lunes, 13 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Buscando lo desconocido

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comentarios desactivados en Buscando lo desconocido

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las fuerzas que podemos sentir en la vida cotidiana, es decir, la Gravedad y el electromagnetismo, aumentan con la cercanía: así, cuando más cerca está un clavo de un imán o una manzana del suelo, más se verán atraídos.

Por el contrario, la interacción fuerte, encargada de mantener estable el núcleo de los átomos,  disminuye cuanto más cerca y juntas están las partículas en el interior de los átomos, aumentando cuando las partículas se alejan las unas de las otras. Si los Quarks que forman los protones y también los neutrones, están juntos, la fuerza es débil. Sin embargo, cuando los Quarks se quieren separar los unos de los otros, los Gluones los agarran con la fuerza más poderosa del Universo y los mantiene confinados en su sitio para que la estabilidad atómica sea posible.

El descubrimiento de esta extraña propiedad, llamada libertad asintótica, supuso toda una revolución teórica en los años 70 (se publicó en 1.973), pero ya plenamente respaldada por los experimentos en los aceleradores de partículas, aconsejó, a la Academia, conceder 30 años más tarde, el Premio Nobel de Física a sus autores.

“Ha sido un gran alivio.  He estado pensando en ello durante mucho tiempo”, comentó al enterarse de la noticia Franck Wilczek, uno de los tres premiados.

“No estaba claro que fuera un adelanto en aquel momento. La teoría que propusimos era descabellada en muchos aspectos y tuvimos que dar muchas explicaciones”, reconoció el investigador.”

 

Tanto Wilczek como Politzer eran aun aspirantes a doctores en 1.973, cuando publicaron su descubrimiento en Physical Review letters.  Junto a su informe, la misma revista incluyó el trabajo de David Gross, que unido al de los dos estudiantes ha dado lugar a la celebrada teoría de la Cromodinámica Cuántica (QCD).

                               La fuerza nuclear fuerte

Siguiendo una arraigada costumbre de la Física de partículas, los investigadores emplearon nombres comunes y desenfadados para señalar sus nuevos descubrimientos y llamaron “colores” a las intrincadas propiedades de los quarks.

Por ello, su teoría es conocida en la actualidad por el nombre de Cromodinámica (cromo significa “color” en griego), a pesar de que no tienen nada que ver con lo que entendemos y llamamos color en nuestra vida cotidiana, sino con el modo en que los componentes del núcleo atómico permanecen unidos.  En este sentido, resulta mucho más intuitiva, aunque no menos divertida, la denominación de las partículas que hacen posible la interacción fuerte, llamadas gluones (glue es “pegamento” en inglés).

Al igual que en la teoría electromagnética, las partículas pueden tener carga positiva o negativa, los componentes más diminutos del núcleo atómico pueden ser rojos, verdes o azules.

Además, de manera análoga a como las cargas opuestas se atraen en el mundo de la electricidad y el magnetismo, también los quarks de distinto color se agrupan en tripletes para formar protones y neutrones del núcleo atómico.

Pero estas no son las únicas similitudes, ni siquiera las más profundas, que existen entre las distintas fuerzas que rigen el Universo. De hecho, los científicos esperan que, en última instancia, todas las interacciones conocidas sean en realidad la manifestación variada de una sola fuerza que rige y gobierna todo el cosmos.

     David Gross, David Plitzer eta Frank Wiczek

Según la Academia Sueca, el trabajo premiado a estos tres Físicos, “constituye un paso importante dentro del esfuerzo para alcanzar la descripción unificada de todas las fuerzas de la Naturaleza”.  Lo que llamamos teoría del todo.

Según Frank Wiczek, que ahora pertenece al Instituto Tecnológico de Massachussets (MIT), su descubrimiento “reivindica la idea de que es posible comprender a la Naturaleza racionalmente”.  El físico también recordó que “fue una labor arraigada en el trabajo experimental, más que en la intuición”, y agradeció “a Estados Unidos por un sistema de enseñanza pública que tantos beneficios me ha dado”.

Sabemos que los quarks (hasta el momento) son las partículas más elementales del núcleo atómico donde forman protones y neutrones.  La interacción fuerte entre los quarks que forman el protón es tan intensa que los mantiene permanentemente confinados en su interior, en una región ínfima. Y, allí, la fuerza crece con la distancia, si los quarks tratan de separarse, la fuerza aumenta (confinamiento de los quarks), si los quarks están juntos los unos a los otros, la fuerza decrece (libertad asintótica de los quarks).  Nadie ha sido capaz de arrancar un quak libre fuera del protón.

gran colisionador de <a href=

Con aceleradores de partículas a muy altas energías, es posible investigar el comportamiento de los quarks a distancias muchos más pequeñas que el tamaño del protón.

Así, el trabajo acreedor al Nobel demostró que la fuerza nuclear fuerte actúa como un muelle de acero, si lo estiramos (los quarks se separan), la fuerza aumenta, si lo dejamos en reposo, en su estado natural, los anillos juntos (los quarks unidos), la fuerza es pequeña.

Así que la Cromodinámica Cuántica (QCD) describe rigurosamente la interacción fuerte entre los quarks y, en el desarrollo de esta teoría, como se ha dicho, jugaron un papel fundamental los tres ganadores del Nobel de Física de 2004 cuyas fotos y nombres hemos puesto antes.

Trabajos y estudios realizados en el acelerador LEP del CER durante la década de los 90 han hecho posible medir con mucha precisión la intensidad de la interacción fuerte en las desintegraciones de las partículas z y t, es decir a energías de 91 y 1,8 Gev, los resultados obtenidos están en perfecto acuerdo con las predicciones de ACD, proporcionando una verificación muy significativa de libertad asintótica.

Ahora, estamos a la espera de utilizar la más alta energía jamás empleada en un Acelerador y, el LHC, se prepara para los 8 TeV que, ya veremos que nos podrá traer si, el Bosón de Higgs del que ya han podido atisbar algunos indicios o, por el contrario, partículos exóticas que, como los hipo´téticos axiones nos lleven a otras teorías.

emilio silvera

En el Universo se crean estrellas y… !pensamientos!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y los pensamientos    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Mucho antes de que llegara las revoluciones científicas que todos tenemos en la mente, la Naturaleza parecía estar regida por el Caos: Terremotos, volcanes que oscurecían el cielo lanzando el negro humo acompañado de cenizas, lluvias torrenciales y el rayo, tifones, enfermedades incurables de la que morían millones de personas, las hanbrunas que azotaban a tantas criaturas y, nadie podía explicar el comportamiento del viento, aquellas tempestades marinas, o, temblores de la Tierra inesperados que traían la destrucción y la muerte.

Todo aquello, tenía que ser el resultado de que, enfurecidos dioses castigaban las impurezas del mundo y de sus criaturas. En absoluto sugería nadie que pudieran existir leyes “sencillas” y ordenadas con las que se pudieran explicar tal confusión en el comportamiento de una Naturaleza que, lo mismo se presentaba esplendorosa que rugía sembrando el miedo y el dolor de mil maneras distintas.

El sistema solar

Allí donde se percibía orden en el universo, este orden se atribuía a la respuesta que daban los objetos físicos a una necesidad de que se preservaran la armonía y el orden siempre que fuera posible -se suponía las órbitas de los planetas y del Sol alrededor de la Tierra y que eran círculos, porque los círculos eran perfectos-, los objetos caían hacia el suelo porque el centro de la Tierra marcaba el centro de todo y todo tendía a confluir hacia aquel lugar, el centro de simetría de todo el universo. Acordaos que, el filósofo Aristarco de Samos, se atrevió a expresar sus ideas y dijo que, la Tierra y todos los planetas se movían alrededor del Sol. ¡Claro, nadie le prestó la menor atención! y, muchísimos años más tarde, tuvo que venir Copérnico, allá por el año 1543,  diciendo lo mismo para pasar a la historia. Su libro De Revolutionibus Orbium Coelestrum quedó terminado en lo esencialen 1530 y, a cuando se publicó, hizo exclamar, en 1539, a Martín Lutero: “Este loco desea volver de revés toda la astronomía; pero las Sagradas Escrituras nos dicen que Josué ordenó al Sol que se detuviera, no a la Tierra”. Galileo replicó más tarde, respondiendo a críticas similares: “La Biblia nos muestra la manera de llegar al cielo, no la manera en que se mueven los cielos”. Tuvo que llegar Kepler, quien, utilizando las observaciones munuciosamente recopiladas por Tycho Brahe, señaló, para aqueloos que tuvieran los ojos bien abiertos que, el planeta Marte no sólo se movía alrededor del Sol sino que, su órbita, era elíptica, echando así por tierra la antigua perfección circular, preferida por los clásicos griegos .

Ahora, pasado el tiempo y mirando hacia atrás, podemos ver con diáfana claridad, muchos ejemplos que podrían ilustrar la diferencia tan brutal que existe entre la ciencia de los antiguos y la de tiempos posteriores a partir de Galileo. Es cierto que los antiguos griegos fueron unos matemáticos excelentes, en particular, unos  geómetras de primera. También es cierto que aquella geometría que imperó durante más de dos mil años entre nosotros (aún hoy,  alguna perdura), tenía sus raíces en culturas más antiguas.

[FNT 2]

Galileo y el péndulo. La imagen nos habla del primer experimentador serio de la historia. Experimentó para demostrar el tiempo que invertía el péndulo en realizar una oscilación completa que resultó ser siempre la misma, tanto si recorría un amplio arco como si describía uno pequeño. Experimentos posteriores demostraron que ese tiempo dependía de la longitud del péndulo. Este es el fundamento del reloj de péndulo (diseñó uno que llegó a construir su hijo). Posteriormente utilizó el péndulo como cronómetro preciso cuando realizó experimentos para estudiar el comportamientode unas bolas que rodaban hacia abajo por una rampa. Estos experimentos le servían para estudiar la caída de objetos para investigar los efectos que producía la Gravedad sobre los cuerpos en movimiento. Él desarrolló el concepto de aceleración: Una velocidad constante de 9,8 metros por segundo significa que cada segundo el objeto en movimiento cubre una distancia de 9,8 metrtos. Él descubrió que los objetos que caen se mueven cada vez más rápidos, con una velocidad que aumenta cada segundo y que el aumento, era uniforme, siempre el mismo. También observó como aquellas bolas que caen por la rampa, se frenan a causa del rozamiento. Aquello era física pura dándo sus primeros pasos y camino de la relatividad, la termodinámica y la mecánica cuántica.

