Jul
3
Sí, es la única manera que tenemos de abarcar todo el Universo. En...
por Emilio Silvera ~ Clasificado en El Universo y los pensamientos ~ Comments (0)
Sí, es la única manera que tenemos de abarcar todo el Universo. En nuestras mentes están los resortes para ello y, aunque no físicamente, alcanzamos a vislumbrar toda la grandeza cósmica con nuestras mentes que son, esa parte de la metafísica del ser, lo que trasciende y puede ir más allá de lo que nuestros cuerpos pueden ir.
Los procesos científicos de los que aquí venimos hablando, aunque sea de manera inadvertida, lo cierto es que contribuyen a que nosotros, los humanos, nos veámos involucrados en la vastedad del Universo del que formamos parte y con el que, de alguna manera, estamos estrechamente conectados.
La Astronomía ha venido a diluir el aislamiento en el que se encontraban los moradores la Tierra que, con el ojo desnudo solo podían atisbar el Sol y la Luna, algunos planetas que se confundían con el lucero de la mañana, y, lejanas estrellas que, con su titilar, parecían estar enviándonos un mensaje en clave que no llegábamos a comprender.
La mecánica cuántica nos permitió asomarnos a esa ventana que nos dio la posibilidad de destruir esa metafórica e invisible linea que supuestamente nos separaba del distante del mundo de lo infinitesimal, allí donde se encuentran los secretos de la materia y fuerzas fundamentales que, al ser descubiertas, dejaron tambien a la intemperie el hecho cierto de que nosotros, estamos inevitable y estrechamente involucrados en todo aquello que estudiamos. Finalmente llegamos a ser conscientesde que formamos parte de ello, de ese todo que es la Naturaleza y que nos trajo aquí para que, con nuestra curiosidad, tratáramos de entenderla.
La Astrofísica, al demostrar que la materia es la misma en todas partes y que en todas partes obedece a las mismas leyes, nos pudo al tanto y nos reveló la unidad cósmica que se extiende desde la fusión nuclear en las estrellas hasta la química de la vida. La evolución darwiniana, al destacar que todas las especies de la vida terrestre están estrechamente relacionadas y que todas surgieron a partir de la materia ordinaria, nos puso de manifiesto que no existía ninguna muralla que nos separase de las otras criaturas de la Tierra, o del planeta donde surgimos a la vida. De la misma manera, entiendo, se producirán en otros mundos lejanos las mismas transiciones de fase que aquí sucedieron y, al final, todo desembocará en el surgir de la Vida que, como la nuestro (eso creo), estará basada en el Carbono.
Esa sensación de que, en cierto sentido, formamos un todo con el Universo, no es gratuíta, sino que, por el contrario, está fundada en datos y experimentos que nos costaron mucho, mucho tiempo, conseguir. Hace mucho tiempo que esa idea rondaba en la mente de nuestros antepasados que hicieron que el dios nos hicieran del polvo. El griego Heráclitos escribió que “todas las cosas son una sola”; Lao-Tse, en China, describió al hombre y la naturaleza como gobernados por un solo principio (“lo llamó el Tao”); y la creencia en la unidad de la Humanidad con el cosmos estaba difundida entre los pueblos anteriores a la escritura. Como lo puso de manifiesto el Jefe indio suquamish Seatle, quien declaró en su lecho de muerte que “todas las cosas están conectadas, como la sanfre que une a una familia. Todo es como una sola familia, os digo”.
Lo cierto es que, estamos ahí, formando parte del inmenso Universo y, hay algo sorprendente en el hecho de que la misma concepción general que tenían aquellas mentes del pasado, ha podido surgir de las ciencias que se enorgullecen de su lúcida búsqueda de hechos objetivos, empíricos. Desde los mapas de cromosomas y los registros fósiles que representan las interconexiones de todos los seres vivos de la Tierra, hasta la semjanza de las proporciones químicas cósmicas con las de las especies vivas de nuestro planeta, nos muestran que realmente formamos parte del universo en su conjunto y que, nuestro origen está en las estrellas, donde se formaron los materiales que hicieron posible nuestra existencia.
Claro que, a todo esto, posamos los pies en el suelo, miramos a todo la Humanidad y su condición intrínseca y, podemos ver, cuan lejos estamos de poder decir: ¡Somos un todo, fundidos con el Universo! Nuestra condición terrenal nos aprisiona y nos confina, prevalecen sentimientos animales, el instinto de conservación que nos hace ser como somos y, mientras que no evolucionemos lo suficiente…
La verdad, el Tiempo y la Historia
“Todo parece confluir en la representación de la Historia y de la Verdad histórica. El Tiempo, alado y con un reloj de arena que simboliza el paso de los instantes y la llegada de la muerte, trae del brazo a la Verdad, que se representaba desnuda para simbolizar la ausencia de disfraz o enmascaramiento. La Verdad reina sobre todo, es la figura central, y porta un cetro y un libro, que encierra la verdad histórica.”
Siempre hemos querido representar de mil maneras simbólicas lo que tendría que ser y, en realidad, siempre hacemos lo contrario de ello. Sabemos como son las cosas y, tratamos de ocultarlas a los demás, incluso, por conveniencias sociales o políticas, hemos tratado de cambiar esa historia para procurar que “diga” aquello que nos beneficia, aunque la realidad, sea todo lo contrario.
Aunque parezca algo exagerado, creo que, la verdad, solo la dicen los físicos y los poetas, esas personas privilegiadas que, algunas veces, viven fuera de este mundo sin salir de él. Todos los demás, por una u otra razón, tienden a falsear los hechos.
Unos ven Unicornios en fantásticos mundos que crean en sus mentes, y, los otros, viven en un Universo que, siendo real, les aleja de este.
Ya véis, por una razón los unos y por otras razones los otros, ambos -poetas y físicos- están fuera de este mundo y se encierran en sus “mundos privados” para transmitirles al mundo “real” lo que ven, lo que sienten. Por una parte se nos habla de la Naturaleza, de cómo creen ellos que funciona el Universo y tratan de decirnos por qué lo hace de esta o aquella manera y, se esfuerzan por comprender, dedicando horas, días y años a desvelar los secretos que están con nosotros y que, el común de los mortales no puede ni sabe ver. Ellos, los físicos, hacen ese inmenso trabajo para que el mundo siga adelante con los pies bien asentados en el suelo y, nuestras mentes, estén, lo más cerca posible a la realidad del mundo.
Los otros, los poetas, ven otro mundo. Ellos son más etéreos e inmateriales, están inmersos en un universo de percepciones que a los demás se les escapan, cuando consiguen “ver” con claridad en esas belles perfecciones que les muestran “sus realidades”, entonces y sólo entonces, la cuentan para que los demás sepan de ellas y puedan “oir” sus pensamientos. Alguien dijo que los poetas hablan en voz baja consigo mismo y, el mundo, les oye por casualidad.
Lo cierto es que, nos queda un buen camino por recorrer. En la naturaleza y en los demás sistemas que la integran, buena parte de los procesos que ocurren son intrínsecamente discretos, es decir, involucran (o podrían modelarse con) conjuntos discretos de partículas o individuos que interaccionan entre sí de una determinada manera. Átomos, moléculas, proteínas, bacterias, células, animales, personas, o incluso los factores del clima, son ejemplos de agentes activos en estos procesos, que cuando se juntan en un número lo bastante grande, dan lugar a la formación de cosas o cuestiones complejas de grandes dimensiones (galaxias o sociedades humanas, por ejemplo), que dan lugar a comportamientos colectivos que en nada nos recuerdan las interacciones microscópicas individuales que fueron el comienzo de todo.
Si pensamos en las fuerzas y energías en las que nos encontramos inmersos, pocas dudas pueden caber a estas alturas, el simple hecho de poder estar hablando de estas cuestiones… ¡es un milagro en sí mismo! Desmenuzar los componente del átomo, saber lo que ocurre en el interior profundo de las estrellas, conocer cómo la materia más simple se pueden transmutar, bajo ciertas condiciones, en otros más complejos que dispuestos en la debida proporción darán lugar a la bioquímica de la vida. El camino recorrido ha sido largo y hasta dramático, sin embargo, hemos llegado más lejos de lo que podría haber pensado un observador inteligente que, desde la segura lejanía, hubiera podido seguir todo el proceso evolutivo desde que nacieron las primeras estrellas hasta que, diez mil millones de años más tarde, surgieron los mundos y la vida.
¡Qué complejo es todo!
emilio silvera
Jul
3
¡El Carbono! Esencial para la vida
por Emilio Silvera ~ Clasificado en Biologia ~ Comments (2)
Los Bioquímicos, son los químicos que estudian los procesos de los seres vivos y, no pueden imaginar tipo de vida alguno (excepto, tal vez, alguna forma inactiva muy elemental) que no requiera decenas de miles de clases distintas de tejidos, cada uno de ellos diseñado para llevar a cabo una labor altamente especializada.
Pensemos, por ejemplo, en la complejidad de un ojo humano, que no es más que uno de los mucho órganos del cuerpo. Éste tiene que sintetizar compuestos determinados para poder constituir cada una de sus partes: el cristalino, los músculos que permiten cambiar la forma de éste último, los músculos que abren y cierran las pupilas, las capas de la córnea, los líquidos que llenan las distintas cabidades, la retina, el coroide, la esclerótica, el nervio óptico los vasos sanguineos… Cada una de ellas necesita sustancias enormemente complejas que, además, deben poseer las propiedades adecuadas para hacer exactamente lo que se supone que hacem.
Miles de millones de tales tejidos especialiozados son esenciales para las formas vivientes de la Tierra. Es imposible imaginar que la evolución de éstos haya podido realizarse sin la ayuda del Carbono, un elemento que sobrepasa a los demás en su capacidad de formar una variedad casi ilimitada de compuestos, cada uno de ellos con propiedades específicas.
saturados: con enlaces covalentes simples, alcanos.
insaturados, con dobles enlaces covalentes (alquenos) o triples (alquinos).
aromáticos: estructura cíclica.
Jul
2
¡Qué extraña es, la mecánica cuántica!
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (0)
Por ejemplo:
La quiralidad está a menudo asociada a la presencia de carbonos asimétricos. Un carbono asimétrico es aquel que se une a cuatro sustituyentes diferentes. Un ejemplo de carbono asimétrico lo tenemos en la molécula de Bromocloroyodometano. El carbono está unido a bromo, cloro, yodo e hidrógeno, cuatro sustituyentes diferentes que lo convierten en quiral o asimétrico. La molécula y su imagen en un espejo son diferentes, ningún giro permite superponerlas. La relación entre una molécula y su imagen especular no superponible es de enantiómeros.
En estos dibujos podemos ver la molécula de Bromocloroyodometano y su enantiómero reflejado en el espejo. No siempre la imagen del espejo refleja lo mismo que se ha puesto delante de él tratándo de reproducir lo mismo que el original muestra.
Si nos ponemos delante del espejo y hacemos como que apuntamos con una pistola que sostenemos con la mano derecha, a “nuestro yo” reflejado, veremos que, la imagen especular, como riéndose de nosotros, nos apunta con la izquierda. ¿Cómo ha podido suceder tal cosa? Resulta que la simetría especular se rompe en ciertos casos.
Nunca dejaremos de sorprendernos. Todo aquello que nos es desconocido causa en nosotros sos sentimientos: temor y asombro. El mundo cotidiano, el planeta en el que vivímos, nos muestra la Naturaleza tal como nosotros creemos que es y, a veces, nos hace exclamar:
¡Que mundo más hermoso, parece de verdad!
No todo lo que vemos es, necesariamente, un reflejo de la realidad de la Naturaleza que, puede tener escondidos más allá de nuestras percepciones, otros escenarios y otros objetos, a los que, por ahora, no hemos podido acceder, toda vez que, físicamente tenemos carencias, intelectualmente también, y, nuestros conocimientos avanzar despacio para conseguir nuevas máquinas y tecnologías más avanzadas que nos posibiliten “ver” lo que ahora nos está “prohibido” y, para ello, como nos dice la historia de la Humanidad, necesitamos energías de las que no disponemos.
Lo cierto es que todo está hecho de esas pequeñas partículas… Quarks y Leptones. Las estudiamos y observamos los comportamientos que en situaciones distintas puedan tener y, una de las cuestiones que resultó curioso constatar es que, existen partículas subatómicas que podríamos llamar pares y otras que podríamos llamar impares, porque sus combinaciones y desintegraciones cumplen las mismas propiedades que la suma de enteros pares e impares. Una partícula de paridad par puede partirse en dos de paridad par, o en dos de paridad impar, pero nunca en una de paridad par y otra de paridad impar (esto implica la conservación de la paridad).
En 1927 el físico y matemático húngaro Eugene Wigner demostró que las partículas con paridad par poseían, en cierta forma, una simetría especular (izquierda derecha, como la letra M o el número 8). Una simetría que conserva ciertas propiedades mecanocuánticas de la partícula por cambio de signo de sus coordenadas espaciales. En 1963 le fue concedido el Premio Nobel “ por el descubrimiento y aplicación de los principios fundamentales de la simetría”. Mucho es lo que hemos hablado aquí de la simetría y lo importante que es en física.
La ley conocida como Interacción débil, no cumple con ciertas “leyes de la Física” tales como la conservación de la extrañeza y del isospín, aunque hay otras muchas leyes de conservación que sí respeta. Los físicos hablan muy a menudo de la conservación de la simetría. Una simetría muy importante, aunque simple, es la “simetría especular” oficialmente llamada “paridad”.
No, esta no es, la imagen especular de un neutrino, de hecho, ellos no tienen imagen especular.
La simetría especular se ha comprobado una y mil veces en el laboratorio. El nombre científico de la simetría especular es “Conservación de la Paridad”. Así las cosas, la historia que sigue nos habla de un descubrimiento importante, y también de cómo, el progreso a veces, trae consigo la muerte de una bella y exquisita teoría que ha sido destruída por la realidad, no siempre tan bonita.
