martes, 07 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Materia Oscura? ¿Qué es eso?

Autor por Emilio Silvera    ~    Archivo Clasificado en Materia extraña    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Publican que: “La Materia Oscura, acorralada en una antigua mina de Oro.”

El experimento más sensible del mundo en la búsqueda de estas misteriosas partículas obtiene nuevos resultados

Interior del detector LUX, situado en una antigua mina de oro en Dakota del Sur (EE.UU.)

 

Interior del detector LUX, situado en una antigua mina de oro en Dakota del Sur (EE.UU.) –

Matthew Kapust

 

El experimento LUX, un laboratorio situado a 1,5 km bajo la superficie terrestre, en una antigua mina de oro de Dakota del Sur (EE.UU.), se puso en marcha hace dos años para intentar descubrir la auténtica identidad de la materia oscura, de la que se cree está compuesta la mayor parte del Universo pero que nunca nadie ha visto. Lo que los científicos buscan en la más completa oscuridad es un pequeño flash que indicaría una colisión entre una partícula de materia oscura y otra de materia normal. El hallazgo iluminaría el mundo de la Ciencia para siempre. Aunque por el momento no ha habido ningún «eureka» que celebrar, el detector, el más sensible del mundo en esta tarea, según indica el Lawrence Berkeley National Laboratory, tiene cada vez más acorralada a la materia oscura. Un nuevo conjunto de técnicas de calibración ha conseguido descartar a algunos potenciales candidatos y reducir el campo de búsqueda.

En concreto, los investigadores del Large Underground Xenon (LUX) buscan WIMPs, partículas masivas de interacción débil, que son las principales candidatas a constituir la materia oscura. Y ahora lo han hecho bajo un nuevo prisma, gracias a las mejoras en la sensibilidad del detector en más de un factor de 20, junto a las simulaciones informáticas avanzadas desarrolladas por los científicos.

Los resultados, presentados a la revista Physical Review Letters y publicados en Arxiv, reexaminan los datos recogidos durante el primer plazo de tres meses de LUX en 2013 y descartan la posibilidad de haber dado con la materia oscura en las rangos de baja masa donde otros experimentos habían informado anteriormente de potenciales detecciones. El cerco se cierra y la materia oscura tiene menos espacio donde esconderse.

Pese a que nunca ha sido vista, los científicos confían en que la materia oscura existe porque los efectos de su gravedad se pueden ver en la rotación de las galaxias y en las curvas de luz a medida que viajan a través del universo. Debido a que se cree que los WIMPs interactúan con otros materiales sólo en muy raras ocasiones, aún no se han detectado directamente.

El corazón de LUX contiene un tercio de tonelada de xenón liquido enfriado a menos de 100ºC. Cuando una WIMP impacta contra un átomo de xenón retrocede y emite un pequeño destello de luz, que es detectado por los sensores del experimento. La ubicación del detector a una gran profundidad bajo la superficie ayuda a protegerlo de los rayos cósmicos y de otras radiaciones que puedan interferir con una señal de materia oscura. El experimento continuará trabajando hasta junio de 2016, cuando será dado de baja para dar paso a un nuevo detector de xenón mucho mayor conocido como LUX-ZEPLIN (LZ), cien veces más sensible.

Fuente: ABC.esMadrid – 15/12/2015 a las 11:15:38h. – Act. a las 12:16:30h.Guardado en: Ciencia

Lo que se cree sobre el universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Astronomía y Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Según la teoría del Big Bang, el Universo se originó en una singularidad espaciotemporal de densidad infinita matemáticamente paradójica. El universo se ha expandido desde entonces, por lo que los objetos astrofísicos se han alejado unos respecto de los otros. Es decir, lo que se ha expandido ha sido el espacio, con lo cual, no se viola el principio de la relatividad de la velocidad de la luz, toda vez que, los objetos, nunca pudieron sobrepasar dicha velocidad.

The massive compact star cluster in NGC 3603 and its surrounding

El Universo

El Universo es todo lo que podemos tocar, sentir, percibir, medir o detectar. Abarca los cosas vivas, los planetas, las estrellas, las galaxias, las nubes de polvo, la luz e incluso el tiempo. Antes de que naciera el Universo, no existían el tiempo, el espacio ni la materia. Esto es lo que podemos deducir sobre el Universo en cualquier lugar que podamos mirar y, ciertamente, es difícil hacerse una idea a que todo esto, pudiera ser de esta manera. Que a partir de un punto de “infinita densidad y energía surgieran tantas cosas… ¡Es difícil de creer! Sin embargo, es la mejor versión que tenemos.
En cualquier enciclopedía nos dirán:

“El universo es la totalidad del espacio y del tiempo, de todas las formas de la materia, la energía y el impulso, las leyes y constantes físicas que las gobiernan. Sin embargo, el término también se utiliza en sentidos contextuales ligeramente diferentes y alude a conceptos como cosmos, mundo o naturaleza.

Observaciones astronómicas indican que el universo tiene una edad de 13,73 ± 0,12 millardos de años (entre 13 730 y 13 810 millones de años) y por lo menos 93 000 millones de años luz de extensión.2 El evento que dio inicio al universo se denomina Big Bang. Se denomina Big-Bang a la singularidad que creó el universo. Después del Big Bang, el universo comenzó a expandirse para llegar a su condición actual, y continúa haciéndolo.

Debido a que, según la teoría de la relatividad especial, la materia no puede moverse a una velocidad superior a la velocidad de la luz, puede parecer paradójico que dos objetos del universo puedan haberse separado 93 mil millones de años luz en un tiempo de únicamente 13 mil millones de años; sin embargo, esta separación no entra en conflicto con la teoría de la relatividad general, ya que ésta sólo afecta al movimiento en el espacio, pero no al espacio mismo, que puede extenderse a un ritmo superior, no limitado por la velocidad de la luz. Por lo tanto, dos galaxias pueden separarse una de la otra más rápidamente que la velocidad de la luz si es el espacio entre ellas el que se dilata.”

Ilc 9yr moll4096.png

La radiación de fondo de microondas

Mediciones sobre la distribución espacial y el desplazamiento hacia el rojo (redshift) de galaxias distantes, la radiación cósmica de fondo de microondas, y los porcentajes relativos de los elementos químicos más ligeros, apoyan la teoría de la expansión del espacio, y más en general, la teoría del Big Bang, que propone que el universo en sí se creó en un momento específico en el pasado.

Observaciones recientes han demostrado que esta expansión se está acelerando, y que la mayor parte de la materia y la energía en el universo son las denominadas materia oscura y energía oscura, la materia ordinaria (barionica), solo representaría algo más del 5 % del total3 (véanse materia oscura y energía oscura).

Los experimentos sugieren que el universo se ha regido por las mismas leyes físicas, constantes a lo largo de su extensión e historia. Es homogéneo e isotrópico. La fuerza dominante en distancias cósmicas es la gravedad, y la relatividad general es actualmente la teoría más exacta para describirla. Las otras tres fuerzas fundamentales, y las partículas en las que actúan, son descritas por el Modelo Estándar. El universo tiene por lo menos tres dimensiones de espacio y una de tiempo, aunque experimentalmente no se pueden descartar dimensiones adicionales muy pequeñas. El espacio-tiempo parece estar conectado de forma sencilla, y el espacio tiene una curvatura media muy pequeña o incluso nula, de manera que la geometría euclidiana es, como norma general, exacta en todo el universo.

La ciencia modeliza el universo como un sistema cerrado que contiene energía y materia adscritas al espacio-tiempo y que se rige fundamentalmente por principios causales.

Basándose en observaciones del universo observable, los físicos intentan describir el continuo espacio-tiempo en que nos encontramos, junto con toda la materia y energía existentes en él. Su estudio, en las mayores escalas, es el objeto de la cosmología, disciplina basada en la astronomía y la física, en la cual se describen todos los aspectos de este universo con sus fenómenos.