Fue un grande entre los gigantes. Se le suele recordar como el fundador del método experimental de la física; su imagen va asociada con la del telescopio y el plano inclinado, con los instrumentos que diseñó y armó para observar y medir. También es famosa su polémica con los aristotélicos de su tiempo que se limitaban a citar a los clásicos y pensar cómo debían ser los movimientos de los cuerpos, en vez de observarlos. Por último, ¿quién no conoce la anécdota del atrevido maestro arrojando dos cuerpos de diferente peso desde la Torre de Pisa? (Anécdota probablemente apócrifa pero, como dicen los italianos, Se non è vero… è ben trovatto! ).

Fue una combinación del descubrimiento de las órbitas elípticas por parte de Kepler, y de la teoría de Galileo sobre la aceleración y el método científico, lo que preparó el camino para el mayor descubrimiento científico del siglo XVII, y quizá de todos los siglos: la Ley de la Gravitación universal de Newton que cerró con el broche de oro que conocemos por su gran obra: Philosophiae Naturalis Principia Mathemática, más conocida coloquialmente como los Principia, publicada en 1687.

Newton adoptó y perfeccionó la idea de Galileo, valorando de manera positiva los modelos deliberadamente simplificados (como los planos sin rozamiento) para utilizarlos en la descripción de aspectos concretos del mundo real. Por ejemplo, una característica fundamental de los trabajos de Newton sobre la Gravedad y las órbitas  es el hecho de que, en sus cálculos realtivos a los efectos de la Gravedad, él consideró objetos tales como Marte, la Luna o una manzana, como si toda su masa estuviera concentrada en un solo punto, y de esta manera, siempre que nos encontremos en el exterior del objeto en cuestión, su influencia gravitatoria se mide en función de nuestra distancia a dicho a dicho punto, que es el centro de masa del objeto /y asimismo el centro geométrico, si el objeto es una esfera).

Allí quedaron para las generaciones venideras las Leyes del movimiento de Newton, que copnstituyen la base de trescientos años de ciencia, pero que puede resumirse de una forma muy sencilla y que marcan el desarrollo del modo científico de observar el mundo.

Para resolver un problema en mecánica, lo único que necesito es aplicar las tres leyes de Newton

– Todo cuerpo persevera en su estado de reposo o movimiento uniforme y rectilíneo a no ser que sea obligado a cambiar su estado por fuerzas transmitidas sobre él.

– El cambio de movimiento es proporcional a la fuerza motriz transmitida y ocurre según la línea recta a lo largo de la cual aquella fuerza se imprime.

– Con toda acción ocurre siempre una reacción igual y contraria: o sea, las acciones mutuas de dos cuerpos siempre son iguales y dirigidas en sentido opuesto.

Esta última y tercera ley es completamente original de Newton (pues las dos primeras ya habían sido propuestas de otras maneras por Galileo, Hooke y Huygens) y hace de las leyes de la mecánica un conjunto lógico y completo.

El problema de los tres cuerpos fue, totalmente inabordable por Newton que, en aquellos casos en los que se veía imposibilitado, siempre recurría a Dios para que le solucionara el asunto. Claro que, ante tal sugerencia, siempre se encontraba de frente con Leibniz que, comparó el universo ordenado y determinista de Newton con un reloj, afirmando con sarcasmo que el Dios de Newton debía ser un relojero bastante torpe si era incapaz de hacer un reloj que marcara siempre la hora correcta, pues para que funcionara bien tenía que intervenir cada vez que se estropera.

Aquel problema de los tres cuerpos (del que hablaremos en otra ocasión), continuó sin solución hasta finales del siglo XVII, cuando el matemático francés Pierre Laplace, aparentemente puso orden en el sistema solar (claro que, también tendríamos que ver lo que dijo Poincaré, otro francés, al respecto).

Así, poco a poco, se pudo ir poniendop orden y buscando explicación para todos aquellos fenómenos de la Naturaleza que no tenían explicación y que, sólo la Ciencia, nos la podía dar.

Mas tarde llegarían Faraday y Maxwell que investigaron la naturaleza de la luz el primero y, supo expresarla en ecuaciones el segundo. Aquello, fue un paso de gigante para comprender el mundo que nos rodea y cómo funciona, en algunos aspectos, la Naturaleza. Podemos decir que aquello fue uno de los mayores triunfos de la Ciencia del siglo XIX. La explicación dada por Maxwell sobre la radiación electromagnética se basó en la obra de Faraday y, entre ambos, dijeron al mundo que electricidad y magnetismo eran dos aspectos distintos de la misma cosa.

Las ecuaciones de Maxwell llevaban consigo dos características muy curiosas: una de ellas pronto tendería un profundo impacto en la física, y la otra fue considerada hasta tiempos muy recientes sólo como una rareza de menor importancia. La primera de aquellas características innovadoras era que daban a la velocidad de la luz un valor constante, independientemente de cómo se mueva la fuente de luz con respecto a la persona (o aparato) que mida su velocidad. Ya sabeis que fue esto, lo que lelvó a Einstein a desarrollar la teoría de la relatividad especial en 1905.

La nebulosa Cabeza de Caballo

Antes que Eisntein Planck y después muchos otros, vinieron a poner los conocimientos de la Ciencias Físicas y Astronómicas en un  lugar privilegiado en el que, podíamos mirar las galaxias y también a los átomos. El mundo de lo muy grande y el de lo muy pequeño, quedó al alcance del entendimiento humano. Claro que, Como dijo Kart Raimund Popper, filósofo británico de origen austriaco (Viena, 1902 – Croydon, 1.994) que realizó sus mas importantes trabajos en el ámbito de la metodología de la ciencia: “cuanto más profundizo en el saber de las cosas, más consciente soy de lo poco que sé. Mis conocimientos son finitos pero, mi ignorancia, es infinita“.

Está claro que la mayoría de las veces, no hacemos la pregunta adecuada porque nos falta conocimiento para realizarla. Así, cuando se hacen nuevos descubrimientos nos dan la posibilidad de hacer nuevas preguntas, ya que en la ciencia, generalmente, cuando se abre una puerta nos lleva a una gran sala en la que encontramos otras puertas cerradas y tenemos la obligación de buscar las llaves que nos permitan abrirlas para continuar. Esas puertas cerradas esconden las cosas que no sabemos y las llaves que las pueden abrir son retazos de conocimientos que nos permiten entrar para descorrer la cortina que esconde los secretos de la Naturaleza, de la que en definitva, formamos parte.

¡Cuánto hay ahí, en esa bella Nebulosa de arriba! En espesas nubes moleculares que se concentran en vórtices obligadas por la Gravedad, nacen nuevas estrellas y nuevos mundos. Ahí se transforman los matriales sencillos como el Hidrógeno en otros más complejos y, la radiación de las jóvenes estrellas nuevas masivas, tiñen de rojo el gas y el povo del lugar, mientras ellas, presumidas, se exhiben rodeadas de ese azul suave que las distingue de aquellas otras más antiguas, que tiñen de amarillo y rojo toda la región.

http://univerpuebla.files.wordpress.com/2010/12/espacio.jpg

¿Qué sería de la cosmología actual sin ? Es la ecuación de Einstein donde es el tensor energía-momento que mide el contenido de materia-energía, mientras que es el Tensor de curvatura de Riemann contraído que nos dice la cantidad de curvatura presente en el hiperespacio. Este pequeño conjunto de signos es uno de los pensamientos más profundos de la mente humana y… ¡Nos dice tánto con tan poco!

También esa ecuación nos habló de la existencia de Agujeros negros, esos objetos de densidad “infinita” en los que dejan de existir el espacio y el tiempo. La singularidad es el punto matemático en el que ciertas cantidades físicas alcanzan valores infinitos. Así nos lo dice la relatividad general general: la curvatura del espacio-tiempo se hace infinita en un Agujero Negro.

La cosmología estaría 100 años atrás sin esta ecuación. Einstein  con sus dos versiones de la realtividad que nos descubrió un universo donde la velocidad estaba limitada a la de la luz, donde la energía estaba escondida, quieta y callada, en forma de masa, y donde el espacio y el tiempo se curva y distorsiona cuando están presentes grandes objetos estelares, nos descubrio un Universo nuevo, un mundo fantástico de posibilidades ilimitadas en el que podían ocurrir maravillas como, por ejemplo, conseguir que el tiempo transcurriera más lentamente y dónde reside la fuente de la energía. Claro que, al mérito de Einstein (que lo tiene), tendríamos que sumar el de Faraday, Maxwell, Mach, Lorentz, Planck y algunos otros de cuyas ideas él supo aunar un todo que clarificó el mundo y que, por separado, no decían tanto.

No puedo evitarlo, siento debilidad por las estrellas, esos objetos brillantes del cielo en los que, se “fabrican” los elementos complejos que son la materia primaria para la vida. Nosotros, como he comentado muchas veces, estamos hechos de polvo de estrellas.

En ellas, en las estrellas, se producen cambios y transformaciones de cuyos procesos, debemos conocer para saber lo que allí ocurre y el pro qué de esas mutaciones de la materia. Siempre llamó mi atención las estrellas que se forman a partir de gas y polvo cósmico. Nubes enormes de gas y polvo (como la nebulosa cabeza de caballo en la imagen de arriba) se van juntando. Sus moléculas cada vez más apretadas se rozan, se ionizan y se calientan hasta que en el núcleo central de esa bola de gas caliente, la temperatura alcanza millones de grados. La enorme temperatura hace posible la fusión de los protones y, en ese instante, nace la estrella que brillará durante miles de millones de años y dará luz y calor. Su ciclo de vida estará supeditado a su masa. Si la estrella es supermasiva, varias masas solares, su vida será más corta, ya que consumirá el combustible nuclear de fusión (hidrógeno, helio, litio, oxígeno, etc) con más voracidad que una estrella mediana como nuestro Sol, de vida más duradera.

Una estrella, como todo en el universo, está sostenida por el equilibrio de dos fuerzas contrapuestas; en este caso, la fuerza que tiende a expandir la estrella (la energía termonuclear de la fusión) y la fuerza que tiende a contraerla (la fuerza gravitatoria de su propia masa). Cuando finalmente el proceso se detiene por agotamiento del combustible de fusión, la estrella pierde la fuerza de expansión y queda a merced de la fuerza de gravedad; se hunde bajo el peso de su propia masa, se contrae más y más, y en el caso de estrellas súper masivas, se convierten en una singularidad, una masa que se ha comprimido a tal extremo que acaba poseyendo una fuerza de gravedad de una magnitud difícil de imaginar para el común de los mortales.

La Tierra desde el espacio

A nosotros nos puede parecer enorme, es el planeta que acoge a toda la Humanidad. Sin embargo, en el contexto del Universo y comparada con otros objetos cosmológicos, es menos que una mota de polvo y, si pensamos en ello, quizás (sólo quizás), podamos llegar a la conclusión de que debemos cambiar y mirar las cosas desde otras perspectivas, al fin y al cabo no somos tan importantes como algunas veces podemos creer.

http://1.bp.blogspot.com/_xyYFMwz4t6g/S7-euKLPDFI/AAAAAAAACkY/ur2Aaiw1zHg/s1600/conciencia+03.jpg

          ¡Sí, la Galaxia está en nuestra Mente y, nuestra Mente, en la Galaxia!

