martes, 21 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Universo misterioso

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

http://cecglobal.files.wordpress.com/2012/04/big-bang12.jpg?w=710

 

 

No pocas veces, cuando no sabemos las respuestas, echamos manos del Azar y le adjudicamos lo que pasó., cuando fue una causa muy pequeña que escapó a nuestra percepción la que determinó los acontecimientos posteriores a ella produciendo los considerables efectos que más tarde, podemos ver y, desde luego, tales efectos nunca se debieron al Azar. Si conociéramos con exactitud las leyes de la Naturaleza y la situación del Universo en su momento inicial, podríamos predecir exactamente la situación de ese mismo universo en un momento posterior. Pero incluso si se diera el caso de que las leyes naturales no fueran ya un secreto para nosotros, sólo podríamos conocer la situación inicial de una manera aproximada. Eso nos daría la posibilidad de predecir la situación posterior de la misma aproximación, esto es todo lo que necesitamos, y diríamos que hemos logrado predecir el fenómeno, que está gobernado por las leyes. Pero no siempre es así, puede que una pequeña diferencia en las condiciones iniciales produzca una diferencia muy grande en las condiciones finales. Un pequeño error en lo anterior causará un enorme error en lo posterior. La predicción se hace imposible, y lo que tenemos entonces es, un “fenómeno fortuíto”, algo que no podemos explicar.

 

 

 

 

El Big Bang, esa teoría aceptada por todos y que “nos dice” como se formó nuestro Universo y comenzó su evolución hasta llegar a ser como ahora lo podemos contemplar. De acuerdo a esta teoría, el Universo se originó a partir de un estado inicial de alta temperatura y densidad, y desde entonces ha estado siempre expandiéndose. La teoría de la relatividad General predice la existencia de una singularidad en el comienzo, cuando la temperatura y la densidad eran infinitas, antes del comienzo del Tiempo y del nacimiento del Espacio.

La mayoría de los cosmólogos interpretan esta singularidad como una indicación de que la relatividad general de Einstein deja de ser válida en el Universo muy primitivo (no existía materia, todo era una infinita concentración de energía), y el comienzo mismo debe ser estudiado utilizando una teoría de cosmología cuántica.

La misión WMAP (Wilkinson Microwave Anisotropy Probe) de la NASA ha publicado los resultados de cinco años de observación de la radiación de fondo de microondas del firmamento completo. Estos resultados confirman bastante de lo que ya sospechábamos acerca de la infancia del Universo, además de alcanzar una precisión sin precedentes en las estimaciones acerca de la edad y la composición del Universo.

La teoría del Big Bang es capaz de explicar la expansión del Universo; la existencia de una radiación de fondo cósmica, y la abundancia de núcleos ligeros como el helio, el helio-3, el deuterio y el litio-7, cuya formación se predice que ocurrió alrededor de un segundo después del Big Bang, cuando la temperatura reinante era de 1010 K.

La radiación de fondo cósmica proporciona la evidencia más directa de que el Universo atravesó por una fase caliente y densa.  En la teoría del Big Bang, la radiación de fondo es explicada por el hecho de que, durante el primer millón de años más o menos (es decir, antes del desacoplo de la materia y la radiación y, por tanto, en equilibrio término con ella.  Esta fase es habitualmente denominada “bola de fuego primordial”.)

Cuando el Universo se expandió y se enfrió a 3000 K se volvió transparente a la radiación, que es la que observamos en la actualidad, mucho más fría y diluida, como radiación térmica de microondas.  El descubrimiento del fondo de microondas en 1.956 puso fin a una larga batalla entre el Big Bang y su rival la teoría del Universo estacionario de P. Hoyle y otros, que no podía explicar la forma de cuerpo negro del fondo de microondas.  Es irónico que, el termino Big Bang, tuvo inicialmente un sentido burlesco y fue acuñado por Hoyle, contrario a la teoría del Universo inflacionario y defensor del estacionario.

 

 

Se cree que de aquella explosión primera, surgieron todas las fuerzas que rigen hoy nuestro universo, se estabilizaron las constantes universales que le dan su sello característico, y, se formaron las primeras estrellas necesarias para que, en su hornos nucleares se crearan los materiales complejos presentes en los mundos y en los seres vivos.

