lunes, 23 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Cuerdas cósmicas?

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosmología    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Aunque no todas si son muchas las GUT y teorías de supersimetría las que predicen la de cuerdas en la congelación del segundo 10-35 despues del comienzo del tiempo, cuando la fuerza fuerte se congeló y el universo se infló. Las cuerdas se deben considerar como un subproducto del proceso mismo de congelación. Es cierto que aunque las diversas teorías no predicen cuerdas idénticas, sí predicen cuerdas con las mismas propiedades generales. En primer lugar las cuerdas son extremadamente masivas y también extremadamente delgadas; la anchura de una cuerda es mucho menor que la anchura de un protón1. Las cuerdas no llevan carga eléctrica, así que no interaccionan con la radiación como las partículas ordinarias. Aparecen en todas las formas; largas lineas ondulantes, lazos vibrantes, espirales tridimensionales, etc. Sí, con esas propiedades podrían un candidato perfecto para la “materia oscura”. Ejercen una atracción gravitatoria, pero no pueden ser rotas por la presión de la radiación en los inicios del Universo.

 El espesor estimado de una cuerda es de 10-30 centímetros, comparados con los 10-13 de un protón. Además de ser la más larga, y posiblemente la más vieja estructura del universo conocido, una cuerda cósmica sería también la más delgada: su diámetro sería 100.000.000.000.000.000 veces más pequeño que el de un protón.. Y cada cuerda sería terriblemente inquieta, algo así como un látigo agitándose por el espacio casi a la velocidad de la luz. Las curvas vibrarían como enloquecidas bandas de goma, emitiendo una corriente continua de ondas gravitacionales: rizos en la misma tela del espacio-tiempo. ¿Qué pasaría si una cuerda cósmica tropezara con un planeta? Al ser tan delgada, podría traspasarlo sin tropezar con un solo núcleo atómico. Pero de todos modos, su intenso gravitatorio causaría el caos.

http://stringers.es/wp-content/uploads/2010/06/cosmic.jpg

Simulación del efecto de lente generado por una cuerda cósmica. Crédito: PhysicsWorld.com

Por tanto, cuando observásemos un objeto con una cuerda cósmica en la trayectoria de nuestra mirada, deberíamos ver este objeto dos veces, con una separación entre ambas del orden del defecto de ángulo del cono generado por la curvatura del espaciotiempo. Esta doble imagen sería característica de la presencia de una cuerda cósmica, pues otros cuerpos, como estrellas o agujeros negros, curvan el espaciotiempo de manera distinta, generando al menos cuatro deformadas. Por tanto, una observación de este fenómeno no podría dar lugar a un falso positivo.

En este sentido, el nombre de cuerda cósmica está justificado debido a que son impresionantemente pesadas, pasando a ser objetos macroscópicos aun cuando su efecto es pequeño. Una cuerda de seis kilómetros de longitud cuya separación entre ambas geodésicas es de apenas 4 segundos de arco tendría ¡la masa de la Tierra!. Evidentemente, cuerdas de este calibre no se espera que existan en la naturaleza, por lo que los defectos de ángulo esperados son aún menores y, por tanto, muy difíciles de medir.

Y esta es una de las razones de que todavía no se haya encontrado ninguna cuerda de este tipo. Si bien en los últimos años han surgido muchas candidatas a estar formadas por un efecto de lente de este tipo, la mayoría han resultado ser dos cuerpos distintos pero muy similares entre sí. Pese a ello, los astrofísicos y los teóricos de cuerdas no puerden la esperanza de encontrar en los próximos años, y gracias a telescopios cada vez más potentes, como el GTC; evidencias directas de la existencia de este tipo de cuerdas; evidencias que no sólo nos indicarían que las teorías de cuerdas van por buen camino, si no que el modelo del Big Bang es un modelo acertado.

http://stringers.es/wp-content/uploads/2010/06/gravity-lens-esquema.jpg

                                               Esquema del de rayos para el efecto de lente gravitatoria de una cuerda cósmica

Las cuerdas cósmicas, desde el momento de su en el segundo 10-35,  constituyen un entorno masivo, apelmazado, contra el que se desarrolla la evolución de las partículas, núcleos y átomos. Como no son afectadas por la presión de la radiación,como el plasma, pueden servir como núcleos de condensación -las semillas- para la de galaxias, cúmulos galácticos y supercúmulos, siempre que puedan sobrevivir lo necesario para hacerlo.