La evolución del Universo que está prescrita por el paso del Tiempo (con la ayuda de la Entropía), es inexorable, y, nosotros, nuestras mentes que son el producto evolucionado en su más alto grado de la materia, también evolucionamos al mismo ritmo que el universo nos marca. De esa manera, el transcurrir de los siglos posibilitan la apertura mental de nuevas ideas y, el conocimiento del mundo, de la Naturaleza, se hace cada vez más patente para nosotros que, al final de toda esta historia, volveremosa fundirnos con todo, en el mismo lugar del que partimos: ¡Las estrellas! allí está nuestro origen y, algo me dice que volveremos a él.

¿Será cuando llegue Andrómeda y le de el beso de amor a la Vía Láctea?

emilio silvera

¡Aquella célula replicante!

Autor por Emilio Silvera    ~    Archivo Clasificado en Biologia    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Somos el Producto de Mensajes Genéticos

En julio de 1997, un grupo de científicos de una Universidad norteamericana, distribuyeron fotografías de una guitarra no mayor que un glóbulo rojo humano. Sus cuerdas apenas tenían cien átomos de grosor. Este instrumento liliputiense estaba esculpido en silicio cristalino, utilizando una técnica de gravado que utiliza un haz de electrones. Pretendía ser un reclamo publicitario, pero ilustraba espectacularmente un desarrollo tecnológico importante: ahora pueden hacer máquinas que son demasiado pequeñas para que puedan verse a simple vista. Los científicos han fabricado engranajes invisibles, motores del tamaño de una cabeza de alfiler, y conmutadores electrónicos tan minúsculos como moléculas individuales.

 

 

Una célula es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo. De este modo, puede clasificarse a los organismos vivos según el número de células que posean: si sólo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares En estos últimos el número de células es variable: de unos pocos cientos, como en algunos nematodos, a cientos de billones (1014), como en el caso del ser humano.. Las células suelen poseer un tamaño de 10 μm y una masa de 1 ng, si bien existen células mucho mayores.

Ingenieros de cierta Empresa de computación han sido capaces incluso de imprimir las iniciales de la Compañía átomo a átomo sobre una superficie cristalina. El campo en desarrollo de la nanotecnología –construcción de estructuras y dispositivos que miden en la escala de milmillonésimas de metro- promete revolucionar nuestras vidas.

Estas hazañas de microingeniería son impresionantes por sus implicaciones, pero no debemos perder de vista el hecho de que la Naturaleza las consiguió primero. Me explico: Cada célula está repleta de diminutas estructuras que podrían haber salido directamente del manual de un ingeniero. Abundan las pinzas, tijeras, bombas, motores, palancas, válvulas tubos, cadenas e incluso vehículos minúsculos. Pero, por supuesto, la célula es más que una simple caja de artilugios. Los diversos componentes encajan para formar un todo que funciona sin problemas, como una elaborada línea de montaje de una fábrica. El asombro de la vida no es que esté hecha de nanoherramientas, sino que estas minúsculas piezas diversas están integradas de una forma fuertemente organizada.

http://img.robotikka.com/wp-content/uploads/2011/05/avances-inteligencia-artificial.jpg

 

            A más organización será difícil que se llegue alguna vez: ¡La Vida! ¡Los pensamientos!

¿Cuál es el secreto de esta sorprendente organización? ¿Cómo puede ser obra de átomos estúpidos? Tomados de uno en uno, los átomos solo pueden dar empujones a sus vecinos y unirse a ellos si las circunstancias son apropiadas. Pero colectivamente consiguen ingeniosas maravillas de construcción y control, con un ajuste fino y una complejidad todavía no igualada por ninguna ingeniería humana. De algún modo la Naturaleza descubrió cómo construir intrincadas máquinas que llamamos célula viva, utilizando sólo todas las materias primas disponibles, todas en un revoltijo. Repite esta hazaña cada día en nuestros propios cuerpos, cada vez que se forma una nueva célula. Esto ya es un logro fantástico. Más notable incluso es que la Naturaleza construyó la primera célula a partir de cero. ¿Cómo lo hizo?

http://2.bp.blogspot.com/-EWkminHkVOk/ThuAP-Do5XI/AAAAAAAAAzU/gm_fBGp_T4c/s1600/Fractal_10.jpg

 

 

Como físico teórico hecho así mismo, algo ingenuo y con un enorme grado de fantasía en mis pensamientos, cuando pienso acerca de la vida a nivel molecular, la pregunta que se me viene a la mente es: ¿Cómo saben lo que tienen que hacer todos estos átomos estúpidos? La complejidad de la célula viva es inmensa, similar a la de una ciudad en cuanto al grado de su elaborada actividad. Cada molécula tiene una función específica y un lugar asignado en el esquema global, y así se manufacturan los objetos correctos. Hay mucho ir y venir en marcha. Las moléculas tienen que viajar a través de la célula para encontrarse con otras en el lugar correcto para llevar a cabo sus tareas de forma adecuada.

