad media es la que determinará si el universo se expandirá o no para siempre.

En presencia de grandes masas de materia, tales como planetas, estrellas y galaxias, está presente el fenómeno descrito por Einstein en su teoría de la relatividad general, la curvatura del espacio-tiempo, eso que conocemos como gravedad, una fuerza de atracción que actúa entre todos los cuerpos y cuya intensidad depende de las masas y de las distancias que los separan; la fuerza gravitacional disminuye con el cuadrado. La gravitación es la más débil de las cuatro fuerzas fundamentales de la naturaleza. Isaac Newton formuló las leyes de la atracción gravitacional y mostró que un cuerpo se comporta gravitacionalmente como si toda su masa estuviera concentrada en su centro de gravedad. Así, pues, la fuerza gravitacional actúa a lo largo de la línea que une los centros de gravedad de las dos masas (como la Tierra y la Luna, por ejemplo).

En la teoría de la relatividad general, la gravitación se interpreta como una distorsión del espacio que se forma alrededor de la masa que provoca dicho fenómeno, cuya importancia iría en función de la cantida de la masa que hace distorsionar el espacio que, en el caso de estrellas con gran volumen y densidad, tendrán una importancia considerable, igualmente, la fuerza de gravedad emitida por de planetas, estrellas, galaxias y grandes objetos cosmológicos hace de nuestro universo, junto con el efecto producido por las otras fuerzas, el universo que podemos contemplar.

Esta fuerza es la responsable de tener cohexionado a todo el universo, de hacer posible que existan las galaxias, los sistemas solares y que nosotros mismos tengamos bien asentados los pies a la superficie de nuestro planeta Tierra que genera la gravedad necesaria para que tire de nosotros y de todos los objetos hechos de materia para que tiodo sea como lo podemos observar.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting