sábado, 04 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nuevas maneras de mirar el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Ondas gravitacionales    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

d-brana

 

El gráfico representa un modelo de manguera de un espacio-tiempo de dimensiones más altas de tipo Kaluza-Kleim donde la longitud, o mejor, la dimensión a lo largo de la longitud de la manguera representa el 4-espacio-tiempo normal, y la dimensión alrededor de la manguera representa la dimensión extra “pequeñas” (quizá escala de Planck). Imaginemos un “ser” que habite en este mundo, que rebasa estas dimensiones extra “pequeñas”, y por ello no es realmente consciente de ellas.

Foto

Las últimas noticias que llegan sobre descubrimientos del Cosmos, siguen siendo publicadas en todos los medios.

“Un equipo internacional de científicos ha detectado los sutiles temblores del universo un instante después de su origen. Un telescopio estadounidense en el mismísimo polo Sur ha logrado captar esas huellas en el cielo que suponen un espaldarazo definitivo a la teoría que mejor explica los primeros momentos del cosmos, denominada inflación y propuesta hace más de tres décadas. Esa inflación fue un crecimiento enorme y muy rápido del espacio-tiempo inicial y, a partir de ese momento, el universo siguió expandiéndose pausadamente, hasta ahora, 13.800 millones de años después. Es la teoría del Big Bang, pero con un complemento fundamental al principio de todo. Como dice Alan Guth, el científico estadounidense que propuso, a principio de los ochenta, la inflación cósmica, “exploramos el bang del Big Bang”.

Lo que sí parece cierto es que, cuando sepamos capturar y leer las ondas gravitatorias que estamos buscando para tratar de traducir los mensajes que nos envían muchos fenómenos que ocurrieron y siguen ocurriendo en el Univero, entonces, habremos logrado decorrer el velo que ahora impide conocer un nuevo “universo” con otros escenarios y otras perspectivas. Muchos son los autores que nos han hablado de ellas y, por fín, parece que van siendo localizadas.

Ondas gravitatorias que salen de un agujero negro pulsante expandiéndose por el espacio a inconmensurables  distancias, como si de las ondas formadas en un tranquilo lago se tratara, las de gravedad, funcionan de forma similar.

         Ondas gravitatorias de un Agujero Negro pulsante (que los hay)

Desde sus comienzos la Astronomía ha dominada por el uso de instrumentos que detectan luz, desde los primeros telescopios ópticos hasta los más modernos detectores de rayos X y gamma. Fruto de este desarrollo han sido grandes descubrimientos que han ido configurando nuestra de comprender el Universo. Durante el siglo pasado se han empezado a desarrollar nuevas formas de Astronomía basadas en mensajeros diferentes a la luz: detectores de rayos cósmicos, de neutrinos y de ondas gravitacionales. Las ondas gravitacionales son una consecuencia de la Teoría General de la Relatividad de Einstein y corresponden a oscilaciones de la geometría del espacio-tiempo que se propagan de similar a las ondas electromagnéticas.

brane_1

                     Tenemos que buscar la manera de “ver” y “detectar” las ondas gravitacionales

La debilidad de la fuerza gravitatoria hace que la detección de estas ondas suponga un gran reto tecnológico. Sin embargo, desde el punto de vista científico son una gran , ya que transportan información prácticamente incorrupta de las fuentes que la generaron, la cual en muchos de los casos es difícil o imposible de obtener por otros medios. Este artículo es una introducción a la Astronomía de Ondas Gravitatorias, a sus métodos, a su estado actual y sobre todo a las grandes perspectivas que ofrece con la apertura de una nueva ventana a la exploración del Universo que tendrá un gran impacto tanto en Astrofísica como en Cosmología e incluso en Física Fundamental.

Dentro del marco de la Física Teórica, la gravedad aparece una de las cuatro interacciones fundamentales, siendo las otras tres la electromagnética y las interacciones nucleares débil y fuerte. Electromagnetismo y gravitación son las dos únicas interacciones de largo rango de acción (en principio ilimitado), en contraposición a las dos interacciones nucleares, cuyo rango de acción está limitado esencialmente a regiones cuyo tamaño es del orden de un núcleo atómico o inferior. Una consecuencia directa de esto es que las interacciones nucleares no pueden transportar información a distancias macroscópicas y por lo tanto no son de utilidad la Astronomía. Las otras dos, electromagnetismo y gravedad, se propagan a través del espacio a la velocidad de la luz, tal y como nos indican las teorías de Maxwell y Einstein respectivamente, y tal como comprobamos en diferentes observaciones y experimentos.

http://www.dogmacero.org/wp-content/uploads/cuerdas_abiertas.jpg

                                                Muchos son los fenómenos que no sabemos entender

Lo que determina la fuerza que estas interacciones producen son su intensidad y las correspondientes susceptibilidades de la materia a ellas, lo que denominamos cargas, la carga eléctrica en el caso electromagnético y la masa en el caso gravitatorio. En la naturaleza observamos que la interacción electromagnética produce fuerzas que son muchos órdenes de magnitud superiores a la de la gravitatoria, que es la más débil de todas las interacciones. Por lo tanto, no es de extrañar que la Astronomía haya dominada completamente por detectores de ondas electromagnéticas y fotones (las partículas cuánticas asociadas a campos electromagnéticos), telescopios ópticos hasta detectores de rayos X y gamma, incluyendo antenas de radio. Gracias a estos instrumentos la Astronomía ha producido grandes revoluciones que han cambiado nuestra percepción del Universo: la Copernicana, que comenzó en el siglo XVI, hasta los descubrimientos en cosmología, que comenzaron en el siglo XX y continúan hoy día.

Gran Nebulosa de Orión

                                  Vistas como esta son posibles gracias a la luz y a los telescopios

Pero no todo lo que se mide u observa en astronomía es luz, hay otros mensajeros que nos informan sobre lo que sucede en diferentes lugares de nuestro Universo: meteoritos, neutrinos, rayos cósmicos (protones, electrones, etc.), ondas gravitatorias. Los meteoritos nos dan información de nuestro entorno local, principalmente del Sistema Solar. Los neutrinos y rayos cósmicos pueden provenir nuestro entorno local hasta galaxias muy distantes. La detección de estas partículas, mediante técnicas similares a las empleadas en aceleradores de partículas, ha dado lugar a una nueva área de investigación muy activa denominada Astropartículas. El mensajero del que trata este artículo son las ondas gravitatorias y su para la investigación astronómica constituye lo que denominamos Astronomía de Ondas Gravitatorias.

Las ondas gravitatorias son una predicción de la Teoría General de la Relatividad (conocida comúnmente como Relatividad General) propuesta por Albert Einstein (1915) para incluir la gravitación en la estructura espacio-temporal propuesta por él mismo en su Teoría Especial de la Relatividad (1905). Uno de los aspectos más destacados de esta teoría es que el espacio deja de ser un simple contenedor  de los fenómenos físicos para convertirse en un objeto dinámico, en el sentido que su geometría cambia conforme a los movimientos y distribuciones de masas y energía. No solo eso, al tiempo físico le sucede algo similar, de que su transcurso también depende de la distribución de masa y energía. En la Teoría de la Relatividad espacio y tiempo aparecen como una única estructura que denominamos espacio-tiempo, cuya geometría está determinada por la distribución de masa y energía, y a su vez,  la geometría determina el movimiento de la materia y de la energía.

La geometría del espaciotiempo que nos da toda la sensación de estar determinada por la presencia de grandes masas de materia que curvan el espacio y distorsionan el tiempo a su alrededor, El Agujero negro es el exponente más claro de esto.

De esta , la gravedad aparece como una manifestación de la geometría espacio-tiempo, una elegante implementación del principio Galileano de que todos los objetos, independientemente de su masa y composición, caen con la misma aceleración. Una consecuencia del carácter dinámico del espacio-tiempo en la Relatividad General es que las oscilaciones de su geometría se propagan como ondas con una velocidad, medida localmente, exactamente igual a la velocidad de la luz. Las ondas gravitatorias, al cambiar la geometría local de las regiones que atraviesan, cambian la distancia física objetos, siendo dicho cambio proporcional a la distancia misma y a la amplitud de ondas. Como en el caso electromagmético este es un efecto transverso, es decir, los cambios en la distancia se producen en el plano perpendicular a la dirección de propagación de la onda gravitatoria. Además, tanto ondas electromagnéticas como gravitatorias tienen dos estados de polarización independientes, aunque en teorías de la gravedad alternativas a la Relatividad General puede haber hasta seis polarizaciones independientes.

Una diferencia importante ondas electromagnéticas y gravitatorias tiene que ver con su generación. En el contexto astronómico, las ondas electromagnéticas se generan por cargas aceleradas (emisión predominantemente dipolar), como por ejemplo electrones, cuyo tamaño es muy inferior al de los objetos de los que forman y como consecuencia, pueden emitir luz en una longitud de onda suficientemente pequeña como para realizar imágenes de objetos astronómicos. En contraste,  las ondas gravitatorias se generan por cambios temporales de la distribución de masa-energía de un objeto (radiación predominantemente cuadrupolar), y por este motivo sus longitudes de onda suelen ser del orden del tamaño del objeto que las genera o mayores, con lo cual no es posible en general realizar imágenes. En ese sentido se podría decir que la Astronomía de Ondas Gravitatorias está más cercana a la Acústica que a la Óptica.

Es previsible que, dos objetos masivos (estrellas de neutrones, por ejmplo) se encuentran y giran el uno alrededor del otro, deben desprender una serie de ondas gravitacionales que, captadas a cientos o miles de años-luz de la fuente, deben contar el suceso al científico experto.

La relativa debilidad de la gravedad es la causa de que las ondas gravitatorias tengan una amplitud relativamente pequeña y que su detección sea una empresa extremadamente complicada. Ondas gravitatorias producidas por fuentes galácticas, la colisión de dos estrellas de neutrones, inducen desplazamientos del orden del tamaño de un núcleo atómico o inferiores en un detector terrestre de un kilómetro de tamaño. La gran ventaja que proporcionan las ondas gravitatorias es que por su débil interacción con la materia transportan información prácticamente incorrupta de las fuentes astronómicas que las generaron.

La construcción de un detector de ondas gravitatorias supone un gran reto tecnológico, y tal empresa no comenzó hasta los años sesenta, con el pionero de Joseph Weber en detectores resonantes. El principio de funcionamiento de estos detectores de basa en que una onda gravitatoria que atraviese un sólido cambiará su tamaño de forma oscilatoria, excitando de esta forma sus modos propios de oscilación. La idea por lo tanto es crear un dispositivo que sea sensible a las oscilaciones del sólido y nos permita extraer la señal gravitatoria que las ha producido. Varios detectores de este tipo, la mayoría con forma cilíndrica, se han construido en varias partes del mundo y, contrariamente a las aseveraciones de detección de Weber en los años 70, no han conseguido hasta la fecha detectar ondas gravitatorias. De hecho, ningún tipo de detector las ha detectado. Entonces, ¿estamos seguros de que las ondas gravitatorias existen? ¿Tenemos alguna evidencia de su existencia?

dibujo20090307gravitationalwaverecreation

 

 

No por falta de empeño y proyectos , todavía no se han observado (directamente) las ondas gravitatorias predichas por la teoría de la relatividad de Einstein, aunque hay importantes evidencias (indirectas) sobre su existencia. Son extremadamente débiles, por lo que observarlas es extremedamente difícil.

La respuesta a estas preguntas es que sí, y el principal argumento nos lo proporcionó el descubrimiento en 1974 del primer pulsar binario, PSR B1913+16, por Russell Hulse y Joseph Taylor, lo que les valió el premio Nobel de Física en el año 1993. Los púlsares son estrellas de neutrones dotadas de un enorme campo magnético que acelera partículas cargadas produciendo la emisión de un haz de radiación electromagnética en la dirección del eje magnético. Como el eje magnético no suele estar alineado con el eje de rotación, emisión electromagnética describe un cono, convirtiendo los púlsares en faros cósmicos. Si nuestro planeta se encuentra en la dirección del cono de emisión del púlsar observaremos una serie de pulsos de radio, que en caso de los púlsares con rotación más rápida se dan con un ritmo tan uniforme que los convierte en relojes de precisión comparable a los relojes atómicos (¡el púlsar más rápido conocido completa más de 700 revoluciones por segundo! El de Hulse y Taylor!).

El primer púlsar binario conocido, PSR 1913+16, fue descubierto en 1974. Consiste en un púlsar que tiene 17 pulsaciones por segundo, en una órbita altamente excéntrica con un período de 7,75 horas alrededor de una segunda estrella de neutrones en la que no se han observado pulsaciones. Cada estrella tiene unas 1,4 masas solares, próxima al límite de Chandrasekhar, y el período orbital se está acortando gradualmente debido a la pérdida de energía a través de radiación gravitacional.

Otro púlsar binario destacable es PSR 1957 + 20, llamado en ocasiones púlsar de la viuda negra, en el que la intensa radiación procedente del pulsar está evaporando su pequeña estrella compañera. Algunos púlsares binarios se saben que son púlsares reciclados que han adquirido altas velocidades de rotación debido a la acreción de gas procedente del compañero.

        Escenas como son corrientes en las galaxias

Esto permite observaciones astronómicas de una precisión sin precedentes. El púlsar de Hulse y Taylor orbita alrededor de otra estrella de neutrones de que el tamaño de la órbita es suficientemente pequeño (la distancia mínima entre ellas es aproximadamente la mitad de la distancia de la Tierra al Sol) como para que estas estrellas tan compactas (tienen una masa un poco inferior a una vez y media la masa del Sol pero un radio de tan sólo unos diez kilómetros) se muevan de forma que los efectos relativistas importen para un descripción precisa de sistema. En concreto, el movimiento orbital periódico de tales masas con velocidades considerables (cientos de kilómetros por segundo respecto del centro de masas  del sistema binario) produce cambios periódicos significativos en la geometría del espacio-tiempo de su entorno. Y estos cambios  periódicos en la geometría no son más que ondas gravitatorias que se propagan en todas las direcciones llevándose consigo energía y momento angular del sistema.

emisión gravitatoria afecta a su vez al movimiento orbital, disminuyendo su tamaño y periodo orbital, tal y como se observa. También se pueden observar otros efectos relativistas como la precesión del periastro de la órbita. Los 35 años de observaciones del púlsar binario de Hulse y Taylor han permitido comprobar que la evolución de su órbita coincide con la predicha por el mecanismo de emisión de radiación gravitatoria de la Relatividad General con una precisión relativa del 0.2%. Actualmente se conocen otros púlsares binarios y algunos de ellos se encuentran en un régimen relativista. El denominado púlsar doble, PSR J0737-3039A/B, un sistema binario compuesto por dos púlsares, se ha convertido recientemente en el mejor test disponible de la Relatividad General, alcanzado precisiones relativas del 0.05%.

Detector LIGO de ondas gravitatorias

Uno de los dos detectores LIGO, situado en Livingston (Luisiana), con brazos de cuatro kilómetros de longitud.- LIGO/CALIFORNIA INSTITUTE OF TECHNOLOGY. Se han ideado para localizar las ondas gravitacionales que vienen del pasado salidas de sucesos como el big bang o agujeros negros que colisionan, estrellas de neutrones que se fusionan y otros eventos cosmológicos que nos pueden contar muchas cosas del Universo que ahora no conocemos.

Estos descubrimientos han contribuido a impulsar el desarrollo de detectores de ondas gravitatorias, y los que hoy en día han alcanzado una mayor sensibilidad son los llamados detectores interferométricos. Son básicamente interferómetros del tipo Michelson-Morley dispuestos en una de L y el concepto de funcionamiento es relativamente simple: cuando una onda gravitatoria incide perpendicularmente al plano del detector produce cambios en la longitud de los brazos del interferómetro, de forma que mientras uno se acorta el otro se alarga y viceversa. Estos cambios dan lugar a interferencias de las cuales se puede inferir el patrón de las ondas gravitatorias que han atravesado el detector. Actualmente hay varios detectores interferométricos terrestres en operación: LIGO en los Estados Unidos (dos de 4 km y uno de 2 km de brazo); VIRGO en Italia con participación de varios países europeos (3 km de brazo); GEO600 en Alemania con participación británica (600 m de brazo). Aparte hay varios proyectos en desarrollo en diversas partes del planeta, como por ejemplo el LCGT en Japón 83 km de brazo), un ambicioso proyecto recientemente aprobado que sustituye al anterior detector TAMA y al prototipo CLIO, y que se convertirá en el primer detector interferométrico de tipo criogénico. La banda de frecuencias a la que operan está contenida en el rango 10- 10000 Hz. A frecuencias más bajas están limitados por ruido sísmico y el gradiente gravitatorio, mientras que a frecuencias más altas están limitados por el ruido de los fotodetectores.

Observatorio de ondas gravitatorias con Interferómetro Láser (LIGO) ubicado en Louisiana&Washington, USA
Observatorio de ondas gravitatorias con Interferómetro Láser (LIGO)

Pese a que no se han realizado aún detecciones, observaciones de LIGO han servido producir nueva ciencia mediante el análisis de las consecuencias de las no detecciones al nivel de sensibilidad actual. Se pueden destacar dos resultados: (1) En la constelación del Cangrejo hay un púlsar joven resultado de una supernova (explosión de una estrella). La frecuencia rotacional de púlsar disminuye con el tiempo. LIGO ha limitado a un 4% la contribución de una hipotética emisión de radiación gravitatoria, lo cual excluye diversos modelos astrofísicos que trataban de explicar fenómeno. (2) La teoría cosmológica de la gran explosión (Big Bang) requiere una fase primitiva de gran expansión del Universo que daría lugar, entre otras cosas, a un fondo de radiación gravitatoria. Las observaciones de LIGO han puesto límites a la densidad de energía almacenada en este fondo, mejorando los límites impuestos por la teoría de de elementos primordiales, parte a su vez del modelo estándar de la Cosmología. Durante el presente año, tanto LIGO como VIRGO pararán las operaciones para incorporar tecnología avanzada: mejora de los sistemas de vacío, láseres de precisión más potentes y mejoras de los sistemas ópticos y mecánicos. Con esto se logrará una mejora de un orden de magnitud en la sensibilidad, lo cual equivale a aumentar en tres órdenes de magnitud el volumen del cosmos que cubrirán. Al mismo tiempo se realizará la construcción del detector criogénico LCGT en la mina de Kamioka (Japón). Una vez estos modelos avanzados entren en operación se espera que realicen detecciones de radiación gravitatoria con un ritmo, de acuerdo con los pronósticos astrofísicos sobre la información de las fuentes de ondas gravitatorias relevantes, de 10-1000 eventos por año.

      En lugares como este, la gravedad interviene para formar estrellas nuevas. La imagen es de NGC 604, una región H II gigante en la galaxia del Triángulo. En estos lugares, la fuerza de Gravedad, las ondas que se emiten al choque del material ahí presente, los vientos estelares… Son el motivo de que el gas y el polvo ahí presentes se distorsionen y formen figuras arabescas que, no pocas veces, están llenas de belleza.

Las principales fuentes astrofísicas y cosmológicas para estos detectores terrestres son: colisiones de sistemas binarios formados por agujeros negros estelares y/o estrellas de neutrones; oscilaciones de estrellas relativistas; supernovas; fondos cosmológicos de diverso origen. Estas observaciones revelarán información clave para entender la de objetos compactos estelares, la ecuación de estado de estrellas de neutrones, la validez de la Relatividad General, etc.

Por otra parte, la Agencia Europea del Espacio (ESA) y la Administración Nacional para el Espacio y la Aeronáutica norteamericana (NASA) colaboran en la construcción de un observatorio espacial de ondas gravitatorias, la Antena Espacial de Interferometría Láser (LISA), que se espera que se lance durante la década de 2020. Hay dos motivos de peso para construir un observatorio espacial. El primero es cubrir la banda de bajas frecuencias, en el rango 3x10⁻⁵ – 0.1 Hz, inaccesible a los detectores terrestres. El segundo es que banda de frecuencias da acceso a fuentes de ondas gravitatorias y a una ciencia completamente diferente, con muchas más implicaciones para el panorama de la Astrofísica y la Cosmología. LISA se compone de tres naves espaciales dispuestas en un triángulo equilátero, de 5 millones de kilómetros de lado, y que siguen una órbita alrededor del Sol. Para que la dinámica propia de cada nave preserve lo más posible la configuración triangular, esta ha de estar inclinada 60º respecto del plano de la eclíptica. De esta el triángulo gira sobre su baricentro una vez por año/órbita, lo cual introduce una modulación en las señales gravitatorias que es muy útil para localizar los objetos que las emitieron. LISA es una misión con una tecnología muy novedosa y exigente que una misión precursora de la ESA, LISA PathFinder, se encargará de demostrar. Nuestro grupo en el Instituto de Ciencias del Espacio (CSIC-IEEC) participa en el desarrollo de esta misión contribuyendo con algunos instrumentos fundamentales, como por ejemplo el ordenador que controlará el denominado LISA Technology Package,  el conjunto de experimentos que LISA PathFinder realizará.

LISA hará sus observaciones en un intervalo de frecuencia bajo que no es posible con detectores basados en la Tierra. Estos detectores están afectados por el ruido ambiental de la Tierra, causado por los terremotos y otras vibraciones, y sólo pueden hacer observaciones a frecuencias mayores de 1 hertzio. Sin embargo, los detectores terrestres, tales como el Observatorio de Ondas Gravitacionales por Interferometría Láser (LIGO) o VIRGO, y LISA se complementarán. En el espacio, LISA “oirá” el ruido sordo largo y bajo de las ondulaciones del espacio-tiempo. En la Tierra, LIGO y otros sistemas “oirán” las ondulaciones del espacio-tiempo de frecuencia más alta. LISA observará los binarios miles de años antes de que éstos choquen. Los detectores terrestres observarán otros binarios justo antes de chocar, cuando sus velocidades orbitales son mucho más altas. Se necesitan ambos tipos de observatorios para oír el amplio espectro de ondulaciones en el espacio-tiempo.

Pasando a la científica de LISA, uno de los principales puntos a resaltar es el hecho de que actualmente LISA es el único proyecto de detector de radiación gravitatoria del que conocemos fuentes garantizadas. Se trata de sistemas binarios galácticos con periodos inferiores a 2 horas, conocidos como binarias de verificación ya que serán muy útiles para la calibración de LISA. Además, se espera que LISA observe principalmente las siguientes fuentes de ondas gravitatorias: Sistemas estelares binarios en nuestra galaxia y algunos extragalácticos. LISA detectará varios millones de estos sistemas, la mayor de los cuales formarán un fondo de radiación gravitatoria y los más brillantes podrán resolverse y separarse de este fondo. Caída orbital y colisión de agujeros negros supermasivos. Las observaciones astronómicas nos proporcionan evidencia de que prácticamente todas las galaxias contienen un agujero negro en su núcleo central y que estas, a lo largo de su historia, han sufrido varias colisiones con otras galaxias. Cuando dos galaxias colisionan para formar una nueva, sus respectivos agujeros negros migran hacia el nuevo núcleo debido a la fricción dinámica, donde forman un sistema binario cuya órbita, a partir de un determinado momento, se reducirá por emisión de radiación gravitatoria hasta la colisión final, que resultará en la de un único agujero negro.

http://farm5.static.flickr.com/4147/5205806307_4ddf91034b.jpg

Un equipo, con participación del Instituto de Astrofísica de Canarias (IAC), ha descubierto, por casualidad, una docena de sistemas estelares binarios con peculiaridades jamás vistas. Se trata de sistemas compuestos por pares de enanas blancas más ligeras de lo habitual y que, según sus cálculos, acabarán fusionándose en un único objeto.

LISA será capaz de detectar todas estas colisiones dentro de nuestro Universo observable. La captura y posterior caída orbital de objetos estelares compactos (enanas blancas, estrellas de neutrones, agujeros negros estelares) hacia agujeros negros supermasivos. En el núcleo galáctico, en torno a los agujeros negros supermasivos, hay una gran concentración de objetos estelares compactos. Eventualmente, y debido a interacciones gravitatorias entre ellos, uno de estos objetos estelares puede ser capturado por la gravedad del agujero negro supermasivo e una larga caída en espiral hacia este (debido a la emisión de radiación gravitatoria del sistema) hasta ser finalmente absorbido por él. Esta caída es lenta. De tal forma que LISA podrá detectar la radiación gravitatoria emitida durante cientos de miles  de órbitas durante el último año de uno de estos sistemas, y esto supone que podremos extraer sus parámetros físicos co una gran precisión. Fondos de radiación gravitatoria de origen cosmológico. De acuerdo con esa mayoría de mecanismos teóricos que los predicen, el espectro de estos fondos es muy amplio (en algunos casos es plano o ligeramente inclinado) y pueden ser observados por detectores que operen en diferentes partes del espectro gravitatorio.

La detección de las fuentes descritas permitirá desarrollar una ciencia muy amplia y revolucionaria, que influenciará tanto la Astrofísica y la Cosmología como la Física Fundamental. Sobre la ciencia que se espera desarrollar con LISA podemos destacar: comprensión de la dinámica de los núcleos galácticos; comprobar la validez de diferentes modelos de de galaxias; comprobar si los agujeros negros son como los describe la Relatividad General (caracterizados únicamente por su masa y momento angular intrínseco); poner a prueba teorías alternativas a la Relatividad General; etc.

Aparte de los detectores de ondas gravitatorias descritos, se ha propuesto otra de detectar ondas gravitatorias basada en el ajuste temporal (timing)  de un conjunto de púlsares con periodos del orden de milisegundos. Cuando una onda gravitatoria pasa a través de la región entre los púlsares y la Tierra produce cambios en los tiempos de llegada de los pulsos. Con una tecnología adecuada, un buen de púlsares (un par de decenas) y un tiempo de observación suficientemente largo (unos diez años), la presencia de ondas gravitatorias, en la banda ultra baja, entre 10⁻⁹ y 10⁻⁷ Hz, puede ser detectada. Las fuentes en banda incluyen los agujeros negros más masivos, con masas superiores a cientos de millones de veces la masa del Sol, y fondos de radiación gravitatoria de origen diverso.

Impresión artística de las ondas gravitatorias producidas por un sistema binario de dos agujeros negros.
[Foto: K. Thorne (Cal-tech) y T. Carnahan (NASA GSFC)

La Astronomía de Ondas Gravitatorias se inició durante la segunda mitad del siglo pasado y ha de tener su época de esplendor a lo largo de la primera mitad del presente, con la puesta en funcionamiento de la segunda generación de detectores terrestres como LIGO, VIRGO, Y LCGT, con el futuro observatorio espacial LISA, con la observación de múltiples púlsares y con el desarrollo de proyectos de tercera generación que están siendo actualmente debatidos y diseñados. Cada vez que en Astronomía se ha abierto una nueva ventana a la exploración del Universo (infrarroja, radio, rayos X, rayos gamma, etc.) se han realizado grandes descubrimientos. Muchos de ellos han consistido en la aparición de nuevos objetos astronómicos y/o nuevos fenómenos físicos, la mayoría de veces de forma inesperada. La Astronomía de Ondas Gravitatorias abrirá una nueva ventana usando una nueva herramienta, un mensajero cósmico, la gravedad, y con ello nos esperan nuevas sorpresas y grandes descubrimientos que pueden cambiar nuestra forma de ver el Universo.

Excepto algunos adornos personales.

La Fuente: Revista de Física, volumen 25 nº 2/2011

Autores: Alberto Lobo y Carlos F. Sopuerta

¿Cuerdas Cósmicas? Podría ser.

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

                               Podrían estar por todas partes y formar parte de todo

Aunque no todas si son muchas las Grandes Teorías Unificadas y teorías de supersimetría las que predicen la formación de cuerdas en la congelación del segundo 10-35 despues del comienzo del tiempo, cuando la fuerza fuerte se congeló y el universo se infló. Las cuerdas se deben considerar como un subproducto del proceso mismo de congelación. Es cierto que aunque las diversas teorías no predicen cuerdas idénticas, sí predicen cuerdas con las mismas propiedades generales. En primer lugar las cuerdas son extremadamente masivas y también extremadamente delgadas; la anchura de una cuerda es mucho menor que la anchura de un protón. Las cuerdas no llevan carga eléctrica, así que no interaccionan con la radiación como las partículas ordinarias. Aparecen en todas las formas; largas lineas ondulantes, lazos vibrantes, espirales tridimensionales, etc. Sí, con esas propiedades podrían un candidato perfecto para la “materia oscura”. Ejercen una atracción gravitatoria, pero no pueden ser rotas por la presión de la radiación en los inicios del Universo.

El espesor estimado de una cuerda es de 10-30 centímetros, comparados con los 10-13 de un protón. Además de ser la más larga, y posiblemente la más vieja estructura del universo conocido, una cuerda cósmica sería también la más delgada: su diámetro sería 100.000.000.000.000.000 veces más pequeño que el de un protón.. Y cada cuerda sería terriblemente inquieta, algo así como un látigo agitándose por el espacio casi a la velocidad de la luz. Las curvas vibrarían como enloquecidas bandas de goma, emitiendo una corriente continua de ondas gravitacionales: rizos en la misma tela del espacio-tiempo. ¿Qué pasaría si una cuerda cósmica tropezara con un planeta? Al ser tan delgada, podría traspasarlo sin tropezar con un solo núcleo atómico. Pero de todos modos, su intenso campo gravitatorio causaría el caos.

http://stringers.es/wp-content/uploads/2010/06/cosmic.jpg

Simulación del efecto de lente generado por una cuerda cósmica. Crédito: PhysicsWorld.com

Por tanto, cuando observásemos un objeto con una cuerda cósmica en la trayectoria de nuestra mirada, deberíamos ver este objeto dos veces, con una separación entre ambas imágenes del orden del defecto de ángulo del cono generado por la curvatura del espaciotiempo. Esta doble imagen seríacaracterística de la presencia de una cuerda cósmica, pues otros cuerpos, como estrellas o agujeros negros, curvan el espaciotiempo de manera distinta, generando al menos cuatro imágenes deformadas. Por tanto, una observación de este fenómeno no podría dar lugar a un falso positivo.

En este sentido, el nombre de cuerda cósmica está justificado debido a que son impresionantemente pesadas, pasando a ser objetos macroscópicos aun cuando su efecto es pequeño. Una cuerda de seis kilómetros de longitud cuya separación entre ambas geodésicas es de apenas 4 segundos de arco tendría ¡la masa de la Tierra!. Evidentemente, cuerdas de este calibre no se espera que existan en la naturaleza, por lo que los defectos de ángulo esperados son aún menores y, por tanto, muy difíciles de medir.

Y esta es una de las razones de que todavía no se haya encontrado ninguna cuerda de este tipo. Si bien en los últimos años han surgido muchas imágenes candidatas a estar formadas por un efecto de lente de este tipo, la mayoría han resultado ser dos cuerpos distintos pero muy similares entre sí. Pese a ello, los astrofísicos y los teóricos de cuerdas no puerden la esperanza de encontrar en los próximos años, y gracias a telescopios cada vez más potentes, como el GTC; evidencias directas de la existencia de este tipo de cuerdas; evidencias que no sólo nos indicarían que las teorías de cuerdas van por buen camino, si no que el modelo del Big Bang es un modelo acertado.

http://stringers.es/wp-content/uploads/2010/06/gravity-lens-esquema.jpg

                                               Esquema del trazado de rayos para el efecto de lente gravitatoria de una cuerda cósmica

Las cuerdas cósmicas, desde el momento de su formación en el segundo 10-35,  constituyen un entorno masivo, apelmazado, contra el que se desarrolla la evolución de las partículas, núcleos y átomos. Como no son afectadas por la presión de la radiación,como el plasma, pueden servir como núcleos de condensación -las semillas- para la formación de galaxias, cúmulos galácticos y supercúmulos, siempre que puedan sobrevivir lo necesario para hacerlo.

Neil Turok, titular de la cátedra de Física Matemática en el Departamento de Matemáticas Aplicadas y Física Teórica de la Universidad de Cambridge. Es coautor, con Paul Steinhardt, de Universo Infinito: Más allá del Big Bang. El principal portavoz de la idea de las cuerda cósmica es Niel Turok, un joven físico teórico que trabaja en el Imperial College de Londres y pasa muicho tiempo en EE UU haciendo un periplo por diversas Universidades. Ha hecho del desciframiento de la conducta de las cuerdas cósmicas  el trabajo de su vida (al menos por el momento) y, se aplica en las complejas ecuaciones de la teoría de campos cuánticos que describen dichas cuerdas. Su enfoque es admirable por su integridad:

En lugar de seguir el camino normal desarrollando la conducta de las cuerdas y dejando a otros hallar el efecto que las cuerdas tienen sobre el problema de las galaxias, Turok y los jovenes que le rodean han decidido aprender cosmología. Dicha decisión no es frecuenta y por inusual, ha llamado la atención que se quieran especializar de manera específica en otro campo distinto al suyo para poder hacer y comprender mejor su trabajo. Y, otra curiosidad es que, el más duro crítico de las cuerdas cósmicas, P.J.E. Peebles, de Princeton, haya estado actuando como su tutor, lo cual, es tan significativo que se podría valorar como uno de los gestos más desinteresados y de alta calidad que en la Física se pueda haber producido.

 

Una de las virtudes de esta teoría es que puede “verse” por la observación. Aunque las cuerdas en sí son invisibles, sus efectos no tienen por qué serlo. La idea de las supercuerdas nació de la física de partículas, más que en el campo de la cosmología (a pesar del nombre, la cuerdas cósmicas no tienen nada que ver con la teoría de las “supercuerdas”, que mantiene que las partículas elementales tienen forma de cuerda). Surgió en la década de los sesenta cuando los físicos comenzaron a entrelazar las tres fuerzas no gravitacionales – electromagnetismo y fuerzas nucleares fuertes y débiles – en una teoría unificada.

En 1976, el concepto de las cuerdas se había hecho un poco más tangible, gracias a Tom Kibble. Kibble estudiaba las consecuencias cosmológicas de las grande teorías unificadas. Estaba particularmente interesado en las condiciones del 10^-35 segundo después del Big Bang, cuando las temperaturas en el cosmos embrionario bajaron más de billones de billones de grados. Ese fue el momento en que las fuerzas y las partículas se diferenciaron unas de otras.

                                                    El misterioso “universo” de los campos cuánticos que nadie sabe lo que puede esconde

A los cosmólogos les gusta visualizar esta revolucionaria transición como una especie de “cristalización”: el espacio, en un principio saturado de energía, cambió a la forma más vacía y más fría que rodea actualmente nuestro planeta. Pero la cristalización fue, probablemente, imperfecta. En el cosmos recién nacido podría haberse estropeado con defectos y grietas, a medida que se enfriaba rápidamente y se hinchaba.

Otras cuerdas están en La Teoría M de E. Witten que nos explica muy bien las implicaciones de las cuerdas en el contexto del Universo, y, ademas, lleva implícita la Gravedad Cuántica que tantos físicos buscan desde hace mucho tiempo para explicar cuestiones que hasta el momento carecen de ella. Sin embargo, estas son otras cuerdas que, implicadas en las profundidades de la materia, nos podría explicar otras muchas cosas a diferente nivel de lo que la cuerda cósmica pretende explicar.

Turok nos dice:

“Durante los últimos diez años he estado trabajando principalmente en la cuestión de cómo empezó el universo – o no comenzar. ¿Qué sucedió en el Big Bang? Para mí, esto parece ser una de las cuestiones más fundamentales de la ciencia, porque todo lo que sabemos, según todos los indicios, debe de haber salido de la Gran Explosión. Ya se trate de partículas o los planetas o las estrellas o, en última instancia, incluso la vida misma.”

 

 

En los últimos años, la búsqueda de las leyes fundamentales de la Naturaleza nos ha obligado a pensar en el Big Bang, mucho más profundamente. De acuerdo con nuestras más modernas y mejores teorías – la teoría de cuerdas y la teoría M – todos los detalles de las leyes de la física son en realidad determinada por la estructura del universo, en concreto, por la disposición de pequeñas enrollada dimensiones extra del espacio. Este es un cuadro muy hermoso: la física de partículas en sí es ahora más que otro aspecto de la cosmología. Pero si se quiere entender por qué las dimensiones extra están dispuestas como están, hay que entender el Big Bang porque ahí es de donde todo proviene.

De alguna manera, hasta hace muy poco, la física fundamental se había llevado bien sin realmente hacer frente a un gran problema que no dejaba juntarse a las dos teorías más influyentes e importantes que tenemos: La mecánica cuántica y la relatvidad. Los infinitos surgían y aquello era un sinsentido descomunal que nos hablaba de la incompatibilidad existente entre los muy pequeño y lo muy grande.

Sin embargo, en todo esto existe un sinsentido que debemos desvelar. ¿Si todo lo grande está hecho de cosas pequeñas, cómo pueden ser incompatibles? En la Teoría de Cuerdas no resultan así, y, la mecánica cuántica y la relatividad conviven en paz sin que aparezcan los indeseados infinitos. Es decir, en la Teoría de Cuerdas, subyace de manera automática, una teoría de la Gravedad Cuántica.

El mismo Einstein no interpretó todo esto como el principio de los tiempos y llegó a decir, bueno, mi teoría falla. La mayoría de las teorías fallan en algún régimen, y entonces ustedes necesita una teoría mejor, más moderno y adelantada. La teoría de Isaac Newton no falla cuando las partículas se muevan muy rápidas, sino que no logra describir eso y necesitó la relatividad. Del mismo modo, Einstein dijo:”… necesitamos una mejor teoría de la gravedad que la mía.”

Pero en la década de 1960, cuando la evidencia observacional para el Big Bang se hizo muy fuerte, los físicos de alguna manera llegaron a la conclusión de que todo lo que no sabemos debió gestarse al principio del tiempo, más allá del tiempo de Planck, esa fracción de segundo inaccesible. No estoy seguro de por qué llegaron a tal conclusión, pero tal vez se debió a Fred Hoyle –el principal impulsor de la teoría rival del Big Bang, la del estado estacionariorival– que parece haber ridiculizado con éxito la teoría del Big Bang, diciendo que no tenía sentido porque implicaba un principio de los tiempos y que sonaba absurdo.

A continuación, el Big Bang (parece que) fue confirmado por la observación, al menos todos lo dieron por bueno y, a partir de aquel momento, ese es, el Principio de Todo por el que nos estamos guiando: Allí comenzó el Tiempo y el Espacio y fue el inicio de la creación de todo lo que existe. Todo lo que vemos a nuestro alrededor se basa por completo en ese primer momento que llamamos Big Bang, y sin embargo,  ese primer momento inicial (¡qué casualidad!), es el que nadie ha podido nunca describir.

         Alrededor de las cuerdas cósmicas se crearon las grandes estructuras

Para algunos, no parece que pueda caber la menor duda en el sentido de que, fueron las cuerdas cósmicas las que posibilitaron que se puedieran formar las grandes estructuras del universo surviendo de semilla o núcleo sobre el que se fueron adhiriendo inmensas porciones de materia que conformarían el objeto final. Es posible que las cuerdas cósmicas nos den una visión particularmente atractiva del universo y nos hace pensar en que, en el núcleo de cada galaxia hay una cuerda cósmica que, como el esqueleto de nuestros cuerpos, es la que la mantiene firme tal como la podemos contemplar y hace posible su existencia. Sin embargo, la teoría nos dice que las cuerdas cósmicas (como todo en el universo), tienen un tiempo de vida que una vez cumplido, desaparecen.

  Poco a poco se va diluyendo en energía, se vuelve transparente y desaparece

Está claro que la cuerda cósmica tal y como la presenta la teoría, es todo energía. Cuando comienza a despedir ondas gravitatorias, el proceso sigue hasta que la cuerda se ha radiado a si misma simplemente fuera de la existencia. Cuando su energía se agota, no queda nada. Por tanto sería posible utilizar las proporciones de pérdida de energía que predice la teoría de la relatividad general para calcular cuanto tiempo durará la energía almacenada en cualquier cuerda cósmica.

De hecho hubo un período de nervios cuando en cierto tiempo pareció que la cuerda cósmica tendrían una vida demasiado corta para poder realizar su trabajo de formar las galaxias, que romperían los anillos y se radiarian así misma fuera de la existencia antes que la materia y la radiación y la materia ordinaria se desparejaran. Sin embargo, los nuevos cálculos parecen mostrar ahora que los anillos capaces de formar las semillas de las galaxias durarían lo suficiente para llevar a cabo su función.

Lo cierto es que, andamos un poco perdidos y no pocos físicos (no sabemos si de forma interesada), insisten una y otra vez, en cuestiones que parecen no ser muy viables. Sin embargo, en la Física cuántica hemos tenido tantas sorpresas ya que, dudar de que algo sea posible… ¿Resulta arriesgado! Y, allí, en lo más profundo, en ese lugar que está situado más allá del Límite de Planck… ¿Podrían estar esas cuerdas vibrantes que todo lo conforman como la partícula más infinitesimal y primordial de todas.

Claro que estas teorías de cuerdas, como tantas otras antes que ella, también han desarrollado una gran avalancha de excepticismo que es mostrado por algunos en esos momentos de la última cerveza en charlas distendidas entre compañeros físicos y cosmólogos que están unidos por esa curiocidad por saber si, en realidad, esas cuerdas han existido alguna vez. Y, esos excepticos, en verdad, no eran más duros en las críticas a las teorías de los demás que con las suyas propias. El el fondo, todos los buenos físicos saben… ¡que no saben! Lo suficiente como para poder emitir juicios certeros sobre eso ni sobre nada.Lo que hoy es… mañana no será.

Pero claro, nunca se debe decir que no. Hay maneras de comprobar las evidencias, al menos dos. Una, la llamada lente gravitatoria, se apoya en los efectos que las cuerdas cósmicas tendrían sobre la luz de las galaxias distantes. El otro método, algo más indirecto, implica la búsqueda de ondas gravitatorias despedidas por las cuerdas al comienzo de la vida del Universo.

La lente gravitacional es el efecto en el que los rayos de luz son doblados por el campo gravitacional de un objeto masivo (en este caso serían las cuerdas cósmicas las responsables), también las galaxias y los agujeros negros producen el efecto de Lente gravitacional que es una propiedad de todos los objetos masivos.

                                                                              Buscarlas la estamos buscando pero… ¡No se dejan ver!

Las ondas gravitatorias están siendo buscadas por varios programas y proyectos construídos para tal fin, como LIGO y otros, y, hasta el momento, no parece que se haya tenido muchos resultados a pesar de que, la teoría nos dice que las cuerdas cósmicas emitían una gran cantidad de radiación gravitatoria en los primeros días del Universo. Sin embargo, sí se ha localizado la radiación cósmica del fondeo de microondas y las ondas gravitacionales no.

Está claro que la idea de la cuerda cósmica es sugestiva y nos podría explicar (por fín) como se pudieron formar las galaxias. La gran masa de la cuerda apunta a que debieron ser creadas muy pronro en la vida del Universo, probablemente mucho antes que la materia ordinaria cuando las temperaturas eran muy altas y había disponible mucha energía para formar objetos exóticos.

Si en verdad estuvieron allí, no lo podemos saber a ciencia cierta, y, se trabaja en la búsqueda de pruebas irrefutables que nos confirmen su presencia y su trabajo y contibución en la formación de las grandes estructuras del Universo.

Las grandes estructuras de nuestro Universo se pudieron haber formado a partir de unas semillas (cuerdas cósmicas) de gran densidad que atraían a la materia ordinaria para formarlas, y, de esa manera, pudieron haberse formado las galaxias y estrellas de aquel Espacio Interestelar primigenio. De momento, ninguna explicación mejor que esa nos puede aclarar esa incognita que persiste desde siempre y que, en no pocas ocasiones, produce verguenza a los cosmólogos que, en realidad, no saben qué contestar a una simple pregunta:

¿Cómo se formaron las galaxias?

emilio silvera

Estamos tratando de recrear la creación

Autor por Emilio Silvera    ~    Archivo Clasificado en El futuro tecnológico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Me ha venido a la memoria una noticia que leí, no hace tanto tiempo, en un Boletin de la RSEF, se refería a nuevas y ambiciosas iniciativas en el campo de la Física para tratar de recrear los primeros instantes del Universo, y, sobre todo, de desvelar los secretos que esconde la materia que, según parece y a pesar de los muchos avances conseguidos… ¡Aún no conocemos!

La Noticia, del año pasado,  decía:

“Europa construirá un acelerador tres veces mayor que el LHC.  Aunque el LHC seguirá funcionando por lo menos durante dos décadas más, Europa ya empieza a pensar en su sucesor: un enorme colisionador con una circunferencia de 100 km (frente a los 27 del LHC) y capaz de alcanzar una energía de 100 TeV, siete veces superior a los 14 TeV a los que puede llegar, como máximo, el LHC. Tras alcanzar el hito de detectar el bosón de Higgs, el LHC está apagado para llevar a cabo tareas de mantenimiento y no volverá a funcionar hasta 2015. El Modelo Estándar incluye a todos los componentes fundamentales de la materia ordinaria pero no dice nada de la materia oscura ni de la energía oscura. “Tenemos muchas esperanzas de que cuando el LHC funcione el año que viene a su máximo nivel de energía podamos tener un primer atisbo de lo que es la materia oscura. Y a partir de ahí determinar los objetivos del próximo gran colisionador”, dice Heuer, Director del CERN.”

Ya estamos en 2.015, y el LHC ha comenzado sus preparativos a mayor energía para tratar de buscar esa dichosa “materia oscura” de la que todo el mundo habla y de la que nadie sabe decir, a ciencia cierta, de qué está hecha, cómo surgío, por qué no emite radiación y sí gravedad…

Está bien que no dejemos de avanzar y sigamos buscando aquello que desconocemos. La Naturaleza esconde muchos secretos que tratamos de desvelar  y, la hipotética “materia oscura” es uno de ellos. Hablamos y hablamos sobre algo que no sabemos si en realidad será. Tampoco sabemos de que pueda estar conformada, de dónde surgió y por qué, y,  si emite o genera fuerza gravitatoria por qué no emite radiación. En fin, un misterio que sería bueno resolver. Está claro que algo debe haber, una especie de sustancia cósmica que impregna todo el Espacio, es la única manera de explicarse como pudieron formarse las galaxias.

¡100 TeV! ¡100 Km de diámetro!

Si cuando se acercaba la hora de puesta en marcha del LHC salieron múltiples organizaciones planteando protestas de todo tipo, incluso alguna se atrevió a decir que el Acelerador tenía tanta energía que crearía un agujero negro que se tragaría a la Tierra. ¿Qué dirán ahora del fututo Acelerador? Seguramente, habrá mucha más algarabía, protestas y un sin fin de manifestaciones de todo tipo. Sin embargo, el futuro… ¡Es imparable!

emilio silvera

¡Las misteriosas funciones modulares!

Autor por Emilio Silvera    ~    Archivo Clasificado en Un Genio Matemático    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Al manipular los diagramas de lazos de Kikkawa, Sakita y Virasoro creados por cuerdas en interacción, allí están esas extrañas funciones modulares en las que el número 10 aparecen en los lugares más extraños.

Estas funciones modulares son tan misteriosas como el hombre que las investigó, el místico del Este.  Quizá si entendiéramos mejor el trabajo de este genio indio, comprenderíamos por qué vivimos en nuestro Universo actual.

El misterio de las Funciones Modulares podría ser explicado por quien ya no existe, Srinivasa Ramanujan, el hombre más extraño del mundo de los matemáticos.  Igual que Riemann, murió antes de cumplir cuarenta años, y como Riemann antes que él trabajó en total aislamiento, en su universo particular de números y fue capaz de reinventar por sí mismo lo más valioso de cien años de matemáticas occidentales que, al estar aislado del mundo en las corrientes principales de los matemáticos, le eran totalmente desconocidos, así que, los buscó sin conocerlos.  Perdió muchos años de su vida en redescubrir matemáticas conocidas.

La función modular de Ramanujan y la teoría de cuerdas

La teoría de cuerdas  supone que cada modo o vibración de una cuerda fundamental representa una partícula elemental distinta, y puede explicar a la vez la naturaleza de la materia y del espacio-tiempo (las partículas en lugar de ser puntuales pasan a ser unidimensionales). Es la primera teoría cuántica de la gravedad: Cuando se calcularon por primera vez las ligaduras de autoconsistencia que impone la cuerda sobre el espacio-tiempo, se observó con sorpresa que las ecuaciones de Einstein ( teoría de la gravedad) emergían de la cuerda, de hecho, el gravitón o cuanto de gravedad era la menor vibración de la cuerda cerrada.

No sabemos todavía por qué la teoría de cuerdas está definida sólo en 10 y 26 dimensiones, aunque parece seguro que esta teoría no podría unificar las fuerzas fundamentales con tan solo tres dimensiones. Las cuerdas se rompen y se forman en el espacio N-dimensional arrastrando con ellas una serie de términos que destruyen las maravillosas propiedades de la teoría. Afortunadamente, estos términos aparecen multiplicados por el factor (N-10), lo que nos obliga a elegir N=10 para eliminarlos.

Dispersas entre oscuras ecuaciones en sus cuadernos están estas funciones modulares,  que figuran entre los más extraños jamás encontradas en matemáticas.   Ellos reaparecen en los ramos más distantes e inconexos de las matemáticas.  Una función, que aparece una y otra vez en la teoría de las funciones modulares, se denominan (como ya he dicho otras veces) hoy día “función de Ramanujan” en su honor.  Esta extraña función contiene un término elevado a la potencia veinticuatro.

El número 24 aparece repetidamente en la obra de Ramanujan.  Este es un ejemplo de lo que las matemáticas llaman números mágicos,  que aparecen continuamente, donde menos se esperan, por razones que nadie entiende.   Milagrosamente, la función de Ramanujan aparece también en la teoría de cuerdas.   El número 24 que aparece en la función de Ramanujan es también el origen de las cancelaciones milagrosas que se dan en la teoría de cuerdas.  En la teoría de cuerdas, cada uno de los veinticuatro modos de la función de Ramanujan corresponde a una vibración física de la cuerda.  Cuando quiera que la cuerda ejecuta sus movimientos complejos en el espacio-tiempo dividiéndose y recombinándose, deben satisfacerse un gran número de identidades matemáticas altamente perfeccionadas.   Estas son precisamente las entidades matemáticas descubiertas por Ramanujan.  (Puesto que los físicos añaden dos dimensiones más cuando cuentan el número total de vibraciones que aparecen en una teoría relativista, ello significa que el espacio -tiempo debe tener 24 + 2 = 26 dimensiones espacio – temporales.)

Cuando se generaliza la función de Ramanujan, el 24 queda reemplazado por el número 8. Por lo tanto, el número crítico para la supercuerda es 8+2=10. No estará la solución final de la Teoría de cuerdas, en estas misteriosas funciones modelares.

Para comprender este misterioso factor de dos (que añaden los físicos consideramos un rayo de luz que tiene dos modos físicos de vibración.  La luz polarizada puede vibrar, por ejemplo, o bien horizontal o bien verticalmente.  Sin embargo, un campo de Maxwell relativista Aµ tiene cuatro componentes, donde µ = 1, 2, 3, 4.  Se nos permite sustraer dos de estas cuatro componentes utilizando la simetría gauge de las ecuaciones de Maxwell.  Puesto que 4 – 2 = 2, los cuatro campos de Maxwell originales se han reducido a dos.  Análogamente, una cuerda relativista vibra en 26 dimensiones.  Sin embargo, dos de estos modos vibracionales pueden ser eliminados cuando rompemos la simetría de la cuerda, quedándonos con 24 modos vibracionales que son las que aparecen en la función de Ramanujan.

Antes explicamos que cuando se generaliza la función de Ramanujan, el 24 queda reemplazado por el número 8.   Por lo tanto, el número crítico para la supercuerda es 8+2=10.  Este es el origen de la décima dimensión que exige la teoría.   La cuerda vibra en diez dimensiones porque requiere estas funciones de Ramanujan generalizadas para permanecer auto consistente.  Dicho de otra manera, los físicos no tienen la menor idea de por qué 10 y 26 dimensiones se seleccionan como dimensión de la cuerda.   Es como si hubiera algún tipo de numerología profunda que se manifestara en estas funciones que nadie comprende.  Son precisamente estos números mágicos que aparecen en las funciones modulares elípticas los que determinan que la dimensión del espacio – tiempo sea diez.

      Claero que, la Teoría de Cuerdas tiene versiones en 10, 11 y 26 dimensiones

En el análisis final, el origen de la teoría decadimensional es tan misterioso como el propio Ramanujan.  Si alguien preguntara a cualquier físico del mundo por qué la naturaleza debería existir en diez dimensiones, estaría obligado a responder “No lo se”.  Se sabe en términos difusos, por qué debe seleccionarse alguna dimensión del espacio tiempo (de lo contrario la cuerda no puede vibrar de una forma cuánticamente autoconsistente), pero no sabemos por que se seleccionan estos números concretos.

Quizá la respuesta a todo esto esté esperando a ser descubierta cuando alguien (algún genio matemático como Perelman) sea capaz de entender el contenido de los cuadernos perdidos de Ramanujan.

Srinivasa Ramanujan nació en 1.887 en Erode, India, cerca de Madrás.  Su familia de clase media alta, brahmin, la más alta de las castas Hindúes, fueron destituidos y venidos a menos, su padre trabajaba de oficinista de un comerciante de tejidos.

Con diez años, lo mismo que pasó antes con Riemann, ya destacaba y sorprendía a todos con sus enormes poderes de cálculos.   Siendo niño, rederivó la identidad de Euler entre funciones trigonométricas y exponenciales.

En la vida de cada científico joven hay un punto de partida, un hecho que, sin ellos saberlo, les marca el destino.  Para Einstein fue la fascinación que le causó la brújula que le regaló su tío cuando estaba enfermo siendo un niño, no podía apartar la mirada de la aguja que siempre indicaba hacia el mismo sitio, y se preguntó una y mil veces por la fuerza invisible que la obligaba a dirigirse hacia esa dirección. Para Riemann, fue la lectura del libro de matemáticas de Legendre.  Para Ramanujan, fue cuando se sumergió en un oscuro y olvidado libro de matemáticas escrito por George Carr.   Este libro ha quedado inmortalizado desde entonces por el hecho de que señaló la única exposición conocida de Ramanujan a los modernas matemáticas occidentales.   Según su hermana: “Fue este libro el que despertó su genio.  El se propuso establecer por sí mismo las fórmulas dadas allí.  Como no tenía la ayuda de otros libros, cada solución era un trabajo de investigación por lo que a él concernía…  Ramanujan solía decir que la diosa Namakkal le inspiraba las fórmulas en sueños”.

Con ayuda de amigos, Ramanujan consiguió un puesto de bajo nivel del puerto de Madrás.   Era un trabajo servil, con una mísera paga de 20 libras al año, pero dio libertad a Ramanujan, como a Einstein antes que él en la oficina de Patentes Suiza, para seguir sus sueños en su tiempo libre.   Ramanujan, en la fascinación que en él ejercían los números, era incansable, llenaba libretas enteras de cálculos y ecuaciones que antes veía florecer en su cabeza.

Así estaban las cosas cuando decidió escribir algunos de sus trabajos a las tres matemáticos más famosos de Inglaterra y Europa.

Dos de aquellos matemáticos, al tener en su poder las cartas enviadas por un miserable empleado sin instrucción formal alguna, sin haber comprobado su contenido, las arrojaron directamente a la basura.   El tercero era el brillante matemático de Cambridge Godfrey Harold Hardy. Debido a su categoría en Inglaterra, Hardy estaba acostumbrado a recibir correo de chiflados proponiéndole los más peregrinos proyectos y, en un primer momento apenas prestó atención a la carta del joven Ramanujan.

Srinivasa Ramanujan trabajó principalmente en teoría de números, encontrando identidades relacionadas con el número pi y el número e o los números primos. Como decimos, en general sus fórmulas son muy enrevesadas, pero en su mayoría verdaderas (a posteriori se ha descubierto que algunos de sus resultados era incorrectos), y algunas de ellas se han convertido en potentes herramientas para calcular grandes cantidades de decimales de, principalmente, el número pi. Quizás la más conocida sea ésta:

\displaystyle{\cfrac{1}{\pi} = \cfrac{2 \sqrt{2}}{9801} \sum^{\infty}_{k=0} \cfrac{(4k)!(1103+26390k)}{(k!)^4 396^{4k}}}

que nos da 8 decimales exactos de pi en cada iteración. Tremendo, ¿verdad?

http://3.bp.blogspot.com/-OqcWzTtOMWI/UJqHMJP9TkI/AAAAAAAAAXY/iwwtOAHwFQs/s1600/ramanujan.jpg

Entre los densos garabatos advirtió muchos teoremas matemáticos que ya eran bien conocidos.  Pensando que era la obra obvia de un plagiario, el también la desechó en ese primer impulso.   Pero había algo que no encajaba.  Algo que inquietaba a Hardy; no podía dejar de pensar en aquella extraña carta.

Durante la cena de esa noche, 16 de enero de. 1913, Hardy y su colega John Littlewood discutieron esta carta singular y decidieron echar un segundo vistazo – repaso a su contenido.   Comenzaba de forma bastante inocente, con “Me permito presentarme a usted como un empleado en el departamento de contabilidad de la oficina del puerto franco de Madrás con un salario de solo veinte libras al año”.   Pero la carta del pobre empleado de Madrás contenía teoremas que eran totalmente desconocidos para los matemáticos occidentales.  En total, contenía 120 teoremas.  Hardy estaba atónito.  Recordaba que demostrar algunos de esos teoremas “Me derrotó por completo”.  “Nunca había visto nada antes que se le pareciera en lo más mínimo.   Una simple ojeada a ellos es suficiente para mostrar que sólo podían estar elaborados por un matemático muy grande”.

Littlewood y Hardy alcanzaron la misma conclusión: Aquello era el trabajo de un genio empeñado en derivar de nuevo 100 años de matemáticas europeas. “Él había estado llevando a cabo una carrera imposible, un pobre y solitario hindú, completamente solo y sin ayuda, enfrentando su cerebro contra toda la sabiduría acumulada en Europa”, recordaba con asombro Hardy.

Hardy escribió a Ramanujan y, tras muchas pesquisas, uso de amistades e influencias, arregló su estancia en Cambridge en 1.914.  Por primera vez, Ramanujan podía comunicarse regularmente con sus iguales, la comunidad de los matemáticos europeos.  Entonces comenzó el estallido de su actividad: tres cortos e intensos años de colaboración con Hardy en el Trinity Collage en Cambridge.

Hardy trató más tarde de estimar la capacidad matemática que poseía Ramanujan.   Concedió a David Hilbert, universalmente conocido y reconocido como uno de los mayores matemáticos occidentales del siglo XIX, una puntuación de 80.   A Ramanujan le asignó una puntuación de 100.  Así mismo, Hardy se concedió un 25.

Por desgracia, ni Hardy ni Ramanujan parecían interesados en la psicología a los procesos de pensamiento mediante los cuales Ramanujan descubría estos increíbles teoremas, especialmente cuando este diluvio material brotaba de sus sueños con semejante frecuencia.   Hardy señaló: “Parecía ridículo importunarle sobre como había descubierto este o ese teorema conocido, cuando él me estaba mostrando media docena cada día, de nuevos teoremas”.

Hardy recordaba vivamente:

-”Recuerdo una vez que fui a visitarle cuando estaba enfermo en Putney.  Yo había tomado el taxi número 1.729, y comenté que el numero me parecía bastante feo, y que esperaba que no fuese mal presagio.”

– No. -Replicó Ramanujan postrado en su cama-. Es un número muy interesante; es el número más pequeño expresable como una suma de dos cubos en dos formas diferentes.

(Es la suma de 1 x 1 x 1  y 12 x 12 x 12, y también la suma de 9 x 9 x 9  y  10 x 10 x 10).