Lo cierto es que, los profundos y fatigosos estudios que llevaron a cabo los físicos, dieron como resultado que una concepción muy profunda de la manera en que se comporta la Naturaleza está (débilmente) equivocada y, se pudo “ver” que, nuestro conocimiento de cómo está construído el Universo tenía que cambiar para siempre. Es cierto que, rfutar una teoría elegante nos puede llevar al desánimo y, nos puede llevar a pensar que la Naturaleza es más torpe de lo que habíamos imaginado. Pero lo cierto es que, en unos pocos días de trabajo en el mes de enero de 1957, en Irvingtong-on-Hudson, 33 kilómetros al norte de Nueva York, pa paridad cayó.
Antes de 1956, siempre se había supuesto que cualquier fenómeno respetaba las mismas leyes físicas que su imagen especular. En consecuencia uno podría esperar que las partículas o haces de partículas chocan entre ellas de una forma que sea especularmente simétrica, la simetría especular se preservaría.
Los físicos aman la simetría por su belleza matemática e intuitiva. Tenemos múltiples ejemplos de simetría en el arte, tales como el Taj Majal o un templo griego: en la Naturaleza exhiben patrones simétricos de gran belleza las conchas, los animales simples y los cristales de distintos tipos, y también la simetría bilateral casi perfecta del cuerpo humano. Las leyes de la Naturaleza contienen un rico conjunto de simetrías de las que, durante muchos años, al menos hasta enero de 1957, se pensço que eran absolutas y perfectas. Han sido inmensamente útiles para nuestros conocimientos de los cristales, las moléculas grandes, los átomos y las partículas.
A una de esas simetrías se le lamaba simetría especular, o conservación de la paridad, y afirmaba que la Naturaleza -las leyes de la física- no puede distinguir los suecesos del mundo real de los que se ven en el espejo. Durante mucho tiempo, los físicos han sabido que toda reacción entre partículas elementales obedece a una simetría que llamamos CPT. Esto significa que si miramos la partícula de una reacción, y luego vemos la misma reacción cuando (1) la miramos en un espejo, (2) sustituimos todas las partículas por antipartículas y (3) hacemos pasar la partícula hacia atrás, los resultados serán idénticos. En este esquema la P significa paridad (el espejo), la C significa conjugación de carga (poner las antipartículas) y T la reserva del Tiempo (pasar la partícula al revés).
Un alto en el camino para una explicación: Dado que la antimateria tiene la misma masa que la materia, es decir son de la misma magnitud y signo (la definición de masa es positiva siempre), el efecto gravitacional de la antimateria no debe ser distinto de la materia, es decir, siempre sera un efecto atractivo. Pero, ¿acaso no importa la equivalencia establecida de antipartícula viajando al futuro = partícula viajando al pasado?
La respuesta es sí. Dicha equivalencia proviene (precisamente) de la simetría CPT, y nos dice que la equivalencia entre las partículas y antipartículas no solo corresponde a realizar una transformación sobre la carga, sino también sobre la paridad y el tiempo. La carga no afecta la gravedad, pero la paridad y el tiempo si la afectan. En otras palabras, al modificarse el tiempo (poner el tiempo al reves) y el espacio (la paridad es “girar” el espacio), estamos alterando el espacio-tiempo, y como la teoría general de la relatividad lo afirma, es la geometría de este el que determina la gravedad. Pero, a la larga, la geometría vendrá dada por la cantidad de materia que el universo pueda contener.
Se pensaba que el mundo era simétrico respecto a CPT porque, al menos al nivel de las partículas elementales, era simétrico respecto a C, P y T independientemente. Ha resultado que no es este el caso. El mundo visto en un espejo se desvía un tanto del mundo visto directamente, y lo mismo sucede con el mundo visto cuando la partícula pasa al revés. Lo que sucede es que las desviaciones entre el mundo real y el universo en cada uno de esos casos se cancelan una a la otra cuando miramos las tres inversiones combinadas.
También hay simetría en las ondas gravitatorias
Siguiendo con el tema que nos ocupa, lo cierto es que, es verdad que el mundo es casi simétrico respecto a CP actuando solos y a T actuando solo; es decir, que el mundo es casi el mismo si lo miran en un espejo y sustituyen las partículas por antipartículas que si lo miran directamente. Este “casi” es lo que preocupa a los físicos. ¿Por qué son las cosas casi perfectas, pero les falta algo?
Los neutrinos siempre nos han dado dolor de cabeza. Su ponemos nuestras manos delante un espejo, ahí las veremos reflejadas. Si de la misma manera, pudiéramos poner dos neutrinos delante del espejo de al lado, eso veríamos: NADA. El descubrimiento de que muchas partículas no se parecían en nada a sus respectivas imágenes especulares fue realizado por dos físicos chinos, Tsung Dao Lee y Chen Ning Yang, algún tiempo después de haber emigrado a los EE UU. Resultó que la Interacción débil distinguía entre derecha e izquierda. Esto es más claro en el caso del neutrino.
Los neutrinos ve y vµ como el fotón, no tienen masa en reposo y, por lo tanto, se mueven siempre a la velocidad de la luz. Los neutrinos también rotan con un espín ½. Si definimos el “polo norte” y el “polo sur” igual que se definen en la Tierra. Los neutrinos son especiales porque siempre tienen el polo sur enfrente de ellos y el polo norte detrás. Nunca se han observados neutrinos para los cuales esto no sea así.
La física sueca Cecilia Jarlskog comparó a los neutrinos con los vampiros porque no tienen imagen especular. Su imagen especular es un imposible físico. Ciertamente, cuando nos adentramos en los secretos de la mecánica cuántica, podemos constatar que, nuestro mundo, no es tal como lo vemos y, la realidad de la Naturaleza a veces, difiere de la nuestra.
Recordémos la dualidad onda-partícula, en el que se aprecia cómo un mismo fenómeno puede ser percibido de dos modos distintos, fue uno de los problemas filosóficos que planteó la mecánica cuántica. Tratándo sobre mecánica cuántica podríamos hablar de la filosofía de la física pero, nunca de la Física como filosofía.
A todo esto, tendremos que convenir en que, nosotros, no somos capaces de deducir las propiedades de un escarabajo utilizando el modelo estándar y esto nunca va a cambiar. Imaginemos un examen de la siguiente cuestión:
Calcula el número de segmentos del Aselluz aquaticus a partir del modelo estándar. Se puede utilizar la lista adjunta para la masa de Higgs y los parámetros que violan la CP…
Nunca se podrá resolver tal tipo de problemas, ni es la intención de los Físicos Teóricos sugerir que ellos pueden hacer la labor de los Biólogos o la de los miembros de cualquier otra disciplina que no sea la Física. Lo que afirman es que las fuerzas de la Naturaleza responsables del número de segmentos de esas criaturas son conocidas, pero que el efecto es incalculable. A duras penas somos capaces de calcular los efectos de las fuerzas fundamentales en un simple hadrón tal como el protón (¡los resultados están a menudo desviados más de un cincuenta por ciento!), así que imagínese cuan imposible se hace la complejidad de un sistema formado por los 1022 átomos con la forma de un escarabajo.
¡Qué extraño es todo esto!
¡Y pensar que todas las respuestas están en la verdadera naturaleza de la luz! Ese último estado de la materia que es pura energía. Y, ya puestos a imaginar, también podríamos pendsar que las cuerdas, esas briznaz vibrantes de infinitesimal tamaño que se cree están más allá de los Quarks, también ellas, en esencia, son luz. Si una cuerda es billones de veces más pequeña que un átomo. Si agrandáramos un átomo al tamaño de nuestro sistema solar, una cuerda sería como un árbol. ¡Qué fantástica idea!
Once dimensiones, universos paralelos, y un mundo hecho de cuerdas o filamentos vibrantes que vendrían a ser los objetos más pequeños del Universo. Claro que, no sabemos de qué estará formada la tan cacareada “materia oscura” ( si es que finalmente existe). Lo cierto es que, la Naturaleza, además de que es bella, es también !asombrosa! ¿Estábamos hablando de simetría?
La Simetría de la Naturaleza nos rodea por todas partes y, a nuestro alrededor, mirémos donde podamos mirar, allí está presente y, sin embargo, de ninguna manera son manifiestas todas las simitrías de la Naturaleza. Vivímos en un mundo imperfecto, en el que muchas de las simetrías que aparecen en las ecuciones de la física están rotas.
Como más arriba se dice, antes de enero de 1957 no se había visto niguna violación así en el mundo de la imagenen el espejo. El mundo y su imagen especular eran descripciones igualmente válidas de la naturaleza. Todo lo que pasase en el espacio especular podía, en principio y en la práctica, reproducirse en el laboratorio. La paridad era útil. Nos ayudaba a clasificar los estados moleculares, atómicos y nucleares. Además, ahorra trabajo. Por ejemplo, si un ser humano perfecto y desnudo está a medias oculto por una pantalla vertical, con estudiar la mitad que se ve se sabe en muy buena medida qué hay detrás de la pantalla. ¡Esas es la poesía de la paridad!
“El primer físico que recogió el guante fue la Dra. Chien-Shiug Wu, profesora de física de la Universidad de Columbia, amiga de Yang y Lee, famosa por sus trabajos sobre las interacciones débiles y por el cuidado y la elegancia con que realizaba sus experimentos. El experimento planeado por la Dra. Wu implicaba la desintegración beta del cobalto 60, un isótopo del cobalto muy radioactivo que emite electrones. Cuando se enfría el cobalto 60 cerca del cero absoluto y se aplica un campo magnético que alinee estos átomos se espera que se emitan tantos electrones en la dirección norte del campo magnético como en la dirección sur. Si se conserva la paridad.” Pero la paridad no se conserva y la Dra. Wu observó más electrones emitidos en la dirección sur que en la dirección norte. “El experimento se realizó a finales de 1956, pero no se anunció el resultado hasta el 15 de enero de 1957, de manos del físico Isador Rabi de la Universidad de Columbia, quien además incluyó resultados de otro experimento confirmatorio realizado con mesones mu por físicos de Columbia en los laboratorios del ciclotrón Nevis (Nueva York). Una tercera prueba fue realizada en la Universidad de Chicago usando mesones pi y mu. En todo el mundo los físicos empezaron a comprobar la paridad en otras interacciones débiles y en 1958 era evidente que la paridad era infringida en todas esas interacciones. El enigma “theta-tau” estaba resuelto. Solo hay un mesón K o kaón. La paridad no se conserva.”
De todos es bien conocido los trabajos de T.D. Yang que, en colobaración con Tsung Dao Lee, identificó una discreta simetría en la fuerza débil, llamada violación de la paridad. En 1956, ambos predijeron sobre bases teóricas, que el espín de las partículas provenientes de la desintegración Beta mostrarían una ligera preferencia por una dirección sobre la otra. Experimentos realizados, así lo confirmaron y les valió el Premio Nobel a Lee y Yang (aunque no a la doctara Wu por razones desconocidas). Aquello sirvió para atraer la atención sobre el hecho de que la Naturaleza, sea simétrica en algunos aspectos y asimétrica en otros.
Interacción débil o fuerza nuclear débil
La interacción débil, también conocida como interacción nuclear débil, se acopla a un tipo de carga llamada sabor, que la poseen los quarks y los leptones. Esta interacción es la causante de los cambios de sabor en estas partículas, en otras palabras es la responsable que de quarks y leptones decaigan en partículas más livianas, además es la que produce desintegraciones beta. La teoría de Glashow-Weinberg-Salam estudia la interacción débil y la electrodinámica cuántica de manera unificada en lo que se llama Modelo electro débil.
Pero sigamos con la Doctara Wu. Cuando los fdísicos Lee y Yang pusieron entredicho la validez de la conservación de la paridad en ekl verano de 1956, Wu se puso manos a la obra de inmediato. Seleccionó como objeto de su estudio el núcleo radiactivo del inestable cobalto 60,que se convierte expontáneamente en un núcvleo de níquel, un neutrino y un electrón positivo (un positrón). Lo que uno “ve” es que el núcleo de Cobalto dispara súbitamente un electrón positivo. Esta forma de radiacitvidad recibe el nombre de desintegración beta, porque a los electrones, negativos o positivos, emitidos durante el proceso se los llama originalmente partículas beta. ¿Por qué pasa esto? Los físicos lo llaman interacción débil y se refieren con ello a una fuerza que opera en la Naturaleza y genera esas reacciones.
Las fuerzas no solo empujan y tiran, atraen y repelen, sino que son también capaces de generar cambios de especie, como el proceso en el que el Cobalto se convierte en níquel y emite leptones. desde los años treinta se han atribuido un gran número de reacciones a la interacción débil. Fermi, aquel físico italiano fue el primero que dio forma matemática a la interacción débil, y gracias a ello predijo muchos detalles de reacciones del estilo de la que sufre el Cobalto 60.
Tsung-Dao (T.D.) Lee Chen-Ning Franklin Yang
Así Lee y Yang, se remangaron y se pudieron al trabajo con esos tipos de reacciones como inspiración con las que podrían poner a prueba la simetría especular. De los resultados, escribieron un artículo meticulosamente detallado en relación a las reacciones probables, para que así, los estólidos experimentalistas pudieran poner a prueba la valides de la simetría especular. Wu ideó una versión de una de ellas, basada en la reacción del Cobalto. La clave de su plantamiento era que los núcleos de Cobalto -o por lo menos una fracción muy pequeña de ellos- girasen en el mismo sentido, lo cual, según ella, se garantizaba si se ponía la fuente de cobalto 60 a una temperatura muy baja.
Ambos comentaban más tarde: “Cuesta expresar hasta que punto conmocionaron los resultados obtenidos en estos experimentos a la comunidad científica. Habíamos puesto en entredicho una creencia muy querida -en realidad, la habíamos destruído-: que la Naturaleza exhibe una simetría especular.
A partir de aquello, en los años siguientes, se refutaron también otras simetrias. Aún así, el experimento alteró a muchos teóricos, entre ellos a Wolfgang Pauli, quien hizo famosa la afirmación; “No puedo creer que Dios sea un débil zurdo”. No quería decir que “Dios” tenía que ser diestro sino que, tenía que ser ambidiestro.
La reunión anual de la Sociedad Física Norteamericana atrajo a 2.000 físicos a la sala de baile del Hotel Paramount de Nueva York el 6 de febrero de 1957. Dicen que había gente colgadas hasta de las lámparas. El resultado de la ruptura de la simetria C.P., fue difundido por las partadas de los mejores periódicos de todo el mundo. El New York Times publicó el comunicado de prensa literalmente, con ilustraciones de partículas y espejos. Pero nada de todo eso podía compararse al sentimiento de euforiacuasi-mística que a las tres de la madrugada sintieron dos físicos en el momento en que descubrieron una nueva y profundad verdad.
Como decía Feynman: “El Placer de Descubrir”
emilio silvera
Jul
2
La Fusión Nuclear ¿Será la energía futura?
por Emilio Silvera ~ Clasificado en Energía = Materia ~ Comments (0)
Fusión de deuterio con tritio, por la cual se producen helio 4, se liberan un neutron y se generan 17,59 MeV de energía, como cantidad de masa apropiada convertida de la energía cinética de los productos, según la fórmula E = Δm c2. En realidad, lo que estamos intentando hacer, es copiar lo que hace el Sol y todas las estrellas del Universo.
El mundo, como el Universo mismo, funciona porque la energía está presente y hace posible los cambios y transiciones de fase que se producen en las cosas, en los planetas y en las estrellas que, con el paso del tiempo van cambiando al mismo tiempo que consumen energía. Así las cosas, tenemos que convenir que la energía, es muy necesaria para todo y también, para el progreso y continuidad de nuestras modernas sociedades.
Una de las posibles energías que se investigan y se está tratando de dominar es la llamada energía de fusión que consiste, en hacer lo mismo que hacen las estrellas del cielo “fusionar materiales ligeros en otros más pesados produciendo, en el proceso, mucha energía”.
El sueño de los científicos está centrado en conseguir esa clase de energía -que tiene muchos inconvenientes a la hora de plasmarla en realidad-, de una manera que posibilite ser generada en condiciones ambientales normales consiguiendo la reacción precisa pero, las estrellas necesitan hacerlo con plasma a más de quince millones de grados.
Claro que calentar en la Tierra combustible a tan altísimas temperaturas, del orden de 160 millones de grados (equivalente a una energía por partícula de 15 keV) en el caso de la reacción más accesible, que es la que se realiza con Deuterio y Tritio para dar lugar a un Neutrón más un núcleo de Helio o partícula Alfa:
D + T → He (3,5 MeV) + n (14,1 Mev)
Una central eléctrica de fusion utilizaría como materias primas deuterio, un isótopo que supone el 0,03% del hidrógeno terrestre, y tritio, otro isótopo del hidrógeno que no existe en la Naturaleza pero que se puede obtener de otro elemento muy abundante y distribuido por todo el planeta, el litio, siguiendo la reacción:
N + Li → T + He
En la que se utilizan los propios neutrones de 14,1 MeV generados en la fusión.
Las reservas de Deuterio en el agua de la corteza terrestre y las de Litio, en minas de Sal o en las propias sales disueltas en el agua del Mar, permitirían alimentar a la Humanidad de energía de fusión durante millones de años. Por otro lado, la emisión del reactor al exterior se compone básicamente de helio, un gas que es inocuo para las personas y el medio ambiente y que ni siquiera se acumula en la atmósfera sino que se escapa al espacio gradualmente, pero además, tiene aplicaciones industriales.
Así que, como aquel que dice, de un plumazo, habríamos solucionado el problema de la contaminación y, los residuos, no sólo no serían nocivos como ocurre con los que producen las Centrales Nucleares, sino que, por el contrario, se podrían aprovechar.
Claro que las cosas nunca han resultado fáciles, y, todos los logros der la Humanidad han sido largos y a veces hasta penosos. Para conseguir la fusión de núcleos de Deuterio y Tritio de forma energéticamente rentable sería necesario, calentar el combustible a temperaturas de centenares de millones de grados. A estas temperaturas el combustible se encuentra en estado de Plasma, es decir, un gas de iones y electrones libres con carga eléctrica neta cero y con un comportamiento colectivo. La física de este plasma y la manera de confinarlo sin barreras materiales, inviables a tales temperaturas, es el objetivo principal de la investigación en el campo de la fusión.
¿Cómo se está procediendo para conseguir tal maravilla?
El esfuerzo está encaminado, en su mayor parte, en la búsqueda de un Campo magnético capaz de mantener confinado el Plasma. Las partículas cargadas en el seno de un campo magnético describen trayectorias helicoidales cuyos ejes son aproximadamente las líneas de campo. A las temperaturas y campos magnéticos típicos, de decenas de keV y varios Tesla,el radio de giro de la hélice, denominado radio Larmor, es del orden de una décima de milímetro para los electrones y varios milímetros para los iones de deuterio y tritio. De esta forma iones y electrones quedan virtualmente atrapados, pudiendo desplazarse sólo a lo largo de las líneas del campo. Si cerramos las líneas del campo sobre sí mismas utilizando una geometría toroidal, podemos mantener confinado el plasma.
Al día de hoy existen dos grandes familias de dispositivos de confinamiento magnético con geometría toroidal, conocidos como Tokamak y Stellarator. Los dos conceptos son dos formas diferentes de resolver un problema intrínseco de la configuración magnética toroidal: la generación del campo magnético confinante, lo cual, no resulta nada fácil.
No vamos explicar aquí y ahora los resultados de estos dos sistemas y los beneficios alcanzados por los mismos, sería muy técnico y largo de explicar.
El tiempo ha ido pasando y, desde aquellos primeros momentos y pruebas, se ha ido aprendiendo y mejorando las técnicas hasta llegar al Proyecto ITER que ha mejorado todo lo anterior en prácticamente cinco órdenes de magnitud. Se ha mejorado el confinamiento mediante la construcción de experimentos de mayor tamaño y eficiencia, se han desarrollado métodos para calentar el Plasma hasta las temperaturas de decenas de keV, se han desarrollado sofisticados sistemas para el control de la corriente del Plasma e incluso se han realizado los primeros experimentos de generación de neutrones y partículas Alfa que tuvieron lugar por primera en 1991 en el JET, el mayor tokamak del mundo con 100 m³ de Plasma.
En 1994 el Tokamak TFTR de Princeton (EE UU) alcanzó potencias de fusión de 11 MW, y JET de nuevo en 1997, alcanzó los 16 MW pero todavía lejos de obtener una ganancia energética neta, ya que para poder hacerlo hicieron falta 24 MW, más de lo que se logró generar.
El objetivo está centrado en obtener en el ITER diez veces más de energía que la necesaria para mantener el Plasma, o en otros términos mantener un factor de amplificación de Q = 10. ITER será todavía un experimento y no será un Generador de electricidad hasta que no consiga este objetivo propuesto.
Aquí, en todo este “mundillo” de la fusión nuclear, el campo tecnológico implicado es alucinante y obliga, para conseguir los objetivos, a unos avances en el campo de fuerza magnética que, a muchos, está dejando con la boca abierta por el asombro. Sin embargo, falta mucho para conseguir lo propuesto.
Aquí, el problema fundamental que se presenta es el de los materiales que son necesarios para el Reactor, no sirven los materiales que tenemos y, sin más remedio, habrá que investigar para conseguir materiales más eficientes y que puedan, soportar, lo que en ese trabajo se les requiere.
Los dos desafíos fundamentales son:
a) El problema de la interacción Plasma-pared. Aunque el campo magnético confina el campo de alta temperatura, inevitablemente la difusión hace que las partículas acaben alcanzando la pared, dando lugar a cargas térmicas que pueden alcanzar los 10 MW/m² y causando una importante erosión a los materiales de la misma. Para paliar este problema, se está trabajando en dos frentes que, posiblemente, puedan solucionarlo.
b) Materiales resistentes a neutrones. Las reacciones de fusión nuclear generan neutrones de 14 MeV de energía que producen daños en el material estructural del Reactor, así como burbujas de Hidrógeno y Helio que empeoran las propiedades del mismo. Y, otra reacción que producen esos neutrones es que, materiales estables se convierten en radiactivos, dando lugar a residuos indeseables aunque de media y baja actividad y no tan malos como los del Uranio, sí deben ser custodiados adecuadamente.
El ITER estará equipado con unos pequeños módulos de prueba para la regeneración de tritio a partir de compuestos de litio, pero no contará con un sistema completo capaz de producir todo el tritio que consuma. Estos sistemas son absolutamente necesarios en un Reactor Productor de electricidad y suponen un formidable desafío tecnológico ya que han de cumplir con la triple función de regenerar el tritio, extraer las energías que transportan los neutrones y servir de blindaje para que no lleguen neutrones a las bobinas superconductoras y otros componentes sensibles.
Al día de hoy son varios los programas en desarrollo que andan a la búsqueda de la Fusión Nuclear, unos están financiado por varios países, otros por países individuales y, alguno, son de iniciativa particular de Empresas.
Seguramente, dentro de 40 años, cuando miremos hacia el pasado de la Fusión Nuclear, nos parecerán rudimentarios estos proyectos que hoy, son de la más alta tecnología que tenemos pero, en la ciencia, siempre será así.
Publica: emilio silvera
Fuente: Revista de Física Volumen 27, número 2 de 2.013
Autores: F. Castejón, C. Hidalgo y J. Sánchez
Jul
2
¡Qué extraña es, la mecánica cuántica!
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (2)
Por ejemplo:
La quiralidad está a menudo asociada a la presencia de carbonos asimétricos. Un carbono asimétrico es aquel que se une a cuatro sustituyentes diferentes. Un ejemplo de carbono asimétrico lo tenemos en la molécula de Bromocloroyodometano. El carbono está unido a bromo, cloro, yodo e hidrógeno, cuatro sustituyentes diferentes que lo convierten en quiral o asimétrico. La molécula y su imagen en un espejo son diferentes, ningún giro permite superponerlas. La relación entre una molécula y su imagen especular no superponible es de enantiómeros.
En estos dibujos podemos ver la molécula de Bromocloroyodometano y su enantiómero reflejado en el espejo. No siempre la imagen del espejo refleja lo mismo que se ha puesto delante de él tratándo de reproducir lo mismo que el original muestra.
Si nos ponemos delante del espejo y hacemos como que apuntamos con una pistola que sostenemos con la mano derecha, a “nuestro yo” reflejado, veremos que, la imagen especular, como riéndose de nosotros, nos apunta con la izquierda. ¿Cómo ha podido suceder tal cosa? Resulta que la simetría especular se rompe en ciertos casos.
Nunca dejaremos de sorprendernos. Todo aquello que nos es desconocido causa en nosotros sos sentimientos: temor y asombro. El mundo cotidiano, el planeta en el que vivímos, nos muestra la Naturaleza tal como nosotros creemos que es y, a veces, nos hace exclamar:
¡Que mundo más hermoso, parece de verdad!
No todo lo que vemos es, necesariamente, un reflejo de la realidad de la Naturaleza que, puede tener escondidos más allá de nuestras percepciones, otros escenarios y otros objetos, a los que, por ahora, no hemos podido acceder, toda vez que, físicamente tenemos carencias, intelectualmente también, y, nuestros conocimientos avanzar despacio para conseguir nuevas máquinas y tecnologías más avanzadas que nos posibiliten “ver” lo que ahora nos está “prohibido” y, para ello, como nos dice la historia de la Humanidad, necesitamos energías de las que no disponemos.
Lo cierto es que todo está hecho de esas pequeñas partículas… Quarks y Leptones. Las estudiamos y observamos los comportamientos que en situaciones distintas puedan tener y, una de las cuestiones que resultó curioso constatar es que, existen partículas subatómicas que podríamos llamar pares y otras que podríamos llamar impares, porque sus combinaciones y desintegraciones cumplen las mismas propiedades que la suma de enteros pares e impares. Una partícula de paridad par puede partirse en dos de paridad par, o en dos de paridad impar, pero nunca en una de paridad par y otra de paridad impar (esto implica la conservación de la paridad).
En 1927 el físico y matemático húngaro Eugene Wigner demostró que las partículas con paridad par poseían, en cierta forma, una simetría especular (izquierda derecha, como la letra M o el número 8). Una simetría que conserva ciertas propiedades mecanocuánticas de la partícula por cambio de signo de sus coordenadas espaciales. En 1963 le fue concedido el Premio Nobel “ por el descubrimiento y aplicación de los principios fundamentales de la simetría”. Mucho es lo que hemos hablado aquí de la simetría y lo importante que es en física.
La ley conocida como Interacción débil, no cumple con ciertas “leyes de la Física” tales como la conservación de la extrañeza y del isospín, aunque hay otras muchas leyes de conservación que sí respeta. Los físicos hablan muy a menudo de la conservación de la simetría. Una simetría muy importante, aunque simple, es la “simetría especular” oficialmente llamada “paridad”.
No, esta no es, la imagen especular de un neutrino, de hecho, ellos no tienen imagen especular.
La simetría especular se ha comprobado una y mil veces en el laboratorio. El nombre científico de la simetría especular es “Conservación de la Paridad”. Así las cosas, la historia que sigue nos habla de un descubrimiento importante, y también de cómo, el progreso a veces, trae consigo la muerte de una bella y exquisita teoría que ha sido destruída por la realidad, no siempre tan bonita.
Lo cierto es que, los profundos y fatigosos estudios que llevaron a cabo los físicos, dieron como resultado que una concepción muy profunda de la manera en que se comporta la Naturaleza está (débilmente) equivocada y, se pudo “ver” que, nuestro conocimiento de cómo está construído el Universo tenía que cambiar para siempre. Es cierto que, rfutar una teoría elegante nos puede llevar al desánimo y, nos puede llevar a pensar que la Naturaleza es más torpe de lo que habíamos imaginado. Pero lo cierto es que, en unos pocos días de trabajo en el mes de enero de 1957, en Irvingtong-on-Hudson, 33 kilómetros al norte de Nueva York, pa paridad cayó.