Resultado de imagen de Lemaitre y su universo

La teoría actualmente más aceptada sobre la formación del universo, fue teorizada por el canónigo belga Lemaître, a partir de las ecuaciones de Albert Einstein. Lemaitre concluyó (en oposición a lo que pensaba Einstein), que el universo no era estacionario, que el universo tenía un origen. Es el modelo del Big Bang, que describe la expansión del espacio-tiempo a partir de una singularidad espaciotemporal. El universo experimentó un rápido periodo de inflación cósmica que arrasó todas las irregularidades iniciales. A partir de entonces el universo se expandió y se convirtió en estable, más frío y menos denso. Las variaciones menores en la distribución de la masa dieron como resultado la segregación fractal en porciones, que se encuentran en el universo actual como cúmulos de galaxias.

En cuanto a su destino final, las pruebas actuales parecen apoyar las teorías de la expansión permanente del universo (Big Freeze ó Big Rip, Gran Desgarro), que nos indica que la expansión misma del espacio, provocará que llegará un punto en que los átomos mismos se separarán en partículas subatómicas. Otros futuros posibles que se barajaron, especulaban que la materia oscura podría ejercer la fuerza de gravedad suficiente para detener la expansión y hacer que toda la materia se comprima nuevamente; algo a lo que los científicos denominan el Big Crunch o la Gran Implosión, pero las últimas observaciones van en la dirección del gran desgarro.”

Ahora, Roger Penrose, de la Universidad de Oxford y uno de los físicos más brillantes de la actualidad, cree haber detectado “atisbos” de la existencia de otro universo. Uno que existía antes que el Big Bang. Lo cual pone, literalmente, patas arriba las teorías cosmológicas actuales. En un artículo recién publicado en ArXiv.org, Penrose explica que ha llegado a esa extraordinaria conclusión tras analizar, en los datos del satélite WMAP, ciertos patrones circulares que aparecen en el fondo de microondas cósmico y que sugieren, ni más ni menos, que el espacio y el tiempo no empezaron a existir en el Big Bang, sino que nuestro universo existe en un ciclo continuo de “rebotes” que él llama “eones”.

Según Penrose, lo que actualmente percibimos como nuestro universo, no es más que uno de esos eones. Hubo otros antes del Big Bang y habrá otros después. Unas ideas que se oponen frontalmente al modelo cosmológico más extendido en la actualidad: el de universo inflacionario. Según dicho modelo, el universo empezó en un punto de densidad infinita (el Big Bang) hace aproximadamente 13.700 millones de años, se expandió de forma extremadamente rápida durante una fracción de segundo, y ha continuado expandiéndose mucho más lentamente desde entonces, un tiempo durante el cual han ido surgiendo galaxias, estrellas, planetas y, finalmente, los seres humanos.

El tiempo antes del Big Bang Penrose, sin embargo, está convencido de que el modelo inflacionario no cuadra con el bajísimo estado de entropía que hizo posible el nacimiento del universo tal y como lo conocemos. Y tampoco cree que el espacio y el tiempo empezaran a existir en el momento del Big Bang, sino que el Big Bang fue, de hecho, sólo uno entre una serie de muchos acontecimientos similares, con cada uno marcando el inicio de un nuevo “eón” en la historia del universo. Las teorías de Penrose implican que, en un futuro lejano, el universo volverá, de alguna manera, a tener las condiciones que hicieron posible el Big Bang. Según el físico, en esos momentos la geometría del universo será suave y lineal, muy diferente a como es ahora, con abundantes picos y discontinuidades.

«La materia oscura puede ser ‘otra dimensión’, tal vez incluso un importante sistema de transporte galáctico. […]

En Interstellar, la película de ciencia ficción de Christopher Nolan, los protagonistas cruzan un agujero de gusano hallado fortuitamente en las cercanías de Saturno que permite viajar a varios mundos potencialmente habitables fuera del Sistema Solar.  A veces pienso que, hablar de esto es casi lo mismo que hablar de cómo se creó en el Universo, en ambos casos, existen espacios oscuros que nos alejan de la posible verdad de lo que pudo ocurrir o de lo que podrá ser posible.

Esta futura continuidad de forma, afirma, permitirá una transición desde el final del actual eón, con un universo muy expandido e infinitamente grande, al inicio del siguiente, cuando de nuevo se hará infinitamente pequeño para estallar formando el siguiente Big Bang. Pruebas en el fondo cósmico El físico asegura que ha encontrado pruebas que sostienen lo que dice. Y que esas pruebas están en el fondo cósmico de microondas, los ecos lejanos del propio Big Bang, una especie de rescoldo de aquella gran explosión que es detectable, hoy, en cualquier punto del universo. Analizando, junto a su colega armenio Vahe Gurzadyan, siete años de datos del satélite WMAP, que está diseñado precisamente para medir el fondo de microondas, Penrose ha detectado con claridad una serie de “círculos concéntricos”, regiones en el cielo de microondas en los que el rango de temperatura de la radiación es notablemente menor que en otros sitios. Son precisamente esos círculos los que nos permiten “ver” a través del Big Bang, vislumbrando el eón que que existió anteriormente. Los círculos, dicen Penrose y Gurzadyan, son marcas dejadas en nuestro eón por las ondulaciones esféricas de las ondas gravitatorias que se generaron cuando los agujeros negros colisionaron en el eón anterior. Y estos círculos, sostienen, suponen un serio problema para la teoría inflacionaria, según la cual la distribución de las variaciones de temperatura en el cielo deberían ser Gaussianas, o aleatorias, en lugar de tener estructuras discernibles en su interior. Si Penrose tiene razón, cambiará por completo la forma que tenemos de percibir el universo en que vivimos, su nacimiento y su destino final.

Amigos míos, lo cierto es que, seguros lo que se dice seguros… ¡No lo podemos estar! Ya que, los modelos actuales del Universo, aunque algunos, como el Big Bang, parece que se puede acercar a esa realidad que buscamos, lo cierto es que, nos deja muchas zonas oscuras y, afirmar nada podemos.

emilio silvera

La maravilla de los cuantos

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

LA MARAVILLA DE LOS CUANTOS

La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos. Planck escribió un artículo de ocho páginas y el resultado fue que cambió el mundo de la física y aquella páginas fueron la semilla de la futura ¡mecánica cuántica! que, algunos años más tardes, desarrollarían físicos como Einstein (Efecto fotoeléctrico), Heisenberg (Principio de Incertidumbre), Feynman, Bhor, Schrödinger, Dirac…

Figura animada que representa un rayo de luz incidiendo sobre un cuerpo negro hasta su total absorción. l nombre cuerpo negro fue introducido por Gustav Kirchhoff  en 1862 y su idea deriva de la siguiente observación: toda la materia emite radiación electromagnética cuando se encuentra a una temperatura por encima del cero absoluto. La radiación electromagnética emitida por un cuerpo a una temperatura dada es un proceso espontáneo y procede de una conversión de su energía térmica en energía electromagnética. También sucede a la inversa, toda la materia absorbe radiación electromagnética de su entorno en función de su temperatura.

 La expresión radiación se refiere a la emisión continua de energía de la superficie de todos los cuerpos. Los portadores de esta energía son las ondas electromagnéticas  producidas por las vibraciones de las partículas cargadas  que forman parte de los átomos y moléculas de la materia. La radiación electromagnética que se produce a causa del movimiento térmico de los átomos y moléculas de la sustancia se denomina radiación térmica o de temperatura.

 Ley de Planck para cuerpos a diferentes temperaturas.

Curvas de emisión de cuerpos negros a diferentes temperaturas comparadas con las predicciones de la física clásica anteriores a la ley de Planck.

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía.

Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico o una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de la luz visible.

                       Acero al  “rojo vivo”, el objeto está radiando en la zona de la luz visible.

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:

E = hv

Donde E es la energía del paquete, v es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

Ni que decir tiene que, desde entonces, la fórmula ha sido mejorada y, como siempre pasa, los avances que son imparables van modificando las teorías originales para perfeccionarlas y que se ajusten mucho más a la realidad que la Naturaleza nos muestra cuando somos capaces de descubrir sus secretos.

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck.

El príncipe francés Louis Victor de Broglie, dándole otra vuelta a la teoría, que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta dirección del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.

En mecánica cuántica, el comportamiento de un electrón en un átomo se describe por un orbital, que es una distribución de probabilidad más que una órbita.  El electrón (e), es una partícula subatómica con una carga eléctrica elemental negativa.Un electrón no tiene componentes o subestructura conocidos, en otras palabras, generalmente se define como una partícula elemetal.

En la Teoría de cuerdas se dice que un electrón se encuentra formado por una subestructura (cuerdas). Tiene una masa que es aproximadamente 1836 veces menor con respecto a la del protón.  El miomento angular  (espín) intrínseco del electrón es un valor semientero en unidades de ħ, lo que significa que es un fermión.  Su antipartícula es denominada positrón: es idéntica excepto por el hecho de que tiene cargas —entre ellas, la eléctrica— de signo opuesto. Cuando un electrón colisiona con un positrón, las dos partículas pueden resultar totalmente aniquiladas y producir fotones y rayos gamma.

los leptones

Los electrones, que pertenecen a la primera generación de la familia de partículas de los leptones y participan en las interacciones fundamentales, tales como la Gravedad, el electromagnetismo y la fuerza nuclear débil. Como toda la materia, posee propiedades mecánico cuánticas tanto de partículas como de onmdas,   de tal manera que pueden colisionar con otras partículas y pueden ser difractadas como la luz. Esta dualidad se demuestra de una mejor manera en experimentos con electrones a causa de su ínfima masa. Como los electrones son fermiones, dos de ellos no pueden ocupar el mismo estado cuántico, según el Principio de exclusión de Pauli. Por este motivo se forman las estrellas enanas blancas y de neutrones al final de la vida de las estrellas de poca masa.

Es curioso el comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Edwin Schrödinger descubrió como escribir la teoría ondulatoria de De Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar los cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de onda cuántica”.

No hay duda de que la Mecánica Cuántica funciona maravillosamente bien. Sin embargo, surge una pregunta muy formal: ¿qué significan realmente esas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá por el año 1687, formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo lo que significaban sus ecuaciones: que los planetas están siempre en una posición bien definida en el espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades con el tiempo.

Pero para los electrones todo esto es muy diferente. Su comportamiento parece estar envuelto en la bruma. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir trabajando y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la “interpretación de Copenhague” de la Mecánica Cuántica. En vez de decir que el electrón se encuentra en el punto x o en el punto y, nosotros hablamos del estado del electrón. Ahora no tenemos el estado “x” o el estado “y”, sino estados “parcialmente x” o “parcialmente y. Un único electrón puede encontrarse, por lo tanto, en varios lugares simultáneamente. Precisamente lo que nos dice la Mecánica Cuántica es como cambia el estado del electrón según transcurre el tiempo.

Un “detector” es un aparato con el cual se puede determinar si una partícula está o no presente en algún lugar pero, si una partícula se encuentra con el detector su estado se verá perturbado, de manera que sólo podemos utilizarlo si no queremos estudiar la evolución posterior del estado de la partícula. Si conocemos cuál es el estado, podemos calcular la probabilidad de que el detector registre la partícula en el punto x.

Las leyes de la Mecánica Cuántica se han formulado con mucha precisión. Sabemos exactamente como calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas simultáneamente. Por ejemplo, podemos determinar la velocidad de una partícula con mucha exactitud, pero entonces no sabremos exactamente dónde se encuentra; o, a la inversa. Si una partícula tiene “espín” (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar con sencillez de dónde viene esta incertidumbre, pero hay ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar.

http://www.ecbloguer.com/cienciaaldia/wp-content/uploads/2012/11/luz-onda.jpg

                     ¿Onda o partícula? ¡Ambas a la vez! ¿Cómo es eso?

Para que las reglas de la Mecánica Cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuanto más grande y más pesado es un objeto más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica.

Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por “holismo”, y que se podría definir como “el todo es más que la suma de las partes”.

Bien, si la Física nos ha enseñado algo, es justamente lo contrario: un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (las partículas): basta que uno sepa sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que yo entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes.

Por ejemplo, la constante de Planck, h = 6,626075…x 10 exp. -34 julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal. Así, los extraterrestres del cuarto planeta a partir de la estrella SIL, cuando descubran esa constante, el resultado sería exactamente el mismo que le dio a Plancl, es decir, el Universo, funciona igual en todas partes.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros tales como Edwin Schrödinger, siempre presentaron serias objeciones a esta interpretación.

Quizá funcione bien, pero ¿dónde está exactamente el electrón, en el punto x o en el punto y? Em pocas palabras, ¿dónde está en realidad?, ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

Hasta hoy, muchos investigadores coinciden con la actitud pragmática de Bohr. Los libros de historia dicen que Bohr demostró que Einstein estaba equivocado. Pero no son pocos,  incluyéndome a mí, los que sospechamos que a largo plazo el punto de vista de Einstein volverá: que falta algo en la interpretación de Copenhague. Las objeciones originales de Einstein pueden superarse, pero aún surgen problemas cuando uno trata de formular la mecánica cuántica para todo el Universo (donde las medidas no se pueden repetir) y cuando se trata de reconciliar las leyes de la mecánica cuántica con las de la Gravitación… ¡Infinitos!

La mecánica cuántica y sus secretos han dado lugar a grandes controversias, y la cantidad de disparates que ha sugerido es tan grande que los físicos serios ni siquiera sabrían por donde empezar a refutarlos. Algunos dicen que “la vida sobre la Tierra comenzó con un salto cuántico”, que el “libre albedrío” y la “conciencia” se deben a la mecánica cuántica: incluso fenómenos paranormales han sido descritos como efectos mecanocuánticos.

Yo sospecho que todo esto es un intento de atribuir fenómenos “ininteligibles” a causas también “ininteligibles” (como la mecánica cuántica) dónde el resultado de cualquier cálculo es siempre una probabilidad, nunca una certeza.

Claro que, ahí están esas teorías más avanzadas y modernas que vienen abriendo los nuevos caminos de la Física y que, a mi no me cabe la menor duda, más tarde o más temprano, podrá explicar con claridad esas zonas de oscuridad que ahora tienen algunas teorías y que Einstein señalaba con acierto.

¿No es curioso que, cuando se formula la moderna Teoría M, surjan, como por encanto, las ecuaciones de Einstein de la Relatividad General? ¿Por qué están ahí? ¿Quiere eso decir que la Teoría de Einstein y la Mecánica Cuántica podrán al fin unirse en pacifico matrimonio sin que aparezcan los dichosos infinitos?

Bueno, eso será el origen de otro comentario que también, cualquier día de estos, dejaré aquí para todos ustedes.

emilio silvera

Desde la materia “inerte”… ¡Hasta los pensamientos!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Lo mismo que desconocemos la auténtica naturaleza de la Luz, que según creo encierra muchos secretos que tenemos que desvelar para conocer la realidad de la Naturaleza y del Universo, de la misma manera, tenemos que llegar a desvelar los secretos que se encierra en esa esencial y sencilla sustancia que llamamos agua, ya Tales de Mileto nos hablaba de la importancia que esa sustancia tenía para la vida.

¿Cómo es posible que, a partir de la materia “inerte”, hayan podido surgir seres vivos e incluso, algunos que, como nosotros puedan pensar? Que cosa mágica se pudo producir en el corazón de las estrellas para que, materiales sencillos como el Hidrógeno se convirtieran a miles de millones de grados de calor en otros que, como el Carbono, Oxigeno y Nitrógeno…, muchos miles de millones de años más tardes, en mundos perdidos en sistemas planetarios como el nuestro, dieran lugar a la formación de Protoplasma vivo del que surgieron aquellos infinitesimales seres que llamamos bacterias y que, posibilitaron la evolución hacia formas de vida superiores?

       Los sentidos: las herramientas que utiliza el cerebro para estar comunicado con el exterior

La percepción, los sentidos y los pensamientos… Para poder entender la conciencia como proceso es preciso que entendamos cómo funciona nuestro cerebro, su arquitectura y desarrollo con sus funciones dinámicas. Lo que no está claro es que la conciencia se encuentre causalmente asociada a ciertos procesos cerebrales pero no a otros.

El cerebro humano ¿es especial?,  su conectividad, su dinámica, su forma de funcionamiento, su relación con el cuerpo y con el mundo exterior, no se parece a nada que la ciencia conozca. Tiene un carácter único y ofrecer una imagen fidedigna del cerebro no resulta nada fácil; es un reto tan extraordinario que no estamos preparados para cumplir en este momento. Estamos lejos de ofrecer esa imagen completa, y sólo podemos dar resultados parciales de esta enorme maravilla de la Naturaleza.

                 Aquí se fraguan los pensamientos como en las galaxias lo hacen las estrellas

Nuestro cerebro adulto, con poco más de 1 Kg de peso, contiene unos cien mil millones de células nerviosas o neuronas. La parte o capa ondulada más exterior o corteza cerebral, que es la parte del cerebro de evolución más reciente, contiene alrededor de treinta millones de neuronas y un billón de conexiones o sinapsis. Si contáramos una sinapsis cada segundo, tardaríamos 32 millones de años en acabar el recuento. Si consideramos el número posible de circuitos neuronales, tendremos que habérnoslas con cifras hiperastronómicas. Un 10 seguido de, al menos, un millón de ceros (en comparación, el número de partículas del universo conocido asciende a “tan sólo” un 10 seguido de 79 ceros). ¡A que va a resultar que no somos tan insignificantes!

El suministro de datos que llega en forma de multitud de mensajes procede de los sentidos, que detectan el entorno interno y externo, y luego envía el resultado a los músculos para dirigir lo que hacemos y decimos. Así pues, el cerebro es como un enorme ordenador que realiza una serie de tareas basadas en la información que le llega de los sentidos. Pero, a diferencia de un ordenador, la cantidad de material que entra y sale parece poca cosa en comparación con la actividad interna. Seguimos pensando, sintiendo y procesando información incluso cuando cerramos los ojos y descansamos.

Con tan enorme cantidad de circuitos neuronales, ¿cómo no vamos a ser capaces de descifrar todos los secretos de nuestro universo? ¿De qué seremos capaces cuando podamos disponer de un rendimiento cerebral del 80 ó 90 por ciento? Algunas veces hemos oido comentar: “Sólo utilizamos un diez por ciento del cerebro…” En realidad, la frase no indica la realidad, se refiere al hecho de que, aunque utilizamos el cerebro en su totalidad, se estima que está al diez por ciento de su capacidad real que, será una realidad a medida que evolucione y, en el futuro, esa capacidad de hoy será un 90 por ciento mayor.

Aún no conocemos bien la direccionalidad de los circuitos neuronales

El límite de lo que podremos conseguir tiene un horizonte muy lejano. Y, llega un momento en el cual, se puede llegar a pensar que no existen limites en lo que podemos conseguir: Desde hablar sin palabras sonoras a la auto-transportación. Si -como pienso- somos pura energía pensante, no habrá límite alguno; el cuerpo que ahora nos lleva de un lugar a otro, ya no será necesario, y como los fotones que no tienen masa, podremos desplazarnos a velocidades lumínicas.

Creo que estoy corriendo demasiado en el tiempo, volvamos a la realidad. A veces mi mente se dispara. Lo mismo visito mundos extraordinarios con mares luminosos de neón líquido poblados por seres transparentes, que viajo a galaxias muy lejanas pobladas de estrellas de fusión fría circundadas por nubes doradas compuestas de antimateria en la que, los positrones medio congelados, se mueven lentamente formando un calidoscopio de figuras alucinantes de mil colores. ¡La mente, qué tesoro!

   ¿Quién podría decir, si no se les explicara, que son “mundos” diferentes” Nuestra Red Neuronal y el Universo. Sin embargo, ¡parece tan iguales! Si pudiéramos medir la grandeza del cerebro por la imaginación, entonces, el universo sería, casi tan grande como él.

La unidad a partir de la cual se configuran todas las fabulosas actividades del cerebro es una célula del mismo, la neurona. Las neuronas son unas células fantásticamente ramificadas y extendidas, pero diminutas que, sin embargo y en sentido figurado,  podríamos decir que son tan grandes como el universo mismo.

Cuando seamos capaces de convertir en realidad todo aquello en lo que podamos pensar, entonces, habremos alcanzado la meta. Para que eso pueda llegar a ocurrir, aún falta mucho tiempo. Sin embargo, si el Universo no lo impide y nuestro transcurrir continúa, todo lo que podamos imaginar… podrá ser posible. Incluso imposibilidades físicas de hoy, dejarán de existir mañana y, ¡la Mente! posiblemente (al igual que hoy ordena a las distintas partes del cuerpo que realice esta o aquella función), se encargará de que todo funcione bien, erradicará cualquier enfermedad que nos pueda atacar y, tendrá el conjunto del “sistema” en perfectas condiciones de salud, lo cual me lleva a pensar que, para cuando eso llegue, los médicos serán un recuerdo del pasado.

Cuando se explica la evolución del ser humano se habla del proceso de hominización. Esta es el surgimiento de la especie humana tal y como la conocemos, …

Es curioso y sorprendente la evolución alcanzada por la Mente Humana. El mundo físico se representa gobernado de acuerdo a leyes matemáticas. Desde este punto de vista, todo lo que hay en el universo físico está realmente gobernado en todos sus detalles por principios matemáticos, quizá por ecuaciones tales que aún no hemos podido llegar a comprender y, ni que sabemos que puedan existir.

Lo más seguro es que la descripción real del mundo físico esté pendiente de matemáticas futuras, aún por descubrir, fundamentalmente distintas de las que ahora tenemos. Llegarán nuevos Gauss, Riemann, Euler, o, Ramanujans… que, con sus nuevas ideas transformarán el pensamiento matemático para hacer posible que podamos, al fin, comprender lo que realmente somos.

http://2.bp.blogspot.com/_gcNb8BU50Hw/TStpK0vZ7kI/AAAAAAAALNE/lKkSQu1F8Yw/s1600/inteligencia%2Bartificial.jpg

Son nuestras Mentes, productos de la evolución del Universo que, a partir de la materia inerte, ha podido alcanzar el estadio bio-químico de la consciencia y, al ser conscientes, hemos podido descubrir que existen “números misteriosos” dentro de los cuales subyacen mensajes que tenemos que desvelar.

Antes tendremos que haber descifrado las funciones modulares de los cuadernos perdidos de Ramanujan, o por ejemplo, el verdadero significado del número 137, ése número puro adimensional que encierra los misterios del electrón (e) – electromagnetismo -, de la constante de Planck (h) – el cuando te acción – y de la luz (c) – la relatividad -.

El cerebro humano avanza al ritmo que le marca el Universo

Los resultados son lentos, no se avanza con la rapidez que todos deseamos. Sin embargo, eso ocurre por algo, el ritmo del Universo considerado como Naturaleza, podríamos decir que está determinado por una Naturaleza “sabia” y, si actúa de esa manera… ¡Por algo será! Deja que de vez en cuando, sobresalgan algunas mentes y se eleven por encima del común, de ejemplos tenemos la historia llena. Esos “saltos” de la conciencia son los tiempos que marca el Universo para que, poco a poco, se produzca nuestra evolución, es la única forma de que todo se haga de manera correcta y de que, los nuevos pensamientos se vayan asentando debidamente en las Mentes futuras. Pongamos un ejemplo: Poincaré expuso su conjetura y, más de un siglo después, Perelman la resolvió. Riemann expuso su geometría del espacio curvo, y hasta 60 años más tarde no fue descubierta por Einstein para hacer posible su formulación de la relatividad general, donde describe cómo las grandes masas distorsionan el espacio y el tiempo por medio de la fuerza de gravedad que generan. El conocimiento humano avanza al ritmo que le impone la Naturaleza.

[dark-matter-625x450.jpg]

¡Son tantos los secretos que nos quedan por desvelar! la Naturaleza es la portadora de todas las respuestas…Observémosla con atención y, aprendamos de ella y, de ser posible, procuremos no molestarla, “Ella” nos permite estar aquí para que evolucionemos y, algún día, cuando seamos mayores…quizás nos deje formar parte de algo más…¿mental?

No, no será nada fácil imitar a la Naturaleza…¡Esa perfección! Sin embargo, llegados a ese punto, debemos pensar que nosotros también formamos parte de ella, la parte que piensa y, si es así, ¿qué cometido tendremos asignado en este Universo? Esa es la pregunta que ninguno de los grandes pensadores de la Historia, han podido contestar.

Pensar, por ejemplo, en las complejas matemáticas topológicas requeridas por la teoría de supercuerdas puede producir incomodidad en muchas personas que, aún siendo físicos, no están tan capacitados como para entender tan profundas ideas (me incluyo).

Bernhard Riemann introdujo muchas nuevas ideas y fue uno de los más grandes matemáticos. En su corta vida (1.826 – 1.866) propuso innumerables propuestas matemáticas que cambiaron profundamente el curso del pensamiento de los números en el planeta Tierra, como el que subyace en la teoría relativista en su versión general de la gravedad, entre otras muchas (superficie de Riemann, etc.). Riemann les enseñó a todos a considerar las cosas de un modo diferente.

La superficie de Riemann asociada a la función holomorfa “tiene su propia opinión” y decide por sí misma cuál debería ser el, o mejor, su dominio, con independencia de la región del plano complejo que nosotros podamos haberle asignado inicialmente.

Podríamos encontrar otros muchos tipos de superficies de Riemann.

http://upload.wikimedia.org/wikipedia/commons/b/b5/Riemann_sqrt.jpg

Superficie de Riemann que aparece al extender el dominio de la función f (z) = \sqrt(z)

Este bello concepto desempeña un papel importante en algunos de los intentos modernos de encontrar una nueva base para la física matemática (muy especialmente en la teoría de cuerdas), y al final, seguramente se descubrirá el mensaje que encierra.

El caso de las superficies de Riemann es fascinante, aunque desgraciadamente sólo es para iniciados. Proporcionaron los primeros ejemplos de la noción general de variedad, que es un espacio que puede pensarse “curvado” de diversas maneras, pero que localmente (por ejemplo, en un entorno pequeño de cualquiera de sus puntos), parece un fragmento de espacio euclídeo ordinario.

Stereographic projection in 3D.png fig.1: Proyección estereográfica del plano complejo extendido sobre la “esfera de Riemann”.
RiemannKugel.jpg fig.2: La “esfera de Riemann” puede ser visualizada como el plano complejo envuelto alrededor de una esfera.

En matemática, la esfera de Riemann (o plano complejo extendido), llamado en honor al matemático del siglo XIX del mismo nombre, es una esfera obtenida del plano complejo mediante la adición de un punto del infinito. La esfera es la representación geométrica de los números complejos extendidos \mathbb{C} \cup \{\infty\}, (véase fig.1 y fig.2), la cual consiste en los números complejos ordinarios en conjunción con el símbolo \infty\! para representar el infinito.

La esfera de Riemann, superficie de Riemann compacta, el teorema de la aplicación de Riemann, las superficies de Riemann y aplicaciones complejas… He tratado de exponer en unas líneas la enorme importancia de este personaje para las matemáticas en general y la geometría y para la física en particular. Es uno de esos casos a los que antes me refería. Después de él, la Humanidad ha tenido un parón en el desarrollo de las ideas hasta que asimilaron las suyas y, después, llegó Einstein y otros.

                           La Geometría de Riemann de los espàcios curvos

Tenemos que convenir que todo, sin excepción, es relativo y resulta ya evidente la gran crisis de la noción de realidad “veritas” que el mundo padece, la ciencia BASE, la matemática, sufrió el varapalo a partir de la matemática topológica de Poincaré, y el desarrollo sorpresivo de la matemática del caos; de pronto el idealismo de la ecuación diferencial queda derribado : el mundo que funciona como un reloj de Tolomeo queda finiquitado; ¿donde puñetas está la materia perdida?; de pronto nuestras consciencias “comprenden” que la “verdad” no existe, es decir, que no existe nuestra realidad del mundo.

Y, mientras tanto, nuestras mentes siguen su camino, siempre queriendo ir más allá y siempre profundizando en los secretos de la Naturaleza de lo que tenemos muchos ejemplos, tales como nuestras consideraciones sobre los dos aspectos de la relatividad general de Einstein, a saber, el principio de la relatividad, que nos dice que las leyes de la física son ciegas a la distinción entre reposo y movimiento uniforme; y el principio de equivalencia, que nos dice de qué forma sutil deben modificarse estas ideas para englobar el campo gravitatorio.

Mediante la combinación de diversas observaciones de telescopios, y la ayuda del trabajo de modelación avanzada, el equipo de Emanuele Farina, de la Universidad de Insubria en la provincia de Como, Italia, y Michele Fumagalli del Instituto Carnegie de Ciencia, en Washington, D.C., Estados Unidos, fue capaz de captar como tal el trío de quásares, llamado QQQ J1519+0627. La luz de esos quásares ha viajado 9.000 millones de años-luz para llegar hasta nosotros, lo que significa que dicha luz fue emitida cuando el universo tenía sólo un tercio de su edad actual.

Todo es finito, es decir, que tiene un fin, y la velocidad de la luz no podía ser una excepción

Ahora hay que hablar del tercer ingrediente fundamental de la teoría de Einstein, que está relacionada con la finitud de la velocidad de la luz. Es un hecho notable que estos tres ingredientes básicos puedan remontarse a Galileo; en efecto, parece que fue también Galileo el primero que tuvo una expectativa clara de que la luz debería viajar con velocidad finita, hasta el punto de que intentó medir dicha velocidad. El método que propuso (1.638), que implica la sincronización de destellos de linternas entre colinas distantes, era, como sabemos hoy, demasiado tosco (otro ejemplo de la evolución que, con el tiempo, se produce en nuestras mentes). Él no tenía forma alguna de anticipar la extraordinaria velocidad de la luz.

Parece que tanto Galileo como Newton tenían poderosas sospechas respecto a un profundo papel que conecta la naturaleza de la luz con las fuerzas que mantienen la materia unida y, si consideramos que esa fuerza que hace posible la unión de la materia reside en el corazón de los átomos (en sus núcleos), podemos hacernos una clara idea de lo ilimitado que puede ser el pensamiento humano que, ya en aquellos tiempos -en realidad mucho anters- pudo llegar a intuir las fuerzas que están presentes en nuestro Universo.

En los núcleos atómicos reside la fuerza (nuclear fuerte) que hace posible la existencia de la materia que comienza por los átomos que, al juntarse y formar células, hace posible que éstas se junten y formen moléculas que a su vez, se reunen para formar sustancias y cuerpos.