Era capaz de recitar en el acto teoremas complejos de aritmética cuya demostración requeriría un ordenador moderno.

En 1.919 volvió a casa, en la India, donde un año más tarde murió  enfermo.

El legado de Ramanujan es su obra, que consta de 4.000 fórmulas en cuatrocientas páginas que llenan tres volúmenes de notas, todas densamente llenas de teoremas de increíble fuerza pero sin ningún comentario o, lo que es más frustrante, sin ninguna demostración.  En 1.976, sin embargo, se hizo un nuevo descubrimiento.   Ciento treinta páginas de borradores, que contenían los resultados del último año de su vida, fueron descubiertas por casualidad en una caja en el Trinity Collage.   Esto se conoce ahora con el nombre de “Cuaderno Perdido” de Ramanujan.

Comentando cuaderno perdido, el matemático Richard Askey dice:

 

“El de este año, mientras se estaba muriendo, era el equivalente a una vida entera de un matemático muy grande”.  Lo que él consiguió era increíble.  Los matemáticos Jonathan Borwien y Meter Borwein, en relación a la dificultad y la ardua tarea de descifrar los cuadernos perdidos, dijeron: “Que nosotros sepamos nunca se ha intentado una redacción matemática de este alcance o dificultad”.

 

Por mi parte creo que, Ramanujan, fue un genio matemático muy adelantado a su tiempo y que pasaran algunos años hasta que podamos descifrar al cien por ciento sus trabajos, especialmente, sus funciones modulares que guardan el secreto de la teoría más avanzada de la física moderna,   la única capaz de unir la mecánica quántica y la Gravedad.

Las matemáticas de Ramanujan son como una sinfonía, la progresión de sus ecuaciones era algo nunca vísto, él trabajaba desde otro nivel, los números se combinaban y fluían de su cabeza a velocidad de vértigo y con precisión nunca antes conseguida por nadie.   Tenía tal intuición de las cosas que éstas simplemente fluían de su cerebro.   Quizá no los veía de una manera que sea traducible y el único lenguaje eran los números.

                    1Si final las dos madejas se desenredan… Por algo será!

Como saben los físicos, los “accidentes” no aparecen sin ninguna razón.  Cuando están realizando un cálculo largo y difícil, y entonces resulta de repente que miles de términos indeseados suman milagrosamente cero, los físicos saben que esto no sucede sin una razón más profunda subyacente.  Hoy, los físicos conocen que estos “accidentes” son una indicación de que hay una simetría en juego.  Para las cuerdas, la simetría se denomina simetría conforme, la simetría de estirar y deformar la hoja del Universo de la cuerda.

Aquí es precisamente donde entra el trabajo de Ramanujan.  Para proteger la simetría conforme original contra su destrucción por la teoría cuántica, deben ser milagrosamente satisfechas cierto número de identidades matemáticas que, son precisamente las identidades de la función modular de Ramanujan.  ¡Increíble!   Pero, cierto.

En resumen, he dicho que las leyes de la naturaleza se simplifican cuando se expresan en dimensiones más altas.   Sin embargo, a la luz de la teoría cuántica, debemos corregir algo Este sentido básico de mirar la cuestión.   El enunciado correcto sería ahora:   las leyes de la naturaleza se simplifican cuando se expresan  COHERENTEMENTE en dimensiones más altas.  El añadido de la palabra coherente es crucial.   Esta ligadura nos obliga a utilizar las funciones modulares de Ramanujan, que fijan en diez la dimensión del espacio – tiempo.   Esto, a su vez, puede darnos la clave decisiva para explicar el origen del Universo.

Einstein se preguntaba a menudo si Dios tuvo alguna elección al crear el universo.   Según los teóricos de supercuerdas, una vez que exigimos una unificación de la teoría cuántica y la relatividad general, Dios no tenía elección.  La autoconsistencia por sí sola, afirman ellos, debe haber obligado a Dios a crear el universo como lo hizo.

Aunque el perfeccionamiento matemático introducido por la teoría de cuerdas ha alcanzado alturas de vértigo y ha sorprendido a los matemáticos, los críticos de la teoría aún la señalan como su punto más débil.  Cualquier teoría, afirman, debe ser verificable.   Puesto que ninguna teoría definida a la energía de Planck de 1019 miles de millones de eV es verificable, ¡La teoría de supercuerdas no es realmente una teoría!

El principal problema, es teórico más que experimental.  Si fuéramos suficientemente inteligentes, podríamos resolver exactamente la teoría y encontrar la verdadera solución no perturbativa de la teoría.  Sin embargo, esto no nos excusa de encontrar algún medio por el que verificar experimentalmente la teoría, debemos esperar señales de la décima dimensión.

¿La décima dimensión?

¡Qué extraño sería que la teoría final se descubriera durante nuestra vida! El descubrimiento de las leyes finales de la Naturaleza marcará una discontinuidad en la Historia del intelecto humano, la más abrupta que haya ocurrido desde el comienzo de la ciencia moderna en el siglo XVII. ¿Podemos imaginar ahora como sería?

Steven Weinberg

emilio silvera


El apunte sobre Ramanujan fue incluido en otro de mis trabajos.  Sin embargo, el presente cuaderno trata temas expresamente solicitados para utilizar en unos seminarios de física, y se me pidió incluir el tema “Ramanujan”. La Fuente es diversa yn precisaría una larga relación.

Notivcias NASA

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Nuevas Moléculas Alrededor de Viejas Estrellas

Gracias al observatorio espacial Herschel de la ESA, los astrónomos han descubierto la presencia de una molécula fundamental para la formación del agua entre las brasas que dejan las estrellas como nuestro Sol en las últimas fases de su vida.

Cuando las estrellas de baja a media masa como nuestro Sol se acercan al final de sus vidas se convierten en enanas blancas, de mayor densidad. En este proceso se desprenden de sus capas de polvo y gas más externas, creando complejos patrones caleidoscópicos conocidos como nebulosas planetarias.

Estas estructuras no tienen nada que ver con los planetas, pero fueron bautizadas así a finales del siglo XVIII por el astrónomo William Herschel, ya que a través de su telescopio se veían como difusos objetos circulares, parecidos a los planetas de nuestro Sistema Solar.

Algo más de dos siglos más tarde, el observatorio espacial Herschel, tocayo de William Herschel, ha realizado un sorprendente descubrimiento al estudiar las nebulosas planetarias.

El canto del cisne de las estrellas que dan lugar a las nebulosas planetarias, al igual que las dramáticas explosiones de supernova de las estrellas más pesadas, también enriquecen el medio interestelar local con elementos a partir de los que se formarán las siguientes generaciones de estrellas.

Si bien las supernovas son capaces de forjar los elementos más pesados, las nebulosas planetarias contienen una gran proporción de ‘elementos de la vida’, como el carbono, el nitrógeno o el oxígeno, formados por fusión nuclear en la estrella moribunda.

Las estrellas como nuestro Sol queman hidrógeno de forma ininterrumpida durante miles de millones de años. Cuando se les empieza a terminar el combustible se hinchan hasta convertirse en gigantes rojas, un cuerpo inestable que empezará a expulsar sus capas más externas para formar una nebulosa planetaria.

Molécula formadora delagua en la Nebulosa de la Hélice
 Molécula formadora de agua en la Nebulosa de la Hélice. Image Credit: ESA

Los restos del núcleo de la estrella se transforman en una enana blanca a gran temperatura, que baña su entorno con radiación ultravioleta.

Esta radiación tan intensa podría destruir las moléculas que habían sido expulsadas por la estrella en la fase anterior, y que ahora se encontrarían ligadas a los grumos o anillos de material que se pueden distinguir en la periferia de las nebulosas planetarias.

También se pensaba que esta radiación impediría la formación de nuevas moléculas en esta región.

Sin embargo, dos estudios independientes basados en las observaciones realizadas con Herschel han descubierto que una molécula fundamental para la formación del agua parece disfrutar de las condiciones de este entorno tan hostil, e incluso podría depender de ellas para formarse. Esta molécula, conocida como OH+, está formada por un átomo de oxígeno y uno de hidrógeno y tiene carga positiva.

En el estudio dirigido por la Dra. Isabel Alemán de la Universidad de Leiden, Países Bajos, se analizaron 11 nebulosas planetarias y esta molécula se detectó en tres de ellas.

Estas tres nebulosas tienen en común que albergan a las estrellas más calientes, cuyas temperaturas superan los 100.000 °C.

“Pensamos que la clave se encuentra en la presencia de densos grumos de polvo y gas, iluminados por la radiación ultravioleta y por los rayos X emitidos por la estrella central”, explica Isabel.

“Esta radiación de alta energía desencadena reacciones químicas en el seno de los grumos, dando lugar a la formación de la molécula OH+”

Fuente: Noticias NASA