Neil Turok, titular de la cátedra de Física Matemática en el Departamento de Matemáticas Aplicadas y Física Teórica de la Universidad de Cambridge. Es coautor, con Paul Steinhardt, de Universo Infinito: allá del Big Bang. El portavoz de la idea de las cuerda cósmica es Niel Turok, un joven físico teórico que trabaja en el Imperial College de Londres y pasa muicho tiempo en EE UU haciendo un periplo por diversas Universidades. Ha hecho del desciframiento de la conducta de las cuerdas cósmicas  el trabajo de su vida (al menos por el momento) y, se aplica en las complejas ecuaciones de la teoría de campos cuánticos que describen dichas cuerdas. Su enfoque es admirable por su integridad:

En lugar de seguir el camino normal desarrollando la conducta de las cuerdas y dejando a otros hallar el efecto que las cuerdas tienen sobre el problema de las galaxias, Turok y los jovenes que le rodean han decidido aprender cosmología. Dicha decisión no es frecuenta y por inusual, ha llamado la atención que se quieran especializar de manera específica en otro distinto al suyo para poder hacer y comprender mejor su trabajo. Y, otra curiosidad es que, el más duro crítico de las cuerdas cósmicas, P.J.E. Peebles, de Princeton, haya estado actuando como su tutor, lo cual, es tan significativo que se podría alorar como uno de los gestos más desinteresados y de alta calidad que en la Física se pueda haber producido.

 

Una de las virtudes de esta teoría es que puede detectarse por la observación. Aunque las cuerdas en sí son invisibles, sus efectos no tienen por qué serlo. La idea de las supercuerdas nació de la física de partículas, más que en el de la cosmología (a pesar del nombre, la cuerdas cósmicas no tienen nada que ver con la teoría de las “supercuerdas”, que mantiene que las partículas elementales tienen forma de cuerda). Surgió en la década de los sesenta cuando los físicos comenzaron a entrelazar las tres fuerzas no gravitacionales – electromagnetismo y fuerzas nucleares fuertes y débiles – en una teoría unificada.

En 1976, el concepto de las cuerdas se había hecho un poco más tangible, gracias a Tom Kibble. Kibble estudiaba las consecuencias cosmológicas de las grande teorías unificadas. Estaba particularmente interesado en las del 10^-35 segundo después del Big Bang, cuando las temperaturas en el cosmos embrionario bajaron más de billones de billones de grados. Ese fue el momento en que las fuerzas y las partículas se diferenciaron unas de otras.

El misterioso “universo” de los campos cuánticos

A los cosmólogos les gusta visualizar esta revolucionaria transición como una especie de “cristalización”: el , en un principio saturado de energía, cambió a la forma más vacía y más fría que rodea actualmente nuestro planeta. Pero la cristalización fue, probablemente, imperfecta. En el cosmos recién nacido podría haberse estropeado con defectos y grietas, a medida que se enfriaba rápidamente y se hinchaba.

cuerdas están en La Teoría M de E. Witten que nos explica muy bien las implicaciones de las cuerdas en el contexto del Universo, y, ademas, lleva implícita la Gravedad Cuántica que tantos físicos buscan desde hace mucho tiempo para explicar cuestiones que hasta el momento carecen de ella. Sin embargo, estas son otras cuerdas que, implicadas en las profundidades de la materia, nos podría explicar otras muchas cosas a diferente nivel de lo que la cuerda cósmica pretende explicar.

Turok nos dice:

“Durante los últimos diez años he estado trabajando en la cuestión de cómo empezó el universo – o no comenzar. ¿Qué sucedió en el Big Bang? Para mí, esto parece ser una de las cuestiones más fundamentales de la ciencia, porque todo lo que sabemos de salir de la Explosión. Ya se trate de partículas o los planetas o las estrellas o, en última instancia, incluso la vida misma.

En los últimos años, la de las leyes fundamentales de la naturaleza nos ha obligado a pensar en el Big Bang, mucho más profundamente. De acuerdo con nuestras mejores teorías – la teoría de cuerdas y la teoría M – todos los detalles de las leyes de la física son en realidad determinada por la estructura del universo, en concreto, por la disposición de pequeñas enrollada dimensiones extra del espacio. Este es un muy hermoso: la física de partículas en sí es ahora más que otro aspecto de la cosmología. Pero si se quiere entender por qué las dimensiones extra están dispuestos como están, hay que entender el Big Bang porque ahí es donde todo proviene.

De alguna manera, hasta hace muy poco, la física fundamental se había llevado bien sin realmente hacer frente a ese problema. Ya en la década de 1920, Einstein, Friedmann y Lemaitre – los fundadores de la moderna cosmología – di cuenta que había una singularidad en el Big Bang. Que de alguna manera, cuando se traza el universo de nuevo, todo lo que salió mal unos 14 millones de años. Al salir mal, me refiero a todas las leyes de la física dejan: dan infinitos y sin sentido. El mismo Einstein no interpretó esto como el principio de los tiempos, que acaba de decir, bueno, mi teoría falla. La mayoría de las teorías fallan en algún régimen, y entonces usted necesita una teoría mejor. La teoría de Isaac Newton falla cuando las partículas se muevan muy rápido, sino que no logra describir eso, necesita relatividad. Del mismo modo, Einstein dijo, “necesitamos una mejor teoría de la gravedad que la mía”. Lo cierto es que la Fuerza de Gravedad no ha sido bien comprendida todavía y esconde secretos que no hemos sabido desvelar.

La Relatividad predice cosas que, aún no hemos llegado a comprobar y, si son ciertas…

Pero en la década de 1960, cuando la evidencia observacional para el Big Bang se hizo muy fuerte, los físicos de alguna manera saltó a la conclusión de que debe haber el principio del tiempo. No estoy seguro de por qué lo hicieron, pero tal vez se debió a Fred Hoyle – el principal impulsor de la rival de estado estacionario teoría – que parece haber ridiculizado con éxito la teoría del Big Bang, diciendo que no tenía sentido porque implicaba un principio de los tiempos y que sonaba absurdo.

A continuación, el Big Bang fue confirmado por la observación. Y creo que todo el mundo acaba de comprar argumento de Hoyle y dijo, bueno, el Big Bang es cierto, el tiempo está bien, así que debe de haber comenzado. Así que nos metimos en esta forma de pensar: que de alguna manera el tiempo comenzó y que el proceso o evento, en el que se inició no es descriptible por la física. Eso es muy triste. Todo lo que vemos a nuestro alrededor se basa por en ese caso, y sin embargo ese es el caso de que no se puede describir. Eso es básicamente donde estaban las cosas en la cosmología, y la gente se preocupa más preguntas para los próximos 20 años.”

Para algunos, no parece que pueda caber la menor duda en el sentido de que, fueron las cuerdas cósmicas las que posibilitaron que se puedieran formar las grandes estructuras del universo surviendo de semilla o núcleo sobre el que se fueron adhiriendo inmensas porcianes de materia que conformarían el objeto .

Es posible que las cuerdas cósmicas nos den una visión particularmente atractiva del universo y nos hace pensar en que, en el núcleo de cada galaxia hay una cuerda cósmica que, como el esqueleto de nuestros cuerpos, es la que la mantiene firme tal como la podemos contemplar y hace posible su existencia. Sin embargo, la teoría nos dice que las cuerdas cósmicas (como todo en el universo), tienen un tiempo de vida que una vez cumplido, desaparecen.

  ¿Quién sabe lo que el Universo esconde?

Está claro que la cuerda cósmica tal y como la presenta la teoría, es todo energía. Cuando comienza a despedir ondas gravitatorias, el proceso sigue hasta que la cuerda se ha radiado a si misma simplemente fuera de la existencia. Cuando su energía se agota, no queda nada. Por tanto sería posible utilizar las proporciones de pérdida de energía que predice la teoría de la relatividad para calcular cuanto tiempo durará la energía almacenada en cualquier cuerda cósmica.

De hecho hubo un período de nervios cuando en cierto tiempo pareció que la cuerda cósmica tendrían una vida demasiado corta para poder realizar su trabajo de formar las galaxias, que romperían los anillos y se radiarian así misma fuera de la existencia antes que la materia y la radiación y la materia ordinaria se desparejaran. Sin embargo, los nuevos cálculos parecen ahora que los anillos capaces de formar las semillas de las galaxias durarían lo suficiente para llevar a cabo su función.

Claro que estas teorías de cuerdas, como tantas otras antes que ella, también han desarrollado una gran avalancha de excepticismo que es mostrado por algunos en esos momentos de la última cerveza en charlas distendidas entre compañeros físicos y cosmólogos que están unidos por esa curiocidad por si, en realidad, esas cuerdas han existido alguna vez. Y, esos excepticos, en verdad, no eran más duros en las críticas a las teorías de los demás que con las suyas propias.

Pero claro, nunca se debe decir que no. Hay maneras de comprobar las evidencias, al menos dos. Una, la llamada lente gravitatoria, se apoya en los efectos que las cuerdas cósmicas tendrían sobre la luz de las galaxias distantes. El otro método, algo más indirecto, implica la de ondas gravitatorias despedidas por las cuerdas al comienzo de la vida del Universo.

La lente gravitacional es el en el que los rayos de luz son doblados por el gravitacional de un objeto masivo (en este caso serían las cuerdas cósmicas las responsables), también las galaxias y los agujeros negros producen el efecto de Lente gravitacional.

Las ondas gravitatorias están siendo buscadas por programas y proyectos construídos para tal fin, como LIGO y otros, y, hasta el momento, no parece que se haya tenido muchos resultados a pesar de que, la teoría nos dice que las cuerdas cósmicas emitían una gran cantidad de radiación gravitatoria en los primeros días del Universo. Sin embargo, sí se ha localizado la radiación cósmica del fondeo de microondas y las ondas gravitacionales no.

Está claro que la idea de la cuerda cósmica es sugestiva y nos podría explicar (por fín) como se pudieron formar las galaxias. La gran masa de la cuerda apunta a que debieron ser creadas muy pronro en la vida del Universo, probablemente mucho antes que la materia ordinaria cuando las temperaturas eran muy altas y había mucha energía para formar objetos exóticos.

Si en verdad estuvieron allí, no lo podemos saber a ciencia cierta, y, se trabaja en la búsqueda de pruebas irrefutables que nos confirmen su presencia y su trabajo y contibución en la de las grandes estructuras del Universo.

Las grandes estructuras de nuestro Universo se pudieron haber formado a partir de unas semillas (cuerdas cósmicas) de gran densidad que atraían a la materia ordinaria para formarlas, y, de esa manera, pudieron haberse formado las galaxias y estrellas del cielo. De momento, ninguna explicación mejor que esa nos puede aclarar esa incognita que persiste desde siempre y que, en no pocas ocasiones, produce verguenza a los cosmólogos que, en realidad, no saben qué contestar a una simple :

¿Cómo se formaron las galaxias?

silvera

Tenemos que conocer mejor nuestro propio “barrio”

Autor por Emilio Silvera    ~    Archivo Clasificado en Conociendo el Sistema Solar    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

El planeta Saturno con su gran familia ha despertado desde siempre nuestra curiosidad. Es el planeta del Sistema solar que tiene la forma más achatada y su diámetro ecuatorial es de 120 540 Km, mientras que el diámetro polar es de 108 730 Km. Además, tiene una peculiaridad que no todos conocen: ¡Su densidad es menor que la del agua! Es decir, si lo pudiéramos poner en un océano gigante… ¡Flotaría! Su densidad es de sólo o,7 g/cm3.

Su atmósfera está compuesta por el 96% de Hidrógeno y el 4% de Helio en porcentajes moleculares con trazas de metano, amoníaco, etano, etino y fosfina. La temperatura de la parte superior de la artmósfera es de -195 ºC. Interiormente se piensa que posee un núcleo rocoso a gran temperatura, conteniendo quizás hierro, de unos 20 000 km de diámetro.

Es posible que esté rodeado de una capa de materiales helados d eunos 5 ooo Km de grosor, y una capa de hidrógeno y helio metálicos de un grosor de unos 10 000 km, en donde existen unas corrientes de convección que son probablemente las respondablñes del campo magnético de Saturno, que es comparable al de la Tierra en intensidad. Rodeando a esta capa existe Hidrógeno líquido molecular y helio que gradualmente se une a una capa gaseosa más cercana a la superficie.

Al igual que Júpiter, la superficie visible de Saturno está cruzada por cinturones o bandas oscuras de nubes, con brillantes zonas entre medias, si bien la atmósfera es generalmente más tranquila que la de Júpiter. Gracias a las sondas espaciales enviadas para su estudio se pudieron localizar, en las imágenes captadas, volutas y festones que sugieren turbulencias en la atmósfera. Existe una “corriente de chorro” en la zona ecuatorial, donde el período de rotación es de aproximadamente media hora más corto que en cualquier otro lado. No existen estructuras de larga vida, aunque ocasionalmente aparecen espectaculares apariciones de manchas blancas en la zona ecuatorial.

El rasgo más distintivo de Saturno son sus brillantes anillos que son los más grandes conocidos a cualquier planeta. A través de los telescopios son visibles tres anillos principales. El anillo A exterior de 14 600 km de anchura, extendiéndose hasta a 136 800 Km del centro de Saturno, el anillo B central, el más brillante, de 25 ooo Km de anchura, y el anillo C interior o anillo de crespón, mucho más débil, de 17 500 Km de anchura. De los anillos podríamos explicar algunas y variadas peculiaridades que, al no ser este un estudio exhaustivo, los obviaré.

Concepción artística de la sonda Cassini en su maniobra de inserción en órbita alrededor de Saturno.

Acordáos de la misión espacial no tripulada conocida como   Cassini-Huygens y cuyo objetivo era estudiar el rel planeta Saturno y sus satélites naturtales,  comúnmente llamados lunas. El conjunto estaba formado por la nave Cassini y la sonda Huygens.  El lanzamiento tuvo lugar el 15 de octubre de 1997 con un cohete  y entró en órbita alrededor de Saturno el 1 de julio de 2004. El 25 de diciembre de 2004 la sonda se separó de la nave y alcanzó la mayor luna de Saturno, Titán,  el 14 de enero de 2.005,   momento en el que descendió a su superficie para recoger información científica. Se trata de la primera nave que orbitó Saturno y el cuarto artefacto espacial humano que lo visitó.

Animación del Cassini-Huygens

Los principales objetivos de la nave Cassini eran:

  1. Determinar la estructura tridimensional y el comportamiento dinámico de los anillos de Saturno
  2. Determinar la composición de la superficie de los satélites y la historia geológica de cada objeto
  3. Determinar la naturaleza y el origen del material oscuro de la superficie de Jápeto
  4. Medir la estructura tridimensional y el comportamiento dinámico de la magnetosfera
  5. Estudiar el comportamiento dinámico de la atmósfera de Saturno
  6. Estudiar la variabilidad atmosférica de Titán
  7. Realizar la cartografía detallada de la superficie de Titán

Los astrónomos han estado observando a Titán, la mayor luna de Saturno, por cientos de años. Desde la Tierra parece la luz de una cabeza de alfiler en órbita alrededor del planeta de los anillos (nada extraordinario). Pero cuando el Voyager de la NASA pasó por Titán en 1980, los observadores se dieron cuenta que era algo especial. Titán es enorme: es mayor que los planetas Mercurio y Plutón. Tiene también una densa atmósfera: tres veces más alta que la de la Tierra y una y media veces su masa. El aire de Titán está lleno de compuestos orgánicos afines al smog. Algunas de estas moléculas son los bloques de de la vida.  ¿Podría la vida comenzar en un mundo cuya temperatura en la superficie llega a menos 179o Celsius? Nunca se sabe lo que la Naturaleza puede conseguir en condiciones que, pareciéndonos infernales a nosotros, pueden ser idóneas para algunos seres de morfologías extremófilas.

File:Saturn family.jpg

El sistema de Saturno recreado en un fotomontaje de imágenes tomadas por las sondas Voyageren su encuentro con Saturno, en noviembre de 1980. Esta visión del artista muestra Dione en el frente, Saturno elevándose detrás, Mimas, Tetis  y desapareciendo en la distancia a la derecha, Encelado y Rea  fuera de los anillos de Saturno a la izquierda, y Titán en su órbita a distancia en la parte superior.

El planeta Saturno tiene un gran número de satélites  (unos 200 de los que,  61 tienen órbitas estables), el mayor de los cuales, Titán, es el único satélite del Sistema solar con una atmósfera importante que, en el futuro, nos podría dar una sorpresa en lo que a la presencia de vida se refiere. El sistema de satélites de Saturno ofrece varios ejemplos interesantes de dinámica orbital, tales como satélites coorbitales, satélites troyanos y satélites pastores. Algunos satélites también se encuentran en resonancia entre sí.

Los satélites que se conocen desde antes del inicio de la investigación espacial son: Mimas, Encélado, Tetis, Dione, Rea, Titán, Hiperión, Jápeto y Febe. En el año 2004 fueron detectados 12 nuevos satélites, cuyas órbitas sugieren que son fragmentos de objetos mayores capturados por Saturno, y cuya existencia ha sido confirmada por la misión Cassini-Huygens; esta misión también ha descubierto varios satélites nuevos.

Desde la superficie de Titán podríamos tomar ésta instantánea de Saturno. ¿Quién sabe las maravillas que nos esperan cuando, de verdad, podamos dominar los viajes espaciales? Lo cierto es que éste pequeño reportaje del planeta Saturno y el repaso a sus “lunas” más importantes, sobre todo Titán, es una simple muestra de lo poco que sabemos de nuestro propio Sistema solar en el que, tenemos muchas maravillas por descubrir y muchas sorpresas reservadas.

emilio silvera