jueves, 26 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La rotación de las partículas y otros temas de física

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (12)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

solido9.gif (1625 bytes)

Momento angular de una partícula

Si hablamos de las partículas no podemos dejar a un lado el tema del movimiento rotatorio de las mismas. Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra o el Sol, o nuestra galaxia o, si se me permite decirlo, como el propio universo. En 1.925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas.

Movimiento de una carga puntual en un campo magnético.

 Los campos magnéticos no realizan trabajo sobre las partículas y no modifican su energía cinética. Veamos la imagen. cabe notar en la imagen que la fuerza magnética es perpendicular a la velocidad de la partícula haciendo que se mueva en una órbita circular. La fuerza magnética proporciona la fuerza centrípeta necesaria para que la partícula adquiera la aceleración v2 /r del movimiento circular.


Las partículas al girar, generan un minúsculo campo electromagnético; tales campos han sido objeto de medidas y exploraciones, principalmente por parte del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nobel de Física en 1.943 y 1.944 respectivamente, por sus trabajos sobre dicho fenómeno.

Esas partículas (al igual que el protón, el neutrón y el electrón), que poseen espines que pueden medirse en números mitad, se consideran según un sistema de reglas elaboradas independientemente, en 1.926, por Fermi y Dirac; por ello, se las llama y conoce como estadísticas Fermi-dirac. Las partículas que obedecen a las mismas se denominan fermiones, por lo cual el protón, el electrón y el neutrón son todos fermiones.

Hay también partículas cuya rotación, al duplicarse, resulta igual a un número par. Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S. N. Bose. Las partículas que se adaptan a la estadística Bose-Einstein son bosones, como por ejemplo la partícula alfa.

Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de esta teoría en vez de los de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dado. Dichas partículas (como dije antes) son bosones, que tienden a juntarse.

Los bosones tienen un momento angular nh/2π, donde n es 0 o un entero, y h es la constante de Planck. Para bosones idénticos, la función de ondas es siempre simétrica. Si sólo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n + ½)h / 2π y cualquier función de ondas de fermiones idénticos es siempre antisimétrica. La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.

En un espacio de dos dimensiones es posible que haya partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas se conocen con el nombre de aniones; para aniones idénticos, la función de ondas no es simétrica (un cambio de fase de +1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

Debido al principio de exclusión de Pauli, no es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7 K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos dorman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Satyendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.

                                                    Un condensado de Bose-Einstein

Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender cómo forma  un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.

Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es materia. La materia es la luz, la energía, el magnetismo, en  definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas partes (aunque no podamos verla).

                                             Todo lo que rota crea un campo magnético

Sea como fuere, la rotación del neutrón nos da la respuesta a esas preguntas:

¿Qué es el antineutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos.

Es indudable que las antipartículas pueden combinarse para formar la antimateria, de la misma forma que las partículas corrientes forman la materia ordinaria.

La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un antideuterón. Desde entonces se ha producido el antihelio 3, y no cabe duda de que se podría crear otros antinúcleos más complicados aún si se abordara el problema con más interés.

http://23.253.163.107/wp-content/uploads/2011/05/hf_mystmon_multisun_01.jpg

Cualquier imagen que imaginemos podemos decir que es la anti-materia pero…

Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así pues, los astrónomos observan especulativamente las galaxias, para tratar de encontrar alguna actividad inusual que delate interacciones materia-antimateria.

No parece que dichas observaciones fuesen un éxito. ¿Es posible que el universo esté formado casi enteramente por materia, con muy poca o ninguna antimateria? Y si es así, ¿por qué? Dado que la materia y la antimateria son equivalente en todos los aspectos, excepto en su oposición electromagnética, cualquier fuerza que crease una originaría la otra, y el universo debería estar compuesto de iguales cantidades de la una y de la otra.