Antes de 1956, siempre se había supuesto que cualquier fenómeno respetaba las mismas leyes físicas que su imagen especular. En consecuencia uno podría esperar que las partículas o haces de partículas chocan entre ellas de una forma que sea especularmente simétrica, la simetría especular se preservaría.
Los físicos aman la simetría por su belleza matemática e intuitiva. Tenemos múltiples ejemplos de simetría en el arte, tales como el Taj Majal o un templo griego: en la Naturaleza exhiben patrones simétricos de gran belleza las conchas, los animales simples y los cristales de distintos tipos, y también la simetría bilateral casi perfecta del cuerpo humano. Las leyes de la Naturaleza contienen un rico conjunto de simetrías de las que, durante muchos años, al menos hasta enero de 1957, se pensço que eran absolutas y perfectas. Han sido inmensamente útiles para nuestros conocimientos de los cristales, las moléculas grandes, los átomos y las partículas.
A una de esas simetrías se le lamaba simetría especular, o conservación de la paridad, y afirmaba que la Naturaleza -las leyes de la física- no puede distinguir los suecesos del mundo real de los que se ven en el espejo. Durante mucho tiempo, los físicos han sabido que toda reacción entre partículas elementales obedece a una simetría que llamamos CPT. Esto significa que si miramos la partícula de una reacción, y luego vemos la misma reacción cuando (1) la miramos en un espejo, (2) sustituimos todas las partículas por antipartículas y (3) hacemos pasar la partícula hacia atrás, los resultados serán idénticos. En este esquema la P significa paridad (el espejo), la C significa conjugación de carga (poner las antipartículas) y T la reserva del Tiempo (pasar la partícula al revés).
Un alto en el camino para una explicación: Dado que la antimateria tiene la misma masa que la materia, es decir son de la misma magnitud y signo (la definición de masa es positiva siempre), el efecto gravitacional de la antimateria no debe ser distinto de la materia, es decir, siempre sera un efecto atractivo. Pero, ¿acaso no importa la equivalencia establecida de antipartícula viajando al futuro = partícula viajando al pasado?
La respuesta es sí. Dicha equivalencia proviene (precisamente) de la simetría CPT, y nos dice que la equivalencia entre las partículas y antipartículas no solo corresponde a realizar una transformación sobre la carga, sino también sobre la paridad y el tiempo. La carga no afecta la gravedad, pero la paridad y el tiempo si la afectan. En otras palabras, al modificarse el tiempo (poner el tiempo al reves) y el espacio (la paridad es “girar” el espacio), estamos alterando el espacio-tiempo, y como la teoría general de la relatividad lo afirma, es la geometría de este el que determina la gravedad. Pero, a la larga, la geometría vendrá dada por la cantidad de materia que el universo pueda contener.
Se pensaba que el mundo era simétrico respecto a CPT porque, al menos al nivel de las partículas elementales, era simétrico respecto a C, P y T independientemente. Ha resultado que no es este el caso. El mundo visto en un espejo se desvía un tanto del mundo visto directamente, y lo mismo sucede con el mundo visto cuando la partícula pasa al revés. Lo que sucede es que las desviaciones entre el mundo real y el universo en cada uno de esos casos se cancelan una a la otra cuando miramos las tres inversiones combinadas.
También hay simetría en las ondas gravitatorias
Siguiendo con el tema que nos ocupa, lo cierto es que, es verdad que el mundo es casi simétrico respecto a CP actuando solos y a T actuando solo; es decir, que el mundo es casi el mismo si lo miran en un espejo y sustituyen las partículas por antipartículas que si lo miran directamente. Este “casi” es lo que preocupa a los físicos. ¿Por qué son las cosas casi perfectas, pero les falta algo?
Los neutrinos siempre nos han dado dolor de cabeza. Su ponemos nuestras manos delante un espejo, ahí las veremos reflejadas. Si de la misma manera, pudiéramos poner dos neutrinos delante del espejo de al lado, eso veríamos: NADA. El descubrimiento de que muchas partículas no se parecían en nada a sus respectivas imágenes especulares fue realizado por dos físicos chinos, Tsung Dao Lee y Chen Ning Yang, algún tiempo después de haber emigrado a los EE UU. Resultó que la Interacción débil distinguía entre derecha e izquierda. Esto es más claro en el caso del neutrino.
Los neutrinos ve y vµ como el fotón, no tienen masa en reposo y, por lo tanto, se mueven siempre a la velocidad de la luz. Los neutrinos también rotan con un espín ½. Si definimos el “polo norte” y el “polo sur” igual que se definen en la Tierra. Los neutrinos son especiales porque siempre tienen el polo sur enfrente de ellos y el polo norte detrás. Nunca se han observados neutrinos para los cuales esto no sea así.
La física sueca Cecilia Jarlskog comparó a los neutrinos con los vampiros porque no tienen imagen especular. Su imagen especular es un imposible físico. Ciertamente, cuando nos adentramos en los secretos de la mecánica cuántica, podemos constatar que, nuestro mundo, no es tal como lo vemos y, la realidad de la Naturaleza a veces, difiere de la nuestra.
Recordémos la dualidad onda-partícula, en el que se aprecia cómo un mismo fenómeno puede ser percibido de dos modos distintos, fue uno de los problemas filosóficos que planteó la mecánica cuántica. Tratándo sobre mecánica cuántica podríamos hablar de la filosofía de la física pero, nunca de la Física como filosofía.
A todo esto, tendremos que convenir en que, nosotros, no somos capaces de deducir las propiedades de un escarabajo utilizando el modelo estándar y esto nunca va a cambiar. Imaginemos un examen de la siguiente cuestión:
Calcula el número de segmentos del Aselluz aquaticus a partir del modelo estándar. Se puede utilizar la lista adjunta para la masa de Higgs y los parámetros que violan la CP…
Nunca se podrá resolver tal tipo de problemas, ni es la intención de los Físicos Teóricos sugerir que ellos pueden hacer la labor de los Biólogos o la de los miembros de cualquier otra disciplina que no sea la Física. Lo que afirman es que las fuerzas de la Naturaleza responsables del número de segmentos de esas criaturas son conocidas, pero que el efecto es incalculable. A duras penas somos capaces de calcular los efectos de las fuerzas fundamentales en un simple hadrón tal como el protón (¡los resultados están a menudo desviados más de un cincuenta por ciento!), así que imagínese cuan imposible se hace la complejidad de un sistema formado por los 1022 átomos con la forma de un escarabajo.
¡Qué extraño es todo esto!
¡Y pensar que todas las respuestas están en la verdadera naturaleza de la luz! Ese último estado de la materia que es pura energía. Y, ya puestos a imaginar, también podríamos pendsar que las cuerdas, esas briznaz vibrantes de infinitesimal tamaño que se cree están más allá de los Quarks, también ellas, en esencia, son luz. Si una cuerda es billones de veces más pequeña que un átomo. Si agrandáramos un átomo al tamaño de nuestro sistema solar, una cuerda sería como un árbol. ¡Qué fantástica idea!
Once dimensiones, universos paralelos, y un mundo hecho de cuerdas o filamentos vibrantes que vendrían a ser los objetos más pequeños del Universo. Claro que, no sabemos de qué estará formada la tan cacareada “materia oscura” ( si es que finalmente existe). Lo cierto es que, la Naturaleza, además de que es bella, es también !asombrosa! ¿Estábamos hablando de simetría?