Veamos lo que creemos que paso:

 

Cronología del Big Bang
Era Duración Temperatura
Era de Planck de 0 a 10-43 seg. a 10-34 K
Era de radiación de 10-43 a 30.000 años desde 10-34 a 104 K
Era de la materia de 30.000 años al presente (13.500.000.000 años). desde 104 a 3 K actual

 

Para fijar más claramente los hechos se debe extender la explicación evolutiva del universo en las fases principales que son las eras reseñadas en el recuadro de arriba, su duración y temperatura. Sin embargo, lo cierto es que, nunca hemos podido traspasar la llamada era de Planck, es decir, esa barrera infranqueable de los 10-43 segundos desde el comienzo del tiempo. ¿Qué pasaría allí en esa fracción infinitesimal de tiempo? El no saberlo, el no conocer los sucesos iniciales, nos llevan a predecir a partir de lo que “sabemos” que nos da un cuadro incompleto y, como decíamos antes, un desvío pequeño inicial nos puede llevar a gran desvío final.

Primera forma de la materia, los primeros átomos. Está claro que las estrellas y los planetas no se formaron de hoy para mañana, el proceso fue algo más largo y, las primeras estrellas aparecieron a los doscientos mil años después del Big Bang, y, con ellas, se fueron formando también los primeros planetas. Más tarde se conformaron las galaxias que agruparon estrellas y material interestelar por la fuerza de gravitatoria. Las galaxias se juntaron en cúmulos y supercúmulos. Pero expliquemos algo más sobre las Eras en el proceso del Big Bang:

De la materia

 

Es la era que comenzó cuando el efecto gravitacional de la materia comenzó a dominar sobre el efecto de presión de radiación. Aunque la radiación es no masiva, tiene un efecto gravitacional que aumenta con la intensidad de la radiación. Es más, a altas energías, la propia materia se comporta como la radiación electromagnética, ya que se mueve a velocidades próximas a la de la luz. En las etapas muy antíguas del universo, el ritmo de expansión se encontraba dominado por el efecto gravitacional de la presión de radiación, pero a medida que el universo se enfrió, este efecto se hizo menos importante que el efecto gravitacional de la materia. Se piensa que la materia se volvió predominante a una temperatura de unos 104 K, aproximadamente 30.000 años a partir del Big Bang. Este hecho marcó el comienzo de la era de la materia.

Aún colea uno de los últimos éxitos del acelerador de partículas LHC que dio ha vuelto el campanazo con uno de sus experimentos, una recreación a escala de lo que “sucedió” en los orígenes del Universo. Se utilizaron iones de plomo para alcanzar este logro. Un metal poco exótico en comparación con otros más caros pero que posee la cualidad de ser uno de los más pesados.

Según el CERN estos experimentos con iones de plomo abren “una nueva vía en la investigación del programa del acelerador para sondear la materia tal como era en los primeros instantes del Universo, justo después del Big Bang”. Aclaran que “uno de los principales objetivos de esta nueva fase es producir cantidades ínfimas de esta materia, llamada “plasma quark-gluon y estudiar su evolución hacia aquella que constituye el Universo actualmente”.

Traigo aquí este breve comentario sobre tareas que se realizaron  en el LHC para, haceros ver que siempre estamos tratando de ahondar en el saber de la materia y lo que pudo pasar en aquellos primeros momentos de la creación que son desconocidos para nosotros antes del Tiempo de Planck

 

See full size image El Tiempo de Plank nos lleva hacia la

 

 

Era de la Radiación

Periodo entre 10-43 s (la era de Planck) y 300.000 años después del Big Bang. Durante este periodo, la expansión del universo estaba dominada por los efectos de la radiación o de las partículas rápidas (a altas energías todas las partículas se comportan como la radiación). De hecho, la era leptónica y la era hadrónica son ambas subdivisiones de la era de radiación. La era de radiación fue seguida por la era de la materia que antes se reseña, durante la cual las partículas lentas dominaron la expansión del universo.

Era hadrónica

Corto periodo de tiempo entre 10-6 s y 10-5 s después del Big Bang en el que se formaron las partículas atómicas pesadas, como protones, neutrones, piones y kaones entre otras. Antes del comienzo de la era hadrónica, los quarks se comportaban como partículas libres. El proceso por el que se formaron los quarks se denomina transición de fase quark-hadrón. Al final de la era hadrónica, todas las demás especies hadrónicas habían decaído o se habían desintegrado, dejando sólo protones o neutrones. Inmediatamente después de esto el universo entró en la era leptónica.