Este es el dilema. La teoría nos dice que debería haber allí antimateria, pero las observaciones lo niegan, no lo respaldan. ¿Es la observación la que falla? ¿Y qué ocurre con los núcleos de las galaxias activas, e incluso más aún, con los quásares? ¿Deberían ser estos fenómenos energéticos el resultado de una aniquilación materia-antimateria? ¡No creo! Ni siquiera ese aniquilamiento parece ser suficiente, y los astrónomos prefieren aceptar la noción de colapso gravitatorio y fenómenos de agujeros negros, como el único mecanismo conocido para producir la energía requerida.

La materia normal como la conocemos, está compuesta de átomos, las distintas organizaciones de distintos átomos forman todos los tipos de moléculas y estos a su vez la materia. Estos átomos están compuestos por electrones, protones y neutrones, los elementos más pequeños conocidos (eso sin contar los quarks y demás). Ahora bien, la antimateria se compone del mismo modo, con algo llamado anti-átomos, que están constituidos por antielectrones (también llamados positrones), antiprotones y antineutrones. (Dirac, predijo el positrón que, poco después fue descubierto)-

Con esto de la antimateria me ocurre igual que con el hecho, algunas veces planteado, de la composición de la materia en lugares lejanos del universo. “Ha caído una nave extraterrestre y nuestros científicos han comprobado que está hecha de un material desconocido, casi indestructible”. Este comentario se ha podido oír en alguna película de ciencia ficción. Podría ser verdad (un material desconocido), sin embargo, no porque la nave esté construida por una materia distinta, sino porque la aleación es distinta y más avanzada a partir de los materiales conocidos del universo. En cualquier parte del universo, por muy lejana que pueda estar, rigen los mismos principios y las mismas fuerzas: la materia y la energía son las mismas en cualquier parte. Lo único que puede diferir es la forma en que se utilice, el tratamiento que se le pueda dar, y sobre todo, el poseer el conocimiento y la tecnología necesarios para poder obtener el máximo resultado de las propiedades que dicha materia encierra, porque, en última instancia, ¿es en verdad inerte la materia?

Tiene y encierra tantos misterios la materia que estamos aún a años luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos, pero que tampoco sabemos, en realidad, a qué son debidas. Sí, sabemos ponerles etiquetas como la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio, y con mayor frecuencia, en los elementos que conocemos como transuránicos.

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de su ruptura, sobrepasando a la emisión de partículas alfa. ¡Parece que la materia está viva! Son muchas las cosas que desconocemos, y nuestra curiosidad nos empuja continuamente a buscar esas respuestas.

El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o el antineutrón), y por lo tanto, han sido denominados leptones (de la voz griega leptos, que dignifica “delgado”).

Aunque el electrón fue descubierto en 1.897 por el físico británico Joseph John Thomson (1.856 – 1.940), el problema de su estructura, si la hay, aún no está resuelto. Conocemos su masa y su carga negativa que responden a 9’1093897 (54) × 10-31 Kg la primera, y 1’60217733 (49) × 10-19 culombios la segunda, y también su radio clásico r0 igual a e2/(mc2) = 2’82 × 10-13 cm. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve una carga eléctrica, sea la que fuese (sabemos cómo actúa y cómo medir sus propiedades, pero aún no sabemos qué es), que tenga asociada un mínimo de masa.

Lo cierto es que el electrón es una maravilla en sí mismo. El universo no sería como lo conocemos si el electrón fuese distinto a como es; bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.

Aquí, un electrón e desviado por el campo eléctrico de un núcleo atómico produce prenorradiación. El cambio de energía E2 − E1 determina la fecuencia f del fotón emitido. ¡No por pequeño se el insignificante!

Recordémoslo, todo lo grande está hecho de cosas pequeñas. En realidad, existen partículas que no tiene asociada ninguna masa en absoluto, es decir, ninguna masa en reposo. Por ejemplo, las ondas de luz y otras formas de radiación electromagnética se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones). Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda, se denomina fotón, de la palabra griega que significa “luz”.