Todo esto sucede sin un jefe que dé órdenes a las moléculas y las dirija a sus posiciones adecuadas. Ningún supervisor controla sus actividades. Las moléculas hacen simplemente lo que las moléculas tienen que hacer: moverse ciegamente, chocar con las demás, rebotar, unirse. En el nivel de los átomos individuales, la vida es una anarquía: un caos confuso y sin propósito. Pero, de algún modo, colectivamente, estos átomos inconscientes se unen y ejecutan, a la perfección, el cometido que la Naturaleza les tiene encomendados en la danza de la vida y con una exquisita precisión.

File:A-B-Z-DNA Side View.png

 

 

Ya más recientemente, evolucionistas tales como el inglés Richard Dawkins, han destacado el paradigma del “gen egoista”, una imagen poderosa que pretende ilustrar la idea de que los genes son el objetivo último de la selección natural. Los teóricos como Stuart Kauffman, asociado desde hace tiempo al famoso Instituto de Santa Fe, donde los ordenadores crean la llamada vida artificial, insisten en la “autoorganización” como una propiedad fundamental de la vida.

¿Puede la ciencia llegar a explicar un proceso tan magníficamente autoorquestado? Muchos son los científicos que lo niegan al estimar que, la Naturaleza, nunca podrá ser suplantada ni tampoco descubierta en todos sus secretos que, celosamente nos esconde. Sin embargo…Tengo mis dudas. Ellos piensan que la célula viva es demasiado elaborada, demasiado complicada, para ser el producto de fuerzas ciegas solamente y, que debajo de esa aleatoriedad y de un falso azar, deben estar escondidas otras razones que no llegamos a alcanzar. La Ciencia podrá llegar a dar una buena explicación de esta o aquella característica individual, siguen diciendo ellos, pero nunca explicará la organización global, o cómo fue ensamblada la célula original por primera vez.

Claro que, negar el poder de la Ciencia es, ir demasiado lejos. La Ciencia debe ofrecer, finalmente, una explicación convincente del origen de la vida, pero sólo si el problema se aborda desde dos niveles:

Los protobiontes fueron los precursores evolutivos de las primeras células procariotas. Los protobiontes se originaron por la convergencia y conjugación de microesferas de proteínas, carbohidratos, lípidos y otras substancias orgánicas encerradas por membranas lipídicas. El agua fue el factor más significativo para la configuración del endoplasma de los protobiontes.

–         El primero en el nivel molecular. En este es donde se han hecho progresos más impresionantes. Durante la última década la Biología molecular ha dado paso gigantesco en dilucidar qué moléculas hace qué. Siempre se encuentra que las nanomáquinas de la Naturaleza actúan según leyes y fuerzas físicas perfectamente normales. No se ha descubierto ningún tejemaneje raro. Sería erróneo, sin embargo, suponer que las moléculas son todo lo que hay en la vida. No explicamos la vida catalogando sus actividades moleculares, de la misma forma que no explicamos el genio de Mozart o Einstein determinando como trabaja una neurona. Para utilizar el tópico, el todo es más que la suma de las partes. La misma palabra “organismo” implica cooperación en un nivel global que no puede captarse en el estudio de los componentes individuales. Sin comprender su actividad colectiva, la tarea de explicar la vida está hecha solo en parte.

–         La reproducción, esa podría ser la segunda parte. ¡Replicarse! ¡Replicarse! Es una propiedad definitoria de la Vida. Sin ella, y en ausencia de inmortalidad, toda la vida cesaría más tarde o más temprano. Durante mucho tiempo los científicos tuvieron una idea muy pobre de cómo se reproducen los organismos. Unas vagas nociones relativas a genes invisibles que transmiten mensajes biológicos de una generación a la siguiente revelan muy poco acerca del funcionamiento real de las células. No obstante, con la llegada de la Biología Molecular y el descubrimiento del ADN, el misterio fue finalmente resuelto. Reducido a sus aspectos esenciales, el secreto de la reproducción está en la replicación molecular. La idea de una molécula que hace una réplica de sí misma puede parecer más bien mágica, pero en realidad resulta ser bastante sencilla. El principio subyacente es, de hecho, un ejercicio de geometría elemental.

El primer punto que captar quizá sea obvio, pero tiene una importancia crucial: las moléculas tienen formas definidas. Las moléculas orgánicas no son simples gotas más o menos esféricas, sino que disponen de todo tipo de apéndices, tales como brazos, codos, cavidades y anillas. Aunque las fuerzas interatómicas dictan a que adherirse (o qué repeler), es la estructura global tridimensional de las moléculas orgánicas las que determinan en general, sus capacidades biológicas: Los filósofos pitagóricos, quiénes creían que la geometría era la clave del universo, se habrían sentido encantados con ello.

 

Con un microscopio electrónico podremos llegar muy lejos en el universo de lo muy pequeño. Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y complejo como una ciudad, y con sus límites delineados por la pared celular. Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

Los datos históricos del ADN contribuyeron a ir aportando luces sobre su composición y estructura. Pero ninguno de ellos era realmente concluyente, hasta que Watson y Crick, recogiendo estos datos y otros relativos a las características moleculares de las bases nitrogenadas, proponen lo que se conoce como modelo de la doble hélice.

SPL_E_H400040-Watson_and_Crick_with_their_DNA_model-SPL

El modelo no sólo resultaba coherente con las pruebas disponibles entonces, sino que, haciendo alarde de una gran intuición, les permitió, tan solo unos meses más tarde, avanzar una hipótesis sobre el mecanismo de duplicación de la molécula, requisito indispensable para justificar su papel de material genético, que ya había sido reconocido desde los experimentos realizados por Avery, MacLeod y McCarty en 1944.