Pero la comprensión adecuada de estas ideas tuvo que esperar hasta el siglo XX, cuando se reveló la verdadera naturaleza de las fuerzas químicas y de las fuerzas que mantienen unidos los átomos individuales. Ahora sabemos que tales fuerzas tienen un origen fundamentalmente electromagnético (que vincula y concierne a la implicación del campo electromagnético con partículas cargadas) y que la teoría del electromagnetismo es también la teoría de la luz.

Para entender los átomos y la química se necesitan otros ingredientes procedentes de la teoría cuántica, pero las ecuaciones básicas que describen el electromagnetismo y la luz fueron propuestas en 1.865 por el físico escocés James Clark Maxwell, que había sido inspirado por los magníficos descubrimientos experimentales de Michael Faraday unos treinta años antes y que él plasmó en una maravillosa teoría.

      El electromagnetismo presente en el Universo

El electromagnetismo es una rama de la Física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría. El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales dependientes de la posición en el espacio y del tiempo.

Esta teoría del electromagnetismo de Maxwell tenía la particularidad de que requería que la velocidad de la luz tuviera un valor fijo y definido, que normalmente se conoce como c, y que en unidades ordinarias es aproximadamente 3 × 108 metros por segundo. Maxwell, guiado por los experimentos de Faraday, hizo posible un hecho que cambió la historia de la humanidad para siempre. Un hecho de la misma importancia que el descubrimiento del fuego, la rueda o los metales. El matemático y poeta escocés unificó los campos eléctrico y magnético a través de unas pocas ecuaciones que describen como estos campos se entretejen y actúan sobre la materia.

La infinita escalera que tenemos que subir para tratar de saber, se pierde en las alturas, allí donde las brumas ocultan lo que deseamos desvelar. Nadie nunca, lo podrá saber todo sobre todo. Sin embargo, es cierto que, cada día, arrancamos un secreto a la Naturaleza y la comprendemos mejor.

Claro que, estos importantísimos avances han sido simples escalones de la “infinita” escalera que tenemos que subir y, la misma relatividad de Einstein no ha sido (después de un siglo) aún comprendido en su plenitud y muchos de sus mensajes están escondidos en lo más profundo de nuestras mentes que, ha sabido parcialmente descubrir el mensaje de Einstein pero, seguimos buscando.

Sin embargo, esto nos presenta un enigma si queremos conservar el principio de relatividad. El sentido común nos diría que si se mide que la velocidad de la luz toma el valor concreto c en el sistema de referencia del observador, entonces un segundo observador que se mueva a una velocidad muy alta con respecto al primero medirá que la luz viaja a una velocidad diferente, aumentada o disminuida, según sea el movimiento del segundo observador.

Estaría bueno que, al final se descubriera que alfa (α) tuviera un papel importante en la compleja teoría de cuerdas, ¿Por qué no? En realidad alfa, la constante de estructura fina, nos habla del magnetismo, de la constante de Planck y de la relatividad especial, es decir, la velocidad de la luz y, todo eso, según parece, emergen en las ecuaciones topológicas de la moderna teoría de cuerdas. ¡Ya veremos!

Pero el principio de relatividad exigiría que las leyes físicas del segundo observador (que definen en particular la velocidad de la luz que percibe el segundo observador) deberían ser idénticas a las del primer observador. Esta aparente contradicción entre la constancia de la velocidad de la luz y el principio de relatividad condujo a Einstein (como de hecho, había llevado previamente al físico holandés Hendrick Antón Lorentz y muy en especial al matemático francés Henri Poincaré) a un punto de vista notable por el que el principio de relatividad del movimiento puede hacerse compatible con la constancia de una velocidad finita de la luz.

¿Cómo funciona esto? Sería normal que cualquier persona creyera en la existencia de un conflicto irresoluble entre los requisitos de una teoría como la de Maxwell, en la que existe una velocidad absoluta de la luz, y un principio de relatividad según el cual las leyes físicas parecen las mismas con independencia de la velocidad del sistema de referencia utilizado para su descripción.

¿No podría hacerse que el sistema de referencia se moviera con una velocidad que se acercara o incluso superara a la de la luz? Y según este sistema, ¿no es cierto que la velocidad aparente de la luz no podría seguir siendo la misma que era antes? Esta indudable paradoja no aparece en una teoría, tal como la originalmente preferida por Newton (y parece que también por Galileo), en la que la luz se comporta como partículas cuya velocidad depende de la velocidad de la fuente. En consecuencia, Galileo y Newton podían seguir viviendo cómodamente con un principio de relatividad.

La velocidad de la luz en el vacío es una constante de la Naturaleza y, cuando cientos de miles de millones de millones salen disparados de esta galaxia hacia el vacío espacial, su velocidad de 299.792.450 metros por segundo, es constante independientemente de la fuente que pueda emitir los fotones y de si ésta está en reposo o en movimiento.

Así que, la antigua imagen de la naturaleza de la luz entró en conflicto a lo largo de los años, como era el caso de observaciones de estrellas dobles lejanas que mostraban que la velocidad de la luz era independiente de la de su fuente. Por el contrario, la teoría de Maxwell había ganado fuerza, no sólo por el poderoso apoyo que obtuvo de la observación (muy especialmente en los experimentos de Heinrich Hertz en 1.888), sino también por la naturaleza convincente y unificadora de la propia teoría, por la que las leyes que gobiernan los campos eléctricos, los campos magnéticos y la luz están todos subsumidos en un esquema matemático de notable elegancia y simplicidad.

Las ondas luminosas como las sonoras, actúan de una u otra manera dependiendo del medio en el que se propagan.

En la teoría de Maxwell, la luz toma forma de ondas, no de partículas, y debemos enfrentarnos al hecho de que en esta teoría hay realmente una velocidad fija a la que deben viajar las ondas luminosas.

El punto de vista geométrico-espaciotemporal nos proporciona una ruta particularmente clara hacia la solución de la paradoja que presenta el conflicto entre la teoría de Maxwell y el principio derelatividad.

Este punto de vista espaciotemporal no fue el que Einstein adoptó originalmente (ni fue el punto de vista de Lorentz, ni siquiera, al parecer, de Poincaré), pero, mirando en retrospectiva, podemos ver la potencia de este enfoque. Por el momento, ignoremos la gravedad y las sutilezas y complicaciones asociadas que proporciona el principio de equivalencia y otras complejas cuestiones, que estimo aburrirían al lector no especialista, hablando de que en el espacio-tiempo se pueden concebir grupos de todos los diferentes rayos de luz que pasan a ser familias de íneas de universo.

Baste saber que, como quedó demostrado por Einstein, la luz, independientemente de su fuente y de la velocidad con que ésta se pueda mover, tendrá siempre la misma velocidad en el vacío, c, o 299.792.458 metros por segundo. Cuando la luz atraviesa un medio material, su velocidad se reduce. Precisamente, es la velocidad c el límite alcanzable de la velocidad más alta del universo. Es una constante universal y, como hemos dicho, es independiente de la velocidad del observador y de la fuente emisora.

 

El Universo está dentro de nuestras Mentes

¡La Mente! Qué caminos puede recorrer y, sobre todo ¿quien la guía? Comencé este trabajo con la imagen del ojo humano y hablando de los sentidos y de la consciencia y mira donde he finalizado…Sí, nos falta mucho camino por recorrer para llegar a desvelar los misterios de la Mente que, en realidad, es la muestra más alta que el Universo nos puede mostrar de lo que puede surgir a partir de la sencillez de los átomos de hidrógeno que, evolucionados, primero en las entrañas de las estrellas y después en los circuitos de nuestras mentes, llega hasta los pensamientos y la imaginación que…son palabras mayores de cuyo alcance, aún no tenemos una idea que realmente refleje su realidad.

Pero, ¿existe alguna realidad?, o, por el contrario todo es siempre cambiante y lo que hoy es mañana no existirá, si “realmente” es así, ocurre igual que con el tiempo. La evolución es algo que camina siempre hacia adelante, es inexorable, nunca se para y, aunque como el tiempo pueda ralentizarse, finalmente sigue su camino hacia esos lugares que ahora, sólo podemos imaginar y que, seguramente, nuestros pensamientos no puedan (por falta de conocimientos) plasmar en lo que será esa realidad futura.

emilio silvera

¿Cómo podemos comprender algo del vasto Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

             Cuando en el Universo se rompieron las simetrías… ¡Comenzó a ser bello! Y, comprensible.

             Einstein decía: “Lo incomprensible del Universo es, que lo podamos comprender”

Creo que ningún hombre, o mujer, realmente reflexivo, deberían desear saberlo todo, pues cuando el conmocimiento y su análisis son completos, el pensamiento se detiene, la curioosidad desaparece y, hasta la imaginación se frena al no tener nada nuevo que imaginar ¿Saberlo Todo? ¡Qué aburrido! Sería el camino más certero hacia la decadencia y el hastío. El ansia de saber nos mantiene vivos, y, hace que perdure la emoción por descubrir.

La Ciencia describe y predice sucesos que, muchas veces están por llegar y, con la observación y el experimento, con el estudio de la Naturaleza, se llega a saber y comprender el por qué de los comportamientos que podemos ver en una estrella, una galaxia, en las Nebulosas y en objetos más exóticos como los púlsares y los agujeros negros. Lo cierto es que, como nuestros cerebros evolucionaron mediante la acción de las leyes de la Naturaleza, estas resuenan dentro de él, y, de esa manera podríamos llegar a comprender el por qué, a pesar de su complejidad, podemos comprender el vasto Universo. La ünica explicación plausible es que, nosotros, hemos desarrollado esa herramienta que forma parte de ese inmenso todo que llamamos Cosmos.

 Se repiten las sencillas piedras del río y también, las complejas galaxias del espacio “infinito”

La variación y el cambio son etapas inevitables e ineludibles por las cuales debe transitar todo sistema complejo para crecer y desarrollarse. Cuando esta transformación se consigue sin que intervengan factores externos al sistema, se denomina “auto-organización.

La auto-organización se erige como parte esencial de cualquier sistema complejo. Es la forma a través de la cual el sistema recupera el equilibrio, modificándose y adaptándose al entorno que lo rodea y contiene. En esta clase de fenómenos es fundamental la idea de niveles. Las interrelaciones entre los elementos de un nivel originan nuevos tipos de elementos en otro nivel, los cuales se comportan de una manera muy diferente. Por ejemplo, entre otros, las moléculas a las macromoléculas, las macromoléculas a las células y las células a los tejidos. De este modo, el sistema auto-organizado se va construyendo como resultado de un orden incremental espacio-temporal que se crea en diferentes niveles, por estratos, uno por encima del otro.

La Naturaleza nos presenta una serie de repeticiones  -pautas de conducta que  reaparecen a escalas diferentes, haciendo posible identificar principios, como las leyes de conservación, que se aplican de modo universal- y éstas pueden proporcional el vínculo entre los que ocurre dentro y fuera del cerebro humano que, a través del conocimiento, ha podido llegar a generar algo que llamamos Mente y que está, directamente conectada con el inmenso Universo que, de esa manera, podemos comprender… ¡aunque sólo en parte! Nos queda una gran asignatura pendiente de poder contestar qué es la Vida.

La célula viva es un sistema dinámico, en cambio constante en el cual las sustancias químicas se tornan ordenados por un tiempo en estructuras microscópicas, tan solo para disolverse nuevamente cuando otras moléculas se juntan para formar los mismos tipos de estructuras nuevamente, o para sustituirlas nuevamente en la misma estructura. Las organelas de las cuales las células están hechas no son más estáticas que la llama de una vela. En cualquier instante, la vela exhibe un patrón dinámico de casamientos y divorcios químicos, de procesos que producen energía y procesos que la consumen, de estructuras formándose y estructuras desapareciendo. La vida es proceso no una cosa.

¿Cómo ese proceso ordenado llegó a existir? Una vez que la célula es una entidad altamente ordenada y no aleatoria (evitando, la torpe regularidad de un cristal), se puede pensar en ella como un sistema que contiene información1. La información es un ingrediente que adicionado, trae a la vida lo que serían átomos no vivos. ¿Cómo – nos preguntamos-la información puede ser introducida sin una inteligencia creativa sobrenatural? Este es el problema que la ciencia aún tiene que responderse, lo que colocaría a Dios en la categoría de completamente desempleado.

Lo cierto es que, para llegar a comprender lo muy grande, tuvimos que saber de lo muy pequeño que, cuando se junta, es lo que conforma tiodo lo que podemos observgar en el Universo. Son tan complejos esos “Universos” de lo muy pequeño que llamamos mecánica cuántica que, en realidad, más que con palabras la tenemos que contar con número. Los números, las matemáticas es el lenguaje de la Física, la que realmente expresa lo que queremos decir y que las palabras no pueden. El lenguaje ordinario de las palabras no es suficiente para contar todo lo que ocurre en ese micho mundo de la materia.

Claro que el misterio no es que coincidamos con el Universo, sino que en cierta medida estamos en conflicto con él, y sin embargo, podemos comprender algo de él. ¿Por qué esto es así? En busca de una respuesta, detengámonos otra vez, a beber en la fuente burbujeante de la simetría. La simetría, recordemos, no sólo implica la existencia de una invariancia bajo una transformación, la base de toda Ley natural, sino que también una “debida proporción” entre la invariancia y un marco de referencia mayor y más inclusivo.

                Einstein decía que la Mente, funciona como un paracidas, sólo funciona si se abre

La Mente, con sus limitaciones intrínsecas, forma un marco dentro del cual nuestras ideas pueden juguetear; hasta la teoría más amplia está enmarcada en un bocabulario matemático, verbal o visual específico. Luego ponemos a prueba nuestras ideas comparándolas con una parte del mundo externo, que sin embargo, tiene a su vez un marco a su alrededor. Este proceso es útil mientras no lleguemos a un campo sin marco, sin límites. El Teorema de Gödel indica que esto nmunca ocurrirá, que una teoría, por su misma naturaleza, requiere para su verificación la existencia o contemplación de un marco de referencia mayor. Es la condición límite, pues, la que brinda la distinción esencial entre la Mente y el Universo; Los Pensamientos y los Sucesos están limitados, aunque la totalidad no lo es´te (Ideas como esta aparecieron en Grecia, cuando el pensamiento griego, como el de Filolao de Tarento escribió, alrededor de 460 a.C.: “La Naturaleza, en el Cosmos, armonizó lo Ilimitado y lo limitado, el orden de la totalidad de todas las cosas dentro de ella”-.

http://2.bp.blogspot.com/-p0p6McBnPMc/VKpWonI9fcI/AAAAAAAALnk/uFWA-UPPZg8/s1600/20140816_083215.jpg

Cuando miramos el Horizonte, nos encontramos con un límite que no podemos traspasar, y, ese límite nos habla de nuestras carencias. No podemos ir más allá de los límite que la Naturaleza nos impone y, para evitar eso, nos valemos de ingenios que hemos inventado y que nos permiten llegar mucho más lejos de lo que nuestro físico nos permite.

¿Y de dónde provienen los límites? Muy posiblemente de la ruptura de simetrías cósmicas en el momento de la Génesis. Contemplamos un paisaje cósmico hendido por las líneas de fracturas de simetrías rotas, y tomamos de sus esquemas metáforas que aspiran a ser tan creativas, si no siempre tan agrietadas, como el universo que se propone describir.

         Vivímos en un mundo tridimensional y, cuando queremos escenificar ese mundo de más dimensiones… ¡No podemos! Así pues, el universo original estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero … ¡Nuestro UniversoAsimétrico!

Sólo las matemáticas lo consiguen dibujar. La última parada antes de que tal cosa suceda se llama “supergravedad”, una construcción matemáticamente complicada que consigue combinar la supersimetría con la fuerza gravitatoria pero, ¿qué es la supergravedad? Meternos en esos berengenales matemáticos sería algo engorroso y (para muchos) aburrido.

“Todas las metáforas son imperfectas”, decía el poeta Robert Prost, y en eso reside su belleza.

 

Puede ser, pues, que el universo sea comprensible porque es defectuoso, que gracias a que renunció a la perfección del no ser por el revoltijo del ser existimos nosotros, percinbimos la embrollada e imperfecta realidad y la sometemos a prueba con el fantasmal espectro del pensamiento de la simetría primordial que la precedió. Somos, por lo tanto pensamos. (O, como dice el cuentista Jorge Luis Borge: “Pese a uno mismo, uno piensa”.

La Ciencia es un proceso, no un edificio, y se depoja de los viejos conceptos a medida que crece.”Las teoría -decía Ernest Mach- son como hojas marchitas, que caen después de haber permitido al organismo de la ciencia respirar por un tiempo”. El proceso depende del error -como señala Popper, una teoría es valiosa sólo si es susceptible de ser refutada-, como para dar testimonio de la ubicuidad y eficacia de la imperfección cósmica. Claro que, el error, a menudo puede ser fértil (ya lo explicaré en otro momento).

Acordáos que Einstein decía que la Mente era con un paracaidas que, sólo funciona cuando se abre. Así que, no pocas físicos siguen ese consejo y abrenb sus mentes a cuestiones que no han podido ser demostradas y, elaboran teorías, unas más complicadas que otras que, en definitiva persiguen saberl del Universo y buscar, algunas respuestas a preguntas planteadas que nadie ha sabido contestar. Así, para burlar la velocidad de la Luz nos agarramos a los Agujeros de Gusano, para saber de cómo es en realidad la Naturaleza surgen Teorías como las de Supercuerdas que nos llevan a un Universo de 11 dimensiones donde, la Gravedad de Einstein y la mecánica cuántica de Planck, pueden convivir tan ricamente.

La cienca es muy jóven y le queda mucho por avanzar, y, que sobreviva el tiempo suficiente para llegar a vieja, dependerá de nuestras conductas, cordura, coraje y vigor, y como siempre se debe añadir en esta era nuclear, de que no nos destruyamos antes nosotros mismos.

“Nada que sea grandioso entra en la vida de los mortales sin una maldición” Decía Sófocles, y el conocimiento de cómo brillan las estrellas es muy grande, y su lado oscuro es, en verdad, muy oscuro. Es innecesario decir que la Ciencia misma no nos librará de los peligros a los que su conocimiento nos ha expuesto, y, está en nosotros, sólo en nosotros, el tener la racionalidad necesaria para que su uso no se vuelva contra nosotros…

 

 

Si nos adentramos dentro de nosotros mismos, si mirámos hacia atrás en el tiempo, si estudiamos de manera detenida y pormenorizada todo loq ue hemos hecho desde la noche de los Tiempos, si hacemos ese viaje al interior de nuestro Ser más profundo… ¡Contemplamos un escenario frío y caliente, oscuro y de cegadora luz! Somos capaces de lo mejor y de lo peor, estamos agarrados por dos fuertes manos: Una es la Vida y la otra es la Muerte. Nosotros, en medio de esa verdad, no hemos podido superar todavía, esa realidad de la extinción, de una vida perecedera. Nuestras vidas, como nuestro planeta, oscilan suspendidas en una dualidad mitad luz y mitad oscuridad y sombra. Si mimploramos a la Naturaleza será en vano; ella es indiferente a nuestro destino, y su costumbre es ensayarlo todo y ser implacable con la competencia. El 99 por ciento de todas las especies que han vivido en la Tierra han desaparecido, y, desde luego, ninguna estrella titilará en nuestro homenaje cuando nos vayamos de este mundo.

Epicteto, el ex esclavo señalaba que:

“Toda cuestión tiene dos asas, por una de las cuales se la puede coger, y por la otra no.

Si tu hermano te ofende, no aborde la cuestión por este lado, que él te ofende, pues de esa asa no se puede coger la cuestión. En cambio, abórdala por el otro lado, que él es tu hermano, tu amigo nato; y podrás dominarla, por el asa que soporta su cogida”.

Por lo tanto,  decimos  -hablamos como seres vivos y (creemos) como seres pensantes, como conquistadores del fuego-, por lo tanto, pues, elegimos la vida. Claro que, la elección nunca podrá estar en nuestras manos y, lo único que podremos hacer con ayuda de la Ciencia, será alargárla lo más posible para poder dejar, en este mundo, la mayor huella posible de nuestro efímero paso por él.

 El cerebro es capaz de inventar recuerdos de hechos que nunca ocurrieron y visitar lugares que, ¡no sabemos si existirán en alguna parte! Los cien mil millones de neuronas que no dejan de titilar produciendo fogonazos que hacen saltar las ideas que nos llegan, no pocas veces sin saber de dónde, es aún un gran misterio que los estudiosos tratan de resolver. No se ha podido llegar a saber cómo funciona el cerebro humano y su complejidad es tal que, sólo el universo mismo se le podría comparar.

La capacidad humana para aprender, inventar, buscar recursos, y sobre todo, adaptarse a las circunstancias es bastante grande. A lo largo de los últimos milenios Civilizaciones del pasado han demostrado que desarrollarse y constituir sociedades que apuntan maneras de querer hacer bien las cosas. Bueno, al menos esas son las sensaciones que yo he podido percibir.

Constituido por innumerables galaxias de estrellas, nuestro Universo,  no sólo es asombroso, sino que, es mucho más de lo que nuestras pobres mentes pueden imaginar. multitud de Nebulosas de las que “nacen” nuevas y brillantes estrellas y mundos, una inmensidad de objetos exóticos de una rica variedad que subyacen en las estrellas de neutrones como púlsares y magnétares, o, los agujeros negros misteriosos y, todo ello, en un espacio de una magnitud inimaginable para nuestras mentes que, percibe continuados mensajes que les envían los sentidos provenientes de los objetos y las cosas cotidianas que nos rodean pero, con una limitación inconmensurable que nos deja inmersos en una nube de ignorancia que, desde hace mucho tiempo, tratamos de desterrar… ¡Sin conseguirlo!

El camino hacia la total comprensión de la Naturaleza comenzó cuando fuímos conscientes de que nuestros conocimientos eran limitados y nuestra ignorancia infinita. Ya nos lo dijo Sócrates: “Solo se que no se nada”, después de él, muchos han sido los filósofos que de una u otra manera han dicho lo mismo en variadas versiones.

No puedo desechar la idea de que, con los “universos” ocurre lo mismo que ocurre con los mundos, con las estrellas y con las galaxias: ¡Que son infinitos! Dentro de un Multiverso mayor al que no hemos podido tener acceso, toda vez que, nuestras limitaciones, en este caso… ¡Son infinitas. Hablamos de ir a otros mundos sin pararnos a pesar en la complejidad que dicho viaje conlleva. Una cosa es enviar ingenios robotizados y, otra muy distinta, que sean personas las que intenten esa empresa que, al menos en los próximas décadas… ¡Será imposible de concretar!

Sin embargo, como nos pasa con las teorías, hablamos, imaginamos y planteados “mundos” ilusorios y viajes imposibles que, si alguna vez son una realidad, esa estará situada muy lejos en el tiempo que está por venir. Sin embargo, nuestra manera de ser, nos lleva a no pararnos ante nada, hacemos como que, las barreras no existen y nos imaginamos haciendo cosas que… “nunca podremos”.

Mientras tanto… ¡Sigamos soñando!

emilio silvera