El fotón tiene una masa de 1, una carga eléctrica de 0, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma de que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este término se reserva para la familia formada por el electrón, el muón y la partícula tau, con sus correspondiente neutrinos: υe, υμ y υτ.

Existen razones teóricas para suponer que cuando  las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitaciones. Esas ondas pueden, así mismo, poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

La forma gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón, y por tanto, ha de ser inimaginablemente difícil de detectar.

Parece que los tenemos a todos bien localizados pero… ¿Dónde está el Gravitón?

    Seguramente riéndose de nuestra ignorancia

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón. Llegó a emplear un par de cilindros de aluminio de 153 cm de longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío. Los gravitones (que serían detectados en forma de ondas) desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegase a captar la cienbillonésima parte de un centímetro. Las débiles ondas de los gravitones, que proceden del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea. En 1.969, Weber anunció haber detectado los efectos de las ondas gravitacionales. Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general). Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaron el hallazgo de Weber.

En cualquier caso, no creo que a estas alturas alguien pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria. La masa del gravitón es 0, su carga es 0, y su espín es 2. Como el fotón, no tiene antipartícula; ellos mismos hacen las dos versiones.

emilio silvera

¿Cómo podemos comprender algo del vasto Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

            Cuando en el Universo se rompieron las simetrías… ¡Comenzó a ser bello! Y, comprensible.

             Einstein decía: “Lo incomprensible del Universo es, que lo podamos comprender”

Creo que ningún hombre, o mujer, realmente reflexivo, deberían desear saberlo todo, pues cuando el conmocimiento y su análisis son completos, el pensamiento se detiene, la curioosidad desaparece y, hasta la imaginación se frena al no tener nada nuevo que imaginar ¿Saberlo Todo? ¡Qué aburrido! Sería el camino más certero hacia la decadencia y el hastío. El ansia de saber nos mantiene vivos, y, hace que perdure la emoción por descubrir.

La Ciencia describe y predice sucesos que, muchas veces están por llegar y, con la observación y el experimento, con el estudio de la Naturaleza, se llega a saber y comprender el por qué de los comportamientos que podemos ver en una estrella, una galaxia, en las Nebulosas y en objetos más exóticos como los púlsares y los agujeros negros. Lo cierto es que, como nuestros cerebros evolucionaron mediante la acción de las leyes de la Naturaleza, estas resuenan dentro de él, y, de esa manera podríamos llegar a comprender el por qué, a pesar de su complejidad, podemos comprender el vasto Universo. La ünica explicación plausible es que, nosotros, hemos desarrollado esa herramienta que forma parte de ese inmenso todo que llamamos Cosmos.

 Se repiten las sencillas piedras del río y también, las complejas galaxias del espacio “infinito”

La variación y el cambio son etapas inevitables e ineludibles por las cuales debe transitar todo sistema complejo para crecer y desarrollarse. Cuando esta transformación se consigue sin que intervengan factores externos al sistema, se denomina “auto-organización.

La auto-organización se erige como parte esencial de cualquier sistema complejo. Es la forma a través de la cual el sistema recupera el equilibrio, modificándose y adaptándose al entorno que lo rodea y contiene. En esta clase de fenómenos es fundamental la idea de niveles. Las interrelaciones entre los elementos de un nivel originan nuevos tipos de elementos en otro nivel, los cuales se comportan de una manera muy diferente. Por ejemplo, entre otros, las moléculas a las macromoléculas, las macromoléculas a las células y las células a los tejidos. De este modo, el sistema auto-organizado se va construyendo como resultado de un orden incremental espacio-temporal que se crea en diferentes niveles, por estratos, uno por encima del otro.

La Naturaleza nos presenta una serie de repeticiones  -pautas de conducta que  reaparecen a escalas diferentes, haciendo posible identificar principios, como las leyes de conservación, que se aplican de modo universal- y éstas pueden proporcional el vínculo entre los que ocurre dentro y fuera del cerebro humano que, a través del conocimiento, ha podido llegar a generar algo que llamamos Mente y que está, directamente conectada con el inmenso Universo que, de esa manera, podemos comprender… ¡aunque sólo en parte! Nos queda una gran asignatura pendiente de poder contestar qué es la Vida.