La Simetría de la Naturaleza nos rodea por todas partes y, a nuestro alrededor, mirémos donde podamos mirar, allí está presente y, sin embargo, de ninguna manera son manifiestas todas las simitrías de la Naturaleza. Vivímos en un mundo imperfecto, en el que muchas de las simetrías que aparecen en las ecuciones de la física están rotas.
Como más arriba se dice, antes de enero de 1957 no se había visto niguna violación así en el mundo de la imagenen el espejo. El mundo y su imagen especular eran descripciones igualmente válidas de la naturaleza. Todo lo que pasase en el espacio especular podía, en principio y en la práctica, reproducirse en el laboratorio. La paridad era útil. Nos ayudaba a clasificar los estados moleculares, atómicos y nucleares. Además, ahorra trabajo. Por ejemplo, si un ser humano perfecto y desnudo está a medias oculto por una pantalla vertical, con estudiar la mitad que se ve se sabe en muy buena medida qué hay detrás de la pantalla. ¡Esas es la poesía de la paridad!
“El primer físico que recogió el guante fue la Dra. Chien-Shiug Wu, profesora de física de la Universidad de Columbia, amiga de Yang y Lee, famosa por sus trabajos sobre las interacciones débiles y por el cuidado y la elegancia con que realizaba sus experimentos. El experimento planeado por la Dra. Wu implicaba la desintegración beta del cobalto 60, un isótopo del cobalto muy radioactivo que emite electrones. Cuando se enfría el cobalto 60 cerca del cero absoluto y se aplica un campo magnético que alinee estos átomos se espera que se emitan tantos electrones en la dirección norte del campo magnético como en la dirección sur. Si se conserva la paridad.” Pero la paridad no se conserva y la Dra. Wu observó más electrones emitidos en la dirección sur que en la dirección norte. “El experimento se realizó a finales de 1956, pero no se anunció el resultado hasta el 15 de enero de 1957, de manos del físico Isador Rabi de la Universidad de Columbia, quien además incluyó resultados de otro experimento confirmatorio realizado con mesones mu por físicos de Columbia en los laboratorios del ciclotrón Nevis (Nueva York). Una tercera prueba fue realizada en la Universidad de Chicago usando mesones pi y mu. En todo el mundo los físicos empezaron a comprobar la paridad en otras interacciones débiles y en 1958 era evidente que la paridad era infringida en todas esas interacciones. El enigma “theta-tau” estaba resuelto. Solo hay un mesón K o kaón. La paridad no se conserva.”
De todos es bien conocido los trabajos de T.D. Yang que, en colobaración con Tsung Dao Lee, identificó una discreta simetría en la fuerza débil, llamada violación de la paridad. En 1956, ambos predijeron sobre bases teóricas, que el espín de las partículas provenientes de la desintegración Beta mostrarían una ligera preferencia por una dirección sobre la otra. Experimentos realizados, así lo confirmaron y les valió el Premio Nobel a Lee y Yang (aunque no a la doctara Wu por razones desconocidas). Aquello sirvió para atraer la atención sobre el hecho de que la Naturaleza, sea simétrica en algunos aspectos y asimétrica en otros.
Interacción débil o fuerza nuclear débil
La interacción débil, también conocida como interacción nuclear débil, se acopla a un tipo de carga llamada sabor, que la poseen los quarks y los leptones. Esta interacción es la causante de los cambios de sabor en estas partículas, en otras palabras es la responsable que de quarks y leptones decaigan en partículas más livianas, además es la que produce desintegraciones beta. La teoría de Glashow-Weinberg-Salam estudia la interacción débil y la electrodinámica cuántica de manera unificada en lo que se llama Modelo electro débil.
Pero sigamos con la Doctara Wu. Cuando los fdísicos Lee y Yang pusieron entredicho la validez de la conservación de la paridad en ekl verano de 1956, Wu se puso manos a la obra de inmediato. Seleccionó como objeto de su estudio el núcleo radiactivo del inestable cobalto 60,que se convierte expontáneamente en un núcvleo de níquel, un neutrino y un electrón positivo (un positrón). Lo que uno “ve” es que el núcleo de Cobalto dispara súbitamente un electrón positivo. Esta forma de radiacitvidad recibe el nombre de desintegración beta, porque a los electrones, negativos o positivos, emitidos durante el proceso se los llama originalmente partículas beta. ¿Por qué pasa esto? Los físicos lo llaman interacción débil y se refieren con ello a una fuerza que opera en la Naturaleza y genera esas reacciones.
Las fuerzas no solo empujan y tiran, atraen y repelen, sino que son también capaces de generar cambios de especie, como el proceso en el que el Cobalto se convierte en níquel y emite leptones. desde los años treinta se han atribuido un gran número de reacciones a la interacción débil. Fermi, aquel físico italiano fue el primero que dio forma matemática a la interacción débil, y gracias a ello predijo muchos detalles de reacciones del estilo de la que sufre el Cobalto 60.
Tsung-Dao (T.D.) Lee Chen-Ning Franklin Yang
Así Lee y Yang, se remangaron y se pudieron al trabajo con esos tipos de reacciones como inspiración con las que podrían poner a prueba la simetría especular. De los resultados, escribieron un artículo meticulosamente detallado en relación a las reacciones probables, para que así, los estólidos experimentalistas pudieran poner a prueba la valides de la simetría especular. Wu ideó una versión de una de ellas, basada en la reacción del Cobalto. La clave de su plantamiento era que los núcleos de Cobalto -o por lo menos una fracción muy pequeña de ellos- girasen en el mismo sentido, lo cual, según ella, se garantizaba si se ponía la fuente de cobalto 60 a una temperatura muy baja.
Ambos comentaban más tarde: “Cuesta expresar hasta que punto conmocionaron los resultados obtenidos en estos experimentos a la comunidad científica. Habíamos puesto en entredicho una creencia muy querida -en realidad, la habíamos destruído-: que la Naturaleza exhibe una simetría especular.
A partir de aquello, en los años siguientes, se refutaron también otras simetrias. Aún así, el experimento alteró a muchos teóricos, entre ellos a Wolfgang Pauli, quien hizo famosa la afirmación; “No puedo creer que Dios sea un débil zurdo”. No quería decir que “Dios” tenía que ser diestro sino que, tenía que ser ambidiestro.
La reunión anual de la Sociedad Física Norteamericana atrajo a 2.000 físicos a la sala de baile del Hotel Paramount de Nueva York el 6 de febrero de 1957. Dicen que había gente colgadas hasta de las lámparas. El resultado de la ruptura de la simetria C.P., fue difundido por las partadas de los mejores periódicos de todo el mundo. El New York Times publicó el comunicado de prensa literalmente, con ilustraciones de partículas y espejos. Pero nada de todo eso podía compararse al sentimiento de euforiacuasi-mística que a las tres de la madrugada sintieron dos físicos en el momento en que descubrieron una nueva y profundad verdad.
Como decía Feynman: “El Placer de Descubrir”
emilio silvera