 

 

Hoy, como todos sabeis, en el LHC se están haciendo diversos experimentos con hadrones para saber más sobre aquellos primeros momentos del Big Bang, sobre lo que la materia encvierra, y, sobre todo, tratamos de poder entrar en zonas prohibidas hasta ahora en las que, probablemente, podamos “ver” nuevas cosas y, sobre todo saber sobre muchas de las incognitas que la Ciencia no ha podido resolver. En realidad, para npo saber no sabemos ni…

A la idea de un universo isótropo y homogéneo en promedio para grandes escalas de distancia se la suele denominar “Principio Cosmológico” – término introducido en 1933 por el astrónomo británico Edward Arthur Milne (1896-1950) – y formulado por primera vez por Albert Einstein (1879-1955) alrededor de 1915, cuando todavía los astrónomos consideraban al sistema de estrellas de la Vía Láctea como todo el universo conocido, y los análisis estadísticos de la distribución estelar mostraban un sistema ligado con forma de disco achatado y por tanto claramente inhomogéneo. Einstein había discutido este punto con el astrónomo alemán Willen de Sitter (1872-1934), seguramente preocupado por estar haciendo una hipótesis demasiado atrevida. Pero la idea que rondaba en la cabeza de Einstein eran las observaciones del filósofo y físico austriaco Ernst Mach (1838-1916).

Era Leptónica

 

 

 

Intervalo que comenzó unos 10-5 s después del Big Bang, en el que diversos tipos de leptones eran la principal contribución a la densidad del universo. Se crearon pares de leptones y antileptones en gran número en el universo primitivo, pero a medida que el universo se enfrió, la mayor parte de las especies leptónicas fueron aniquiladas. La era leptónica se entremezcla con la hadrónica y ambas, como ya dije antes, son subdivisiones de la era de la radiación. El final de la era leptónica se considera normalmente que ocurrió cuando se aniquilaron la mayor parte de los pares electrón-positrón, a una temperatura de 5×109 K, más o menos un segundo después del Big Bang. Después, los leptones se unieron a los hadrónes para formar átomos.

Así creemos que se ¡ formó nuestro universo, a partir de una singularidad que explotó expandiendo toda la densidad y energía a unas temperaturas terroríficas, y a partir de ese mismo instante conocido como Big Bang, nacieron, como hermanos gemelos, el tiempo y el espacio junto con la materia que finalmente desembocó en lo que ahora conocemos como universo.

El universo es el conjunto de todo lo que existe, incluyendo el espacio, el tiempo y la materia.  El estudio del universo se conoce como cosmología. Los cosmólogos distinguen al Universo con “U” mayúscula, significando el cosmos y su contenido, y el universo con “u” minúscula, que es normalmente un modelo matemático deducido de alguna teoría física como por ejemplo, el universo de Friedmann o el universo de Einstein–de Sitter. El universo real está constituido en su mayoría de espacios que aparentemente están vacíos, existiendo materia concentrada en galaxias formadas por estrellas, planetas, gases y otros objetos cosmológicos que nosotros no dejamos de observar con nuestros modernos ingenios para tratar de saber lo que pasó, lo que pasa y lo que pasará.

 

Los telescopios espaciales de la NASA han captado, a 62 millones de años luz de la Tierra, una colisión de dos galaxias que comenzó hace 100 millones de años y aún continúa. La espectacular imagen publicada por la agencia espacial ha sido obtenida combinando las las tomadas por las cámaras del Observatorio de rayos X Chandra, el Telescopio Espacial Hubble y el Spitzer.

El universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes. Existe evidencia creciente de que el espacio puede estar ocupado por alguna clase de sustancia o “materia oscura” invisible que puede constituir muchas veces la masa total de las galaxias visibles.

MACSJ0717.5+3745 etiquetado

 

 

La composición de imagen (arriba) muestra el cúmulo de galaxias masivo MACSJ0717.5+3745. El color del gas caliente está codificado con colores para mostrar su temperatura. El gas más frío es mostrado como un púrpura rojizo, el gas más caliente en azul y las temperaturas intermedias en púrpura. Las repetidas colisiones en el cúmulo son causadas por una corriente de galaxias, polvo y  -posiblemente- “materia oscura” -conocida como filamento- de 13 millones de años luz.