La célula viva es un sistema dinámico, en cambio constante en el cual las sustancias químicas se tornan ordenados por un tiempo en estructuras microscópicas, tan solo para disolverse nuevamente cuando otras moléculas se juntan para formar los mismos tipos de estructuras nuevamente, o para sustituirlas nuevamente en la misma estructura. Las organelas de las cuales las células están hechas no son más estáticas que la llama de una vela. En cualquier instante, la vela exhibe un patrón dinámico de casamientos y divorcios químicos, de procesos que producen energía y procesos que la consumen, de estructuras formándose y estructuras desapareciendo. La vida es proceso no una cosa.

http://img.webme.com/pic/r/recursosbiologiauct/celula.gif

¿Cómo ese proceso ordenado llegó a existir? Una vez que la célula es una entidad altamente ordenada y no aleatoria (evitando, la torpe regularidad de un cristal), se puede pensar en ella como un sistema que contiene información1. La información es un ingrediente que adicionado, trae a la vida lo que serían átomos no vivos. ¿Cómo – nos preguntamos-la información puede ser introducida sin una inteligencia creativa sobrenatural? Este es el problema que la ciencia aún tiene que responderse, lo que colocaría a Dios en la categoría de completamente desempleado.

No siempre, nuestras mentes, llegan a poder asimilar que, partiendo de Quarks y Leptones, se puedan conformar objetos tan grandes las estrellas y los mundos y, mientras que algunos son descomunales, como la estrella VY Canis Majoris que, si la comparamos con el Sol, deja a este casi invisible por su pequeñes en comparación y, sin embargo, para nosotros, el Sol es descomunal. Esto quiere decir que no hay nada grande ni pequeño, las medidas de las cosas irán en función de su importancia local, es decir, de la función que esté desempeñando en su medio.

Lo cierto es que, para llegar a comprender lo muy grande, tuvimos que saber de lo muy pequeño que, cuando se junta, es lo que conforma todo lo que podemos observgar en el Universo. Son tan complejos esos “Universos” de lo muy pequeño que llamamos mecánica cuántica que, en realidad, más que con palabras la tenemos que contar con número. Los números, las matemáticas es el lenguaje de la Física, la que realmente expresa lo que queremos decir y que las palabras no pueden. El lenguaje ordinario de las palabras no es suficiente para contar todo lo que ocurre en ese micho mundo de la materia.

Claro que el misterio no es que coincidamos con el Universo, sino que en cierta medida estamos en conflicto con él, y sin embargo, podemos comprender algo de él. ¿Por qué esto es así? En busca de una respuesta, detengámonos otra vez, a beber en la fuente burbujeante de la simetría. La simetría, recordemos, no sólo implica la existencia de una invariancia bajo una transformación, la base de toda Ley natural, sino que también una “debida proporción” entre la invariancia y un marco de referencia mayor y más inclusivo.

              Einstein decía que la Mente, funciona como un paracidas, sólo funciona si se abre

La Mente, con sus limitaciones intrínsecas, forma un marco dentro del cual nuestras ideas pueden juguetear; hasta la teoría más amplia está enmarcada en un bocabulario matemático, verbal o visual específico. Luego ponemos a prueba nuestras ideas comparándolas con una parte del mundo externo, que sin embargo, tiene a su vez un marco a su alrededor. Este proceso es útil mientras no lleguemos a un campo sin marco, sin límites. El Teorema de Gödel indica que esto nmunca ocurrirá, que una teoría, por su misma naturaleza, requiere para su verificación la existencia o contemplación de un marco de referencia mayor. Es la condición límite, pues, la que brinda la distinción esencial entre la Mente y el Universo; Los Pensamientos y los Sucesos están limitados, aunque la totalidad no lo es´te (Ideas como esta aparecieron en Grecia, cuando el pensamiento griego, como el de Filolao de Tarento escribió, alrededor de 460 a.C.: “La Naturaleza, en el Cosmos, armonizó lo Ilimitado y lo limitado, el orden de la totalidad de todas las cosas dentro de ella”-.

http://2.bp.blogspot.com/-p0p6McBnPMc/VKpWonI9fcI/AAAAAAAALnk/uFWA-UPPZg8/s1600/20140816_083215.jpg

Cuando miramos el Horizonte, nos encontramos con un límite que no podemos traspasar, y, ese límite nos habla de nuestras carencias. No podemos ir más allá de los límite que la Naturaleza nos impone y, para evitar eso, nos valemos de ingenios que hemos inventado y que nos permiten llegar mucho más lejos de lo que nuestras condiciones  físicas nos permiten.

¿Y de dónde provienen los límites? Muy posiblemente de la ruptura de simetrías cósmicas en el momento de la Génesis. Contemplamos un paisaje cósmico hendido por las líneas de fracturas de simetrías rotas, y tomamos de sus esquemas y metáforas que aspiran a ser tan creativas, si no siempre tan agrietadas, como el universo que se propone describir.

         Vivímos en un mundo tridimensional y, cuando queremos escenificar ese mundo de más dimensiones… ¡No podemos! Así pues, el universo original estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero … ¡Nuestro UniversoAsimétrico!

Sólo las matemáticas lo consiguen dibujar. La última parada antes de que tal cosa suceda se llama “supergravedad”, una construcción matemáticamente complicada que consigue combinar la supersimetría con la fuerza gravitatoria pero, ¿qué es la supergravedad? Meternos en esos berengenales matemáticos sería algo engorroso y (para muchos) aburrido.

“Todas las metáforas son imperfectas”, decía el poeta Robert Prost, y en eso reside su belleza.

 

Puede ser, pues, que el universo sea comprensible porque es defectuoso, que gracias a que renunció a la perfección del no ser por el revoltijo del ser existimos nosotros, percinbimos la embrollada e imperfecta realidad y la sometemos a prueba con el fantasmal espectro del pensamiento de la simetría primordial que la precedió. Somos, por lo tanto pensamos. (O, como dice el cuentista Jorge Luis Borge: “Pese a uno mismo, uno piensa”.

La Ciencia es un proceso, no un edificio, y se depoja de los viejos conceptos a medida que crece.”Las teoría -decía Ernest Mach- son como hojas marchitas, que caen después de haber permitido al organismo de la ciencia respirar por un tiempo”. El proceso depende del error -como señala Popper, una teoría es valiosa sólo si es susceptible de ser refutada-, como para dar testimonio de la ubicuidad y eficacia de la imperfección cósmica. Claro que, el error, a menudo puede ser fértil (ya lo explicaré en otro momento).

Acordáos que Einstein decía que la Mente era como un paracaidas que sólo funciona cuando se abre. Así que, no pocas físicos siguen ese consejo y abren sus mentes a cuestiones que no han podido ser demostradas y, elaboran teorías, unas más complicadas que otras que, en definitiva persiguen saberl del Universo y buscar, algunas respuestas a preguntas planteadas que nadie ha sabido contestar. Así, para burlar la velocidad de la Luz nos agarramos a los Agujeros de Gusano, para saber de cómo es en realidad la Naturaleza surgen Teorías como las de Supercuerdas que nos llevan a un Universo de 11 dimensiones donde, la Gravedad de Einstein y la mecánica cuántica de Planck, pueden convivir tan ricamente.

La cienca es muy jóven y le queda mucho por avanzar, y, que sobreviva el tiempo suficiente para llegar a vieja, dependerá de nuestras conductas, cordura, coraje y vigor, y como siempre se debe añadir en esta era nuclear, de que no nos destruyamos antes nosotros mismos.

“Nada que sea grandioso entra en la vida de los mortales sin una maldición” Decía Sófocles, y el conocimiento de cómo brillan las estrellas es muy grande, y su lado oscuro es, en verdad, muy oscuro. Es innecesario decir que la Ciencia misma no nos librará de los peligros a los que su conocimiento nos ha expuesto, y, está en nosotros, sólo en nosotros, el tener la racionalidad necesaria para que su uso no se vuelva contra nosotros…

 

 

Si nos adentramos dentro de nosotros mismos, si mirámos hacia atrás en el tiempo, si estudiamos de manera detenida y pormenorizada todo loq ue hemos hecho desde la noche de los Tiempos, si hacemos ese viaje al interior de nuestro Ser más profundo… ¡Contemplamos un escenario frío y caliente, oscuro y de cegadora luz! Somos capaces de lo mejor y de lo peor, estamos agarrados por dos fuertes manos: Una es la Vida y la otra es la Muerte. Nosotros, en medio de esa verdad, no hemos podido superar todavía, esa realidad de la extinción, de una vida perecedera. Nuestras vidas, como nuestro planeta, oscilan suspendidas en una dualidad mitad luz y mitad oscuridad y sombra. Si mimploramos a la Naturaleza será en vano; ella es indiferente a nuestro destino, y su costumbre es ensayarlo todo y ser implacable con la competencia. El 99 por ciento de todas las especies que han vivido en la Tierra han desaparecido, y, desde luego, ninguna estrella titilará en nuestro homenaje cuando nos vayamos de este mundo.

Epicteto, el ex esclavo señalaba que:

“Toda cuestión tiene dos asas, por una de las cuales se la puede coger, y por la otra no.

Si tu hermano te ofende, no aborde la cuestión por este lado, que él te ofende, pues de esa asa no se puede coger la cuestión. En cambio, abórdala por el otro lado, que él es tu hermano, tu amigo nato; y podrás dominarla, por el asa que soporta su cogida”.

 

Por lo tanto,  decimos  -hablamos como seres vivos y (creemos) como seres pensantes, como conquistadores del fuego-, por lo tanto, pues, elegimos la vida. Claro que, la elección nunca podrá estar en nuestras manos y, lo único que podremos hacer con ayuda de la Ciencia, será alargárla lo más posible para poder dejar, en este mundo, la mayor huella posible de nuestro efímero paso por él.

 El cerebro es capaz de inventar recuerdos de hechos que nunca ocurrieron y visitar lugares que, ¡no sabemos si existirán en alguna parte! Los cien mil millones de neuronas que no dejan de titilar produciendo fogonazos que hacen saltar las ideas que nos llegan, no pocas veces sin saber de dónde, es aún un gran misterio que los estudiosos tratan de resolver. No se ha podido llegar a saber cómo funciona el cerebro humano y su complejidad es tal que, sólo el universo mismo se le podría comparar.

La capacidad humana para aprender, inventar, buscar recursos, y sobre todo, adaptarse a las circunstancias es bastante grande. A lo largo de los últimos milenios Civilizaciones del pasado han demostrado que desarrollarse y constituir sociedades que apuntan maneras de querer hacer bien las cosas. Bueno, al menos esas son las sensaciones que yo he podido percibir.

Cúmulo de estrellas alfombrilla de ratón

Constituido por innumerables galaxias de estrellas, nuestro Universo,  no sólo es asombroso, sino que, es mucho más de lo que nuestras pobres mentes pueden imaginar. multitud de Nebulosas de las que “nacen” nuevas y brillantes estrellas y mundos, una inmensidad de objetos exóticos de una rica variedad que subyacen en las estrellas de neutrones como púlsares y magnétares, o, los agujeros negros misteriosos y, todo ello, en un espacio de una magnitud inimaginable para nuestras mentes que, percibe continuados mensajes que les envían los sentidos