El ADN es el banco de datos genético, y la replicación de esta macromolécula está en el corazón de la reproducción biológica. Permitidme describir cómo hace el ADN para copiarse así mismo, utilizando simple geometría. La estructura del ADN es la famosa doble hélice que descubrió Crick Watson a principio de los años cincuenta. Su forma se muestra esquemáticamente….

Bueno, no podemos hacer aquí una narración completa de lo que actualmente la ciencia entiende que es la vida, y, lo dejaremos en esta sencilla explicación de algunos de sus complejos sistemas que, por otra parte, nos van dando una idea de cómo funcionan algunas de las regiones que están implicadas en eso que llamamos vida y que, sin temor a equivocarnos, podríamos decir que es, la más grande complejidad presente en el Universo.

Si algún día me encuentro con ánimos suficientes, quizá os hable sobre la paradoja del Huevo y la Gallina que, no es, precisamente, el cuento de nunca acabar, sino que, aunque no lo creáis, tiene una explicación lógica.

emilio silvera

¡Las Nebulosas! Mucho más que simple gas y polvo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Hasta que supimos que existían otros sistemas planetarios en nuestra Galaxia, ni siquiera se podía considerar esta posibilidad como una prueba de que la vida planetaria fuera algo común en la Vía Láctea. Pero ahora se sabe que más de cien estrellas de nuestra zona de la galaxia tienen planetas que describen órbitas alrededor de ellas. Casi todos los planetas descubiertos hasta ahora son gigantes de gas, como Júpiter y Saturno (como era de esperar, los planetas grandes se descubrieron primero, por ser más fáciles de detectar que los planetas pequeños), sin embargo es difícil no conjeturar que, allí, junto a estos planetas, posiblemente estarán también sus hermanos planetarios más pequeños que, como la Tierra, pudieran tener condiciones para generar la vida en cualquiera de sus millones de formas.

                        Otros Sistemas Plantarios que a miles de millones pululan por el Univers0. El Proyecto Planck nos hablará de ellos.

Algunas veces nos preguntamos por qué las cosas son como son y si, cuando obtenemos una respuesta en términos de algún principio científico, seguimos preguntando: ¿por qué ese proncipio es verdadero? y, si como un crio maleducado, insistimos una y otra vez, preguntando ¿por qué?, ¿por qué?, ¿por qué?, entonces, más tarde o más temprano, alguien nos llamará reduccionista. Algunas personas otorgan diferentes sentidos a esa palabra, sin embargo, pero supongo que una caracterísitca común de la idea que todo el mundo tiene del reduccionismo es un sentido de jerarquía, de que algunas verdades son menos fundamentales que otras a las que las anteriores pueden ser reducidas, como la la química puede ser reducida a la física.

En comentarios anteriores, ya nos referimos a los elementos más abundantes del Universo: carbono, hidrógeno, oxígeno y nitrógeno (CHON). Lee Smolin, de la Universidad de Waterloo, Ontario, ha investigado la relación existente entre, por una parte, las estrellas que convierten unos elementos más sencillos en algo como el CHON y arroja esos materiales al espacio, y, por otra parte, las nubes de gas y polvo que hay en éste, que se contrae para formar nuevas estrellas.

La Gran Nebulosa Carina

Leer más

Aquellos personajes: Faraday fue uno de ellos

Autor por Emilio Silvera    ~    Archivo Clasificado en Queriendo saber    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Tal como la revolución copernicana en la astronomía, la revolución “del campo”  en la física sería un desafío al sentido común y conduciría una vez más a los científicos pioneros a “las brumas de la paradoja”. Si Michael Faraday hubiese tenido una sólida formación matemática quizá no hubiera estado tan dispuesto a realizar su sorprendente recorrido. Hijo de un herrero pobre de las afueras de Londres, Faraday tuvo que ganarse la vida desde muy niño, y se dice que en tiempos de guerra, cuando los precios eran muy altos, pasaba una semana entera con una barra de pan. Sus padres pertenecían a una reducida secta protestante escocesa fundamentalista y practicante del ascetismo que, como los cuáqueros, creía en un clero laico y se oponía a la acumulación de bienes materiales.

Faraday asistía regularmente a las reuniones dominicales y fue uno de los dirigentes de la congregación hasta el final de su vida. Los pasajes más marcados de su muy leída Biblia se hallaban en el libro de Job. Faraday prácticamente no tuvo una educación formal-“poco más que los rudimentos de lectura, escritura y aritmética que se enseñan en una escuela corriente”- pero a los trece años entró afortunadamente a trabajar en el taller de un amistoso impresor y encuadernador francés emigrado, un tal monsieur Riebau. Al principio Faraday repartía los periódicos que Riebau prestaba, y los recogía posteriormente para llevarlos a otros clientes.

Hace más de  doscientos años, cuando Faraday entró en la imprenta de George Riebau, todo era rústico y muy artesanal. En el mundo las cosas eran muy diferentes a las que hoy conocemos.

Entre los libros que llegaron al taller de Riebau para ser encuadernados estaba The improvement of the Mind ( “La perfección de la mente”), del escritor de himnos Isaac Watts, cuyo sistema para el perfeccionamiento de sí mismo siguió Faraday. Llevando un diario que luego se convertiría en su famoso cuaderno de laboratorio. Un día Faraday recibió en el taller para su encuadernación un tomo de la Enciclopedia Britannica ( 3.ª ed., 1797) que contenía un artículo de 127 páginas a doble columna sobre la electricidad de un fluido y de dos fluidos, y proponía que la electricidad no era un flujo material sino un tipo de vibración, semejante a la luz y el calor. Esta atractiva sugerencia marcó el comienzo de la carrera científica de Faraday.

En 1810 Faraday comenzó a asistir a las conferencias públicas de la Sociedad Filosófica de la Ciudad, y luego a las que daba Humphry Davy en la institución Real. En diciembre de 1811 Faraday causó una favorable impresión en Davy cuando le envió las notas, escritas con una hermosa letra y cuidadosamente encuadernadas, que había tomado en las conferencias del primero, acompañadas de una solicitud para que le contratara como auxiliar. Davy había quedado temporalmente ciego en octubre de ese mismo año a causa de una explosión que había acontecido en su laboratorio y necesitaba un amanuense. Contrató a Faraday por una guinea a la semana y el uso de doa habitaciones en el último piso de la institución, con combustible, velas y batas de laboratorio incluidos, además de la libertad para utilizar los aparatos. A los veinte años, Faraday se hallaba en el laboratorio de uno de los mayores químicos de la época, y podía experimentar allí a sus anchas. ¡ Un sueño hecho realidad !.Sir  Humphry y lady Davy completaron la educación de Faraday llevándolo con ellos en una gira por el continente europeo en 1813-1814.

Visitaron Francia e Italia, conocieron a científicos y Faraday compartió las esperanzas y las dudas del parlanchín Davy. Cuando regresaron a Inglaterra en abril de 1815, Davy había inmunizado a Faraday contra las generalizaciones fáciles y había renovado su pasión por el experimento. De regreso en el laboratorio, Faraday experimentó con combustibles para calefacción y alumbrado, y finalmente descubrió el benceno. Elaboró los primeros compuestos de cloro y carbono, de los que salió el etileno, resultado de la primera reacción de sustitución conocida. Faraday también fue un pionero de la química de las aleaciones de acero. Con el tiempo se sabría que uno de los hechos cruciales de su vida fue el encargo, por parte de la Royal Society, que lo llevó a elaborar un nuevo cristal óptico “ grueso” con un alto índice de refracción especialmente útil para los experimentos con luz polarizada.

picture of Humphry Davy experimenting in the laboratory

El temperamento optimista de Faraday se vio reforzado por un feliz matrimonio con la hermana de un individuo que había conocido en la Sociedad Filosófica de la Ciudad. Sarah Bernard nunca compartió los intereses científicos que hacían pasar a Faraday las noches en vela, pero decía que se sentía feliz de ser la “almohada de su mente”.

En ese mundo nuevo en que la prioridad era recompensada, los tempranos éxitos de Faraday despertaron la envidia de su famoso mentor. En 1824, cuando Faraday fue propuesto para ingresar en la Royal Society por haber logrado la licuefacción del cloro, Davy se opuso a su candidatura y afirmó que el mérito era suyo. A pesar de todo, Faraday fue elegido.

Humphry Davy

Davy se había sentido intrigado por los recientes esfuerzos teóricos para adaptar las ideas de Newton a las necesidades que experimentaba el químico en el laboratorio. El más atractivo de estos esfuerzos era la teoría del “punto central” de Boscovich, que describía el átomo no como una diminuta bola de billar de materia impenetrable, sino como un centro de fuerzas. Si las “partículas últimas” de materia tenían esta característica, se explicaría así la interacción de los elementos químicos, sus “afinidades” y los modos de formar compuestos estables.

Boscovich había limitado su atrevida sugerencia a los elementos químicos. Faraday, cuando por casualidad enfocó su pasión por el experimento sobre el poco explorado reino de la electricidad, sintió un renovado interés por la teoría de Boscovich. En 1821 un amigo solicitó a Faraday que escribiera un artículo extenso para el Philosophical Magazine explicando el electromagnetismo al público lego en la materia. En aquel momento había un gran interés por el tema, desde que el verano anterior el físico danés Hans Christian Oersted (1777-1851) había probado, durante una demostración realizada en una conferencia nocturna, que un alambre que condujera corriente eléctrica podía desviar una aguja magnética.

Siguiendo las ideas sugeridas por Oersted, Faraday inventó un sencillo aparato formado por dos cubetas que contenían mercurio, un alambre conductor de corriente y dos barras imantadas cilíndricas. Con esto él demostraba elegantemente la rotación electromagnética, probando que el alambre conductor rotaba alrededor del polo de un imán, y el polo de un imán hacía lo mismo en torno a un alambre conductor.

Monografias.com

Quizá Faraday empezaba a sospechar que alrededor de un alambre conductor había líneas circulares de fuerza, y que tal vez las fuerzas del magnetismo y de la electricidad fueran convertibles. En este punto fue una suerte que Faraday no fuese un matemático refinado, pues si lo hubiese sido probablemente habría seguido el camino convencional, como el que tomó el prestigioso matemático francés André Marie Ampère (1775-1836), y hubiese tratado de explicar el electromagnetismo simplemente mediante una formulación matemática de los centros de fuerza newtonianos. Pero la ingenua mirada de Faraday percibió otra cosa.

Sin proponérselo,  Faraday ya había realizado la primera conversión de energía mecánica en energía electrica. El viejo Einstein tenía en su despacho de Princeton una fotografía de Faraday que le acompañaba en todas sus elucubraciones sobre temas de física y le recordaba al mirarlo que las cosas se consiguen mediante el trabajo y la perseverancia.

emilio silvera