Esos halos, tendrían muchas veces la masa que podemos ver en la materia luminosa, la Bariónica formada por Quarks y Leptones que conforman las estrellas, planetas, galaxias y nosotros mismos. La teoría de la materia oscura y su -hipotética- presencia en cúmulos y supercúmulos ha sido “descubierta” -o inventada para tapar nuestra ignorancia- en época relativamente cercana para que prevalezca entre los astrónomos la uninimidad respecto a su contribución a la masa total del universo. El debate continúa, está muy vivo y, es el tema tan candente e importante que, durará bastante tiempo mientras algún equipo de observadores no pueda, de una vez por todas, demostrar que, la “materia oscura” existe, que nos digan donde está, y, de qué está conformada y como actúa. Claro que, cuando se haga la suma de materia luminosa y oscura, la densidad de la masa total del universo no será todavía mayor del 30% del valor crítico. A todo esto, ocurren sucesos que no podemos explicar y, nos preguntamos si en ellos,no estarán implicadas fuerzas que todavía, no hemos sabido descubrir.

 

Mientras tanto, seguimos conjeturando y lanzando teorías de lo que  fue, de lo que es, y, de lo que podrá ser

 

Toda la materia del Universo son estrellas, Nebulosas, galaxias o y agujeros negros y también conforman las cosas que vemos a nuestro alrededor (ríos y océanos, bosques y montañas…, ¡infinidad de mundos!), incluso podemos relacionarla con esa clase de materia evolucionado que alcanzó la consciencia. ¿Cómo fue posible tal maravilla? Y todo, sin excepción -al menos hasta donde podemos saber-, está hecho de Quarks y Leptones.

Claro que el hecho de que la materia luminosa medida esté tan cercana al valor crítico, puede simplemente deberse a un accidente cósmico; las cosas simplemente “resultan” de ese modo. Me costaría mucho aceptar una explicación y supongo que a otros también. Es tentador decir que el Universo tiene en realidad la masa crítica, pero que de algún modo no conseguimos verla toda. Parece que “debe existir una sustancia cósmica” desconocida que es la responsable de que las cuentas cuadren.

Como resultado de esta suposición, los astrónomos comenzaron a hablar de la “masa perdida” con lo que aludían a la materia que habría llenado la diferencia entre densidades observadas y crítica. Tales teorías de “masa perdida”, “invisible” o, finalmente “oscura”, nunca me ha gustado, toda vez que, hablamos y hablamos de ella, damos por supuesta su existencia sin haberla visto ni saber, exactamente qué es, y, en ese plano, parece como si la Ciencia se pasara al ámbito religioso de la fe,  de creer en lo que no podemos ver ni tocar, y, la Ciencia, amigos míos, es otra cosa.

http://farm6.static.flickr.com/5146/5653032414_c8e6085f98.jpg

 

 

Lo cierto es que, en el Universo, son muchas las cosas que se expanden y me pregunto yo… ¿Por qué no tratamos todos de expandir nuestras mentes? De esa manera, posiblemente, podríamos comprender éstas y otras muchas cuestiones que nos atormentan al no poder llegar a saber qué son y cuáles son los verdaderos significados de los mensajes que, continuamente, nos envía la propia Naturaleza que tratamos de comprender.

Pensamientos sencillos nos hacen pensar, como por ejemplo aquel de Aristóteles:

“… la línea tiene magnitud en una dirección, el plano en dos direcciones y el sólido en tres direcciones; a parte de éstas, no hay ninguna magnitud porque las tres son todas…”

Pero el tiempo pasó, los hombres siguieron pensando y conjeturando “cosas” sobre lo que podría ser, llegaron esas teorías de cuerdas que hablan de once dimensiones que nadie ha podido ver nunca y, desde luego, se sitúan -como pasa siempre que no sabemos algo- en la longitud de Planck, ese límite tan lejano que nos impide “ver” lo que pasó en aquellos prinmeros momentos, cuando surgío el Universo.

Lo dicho: ¡Que no sabemos!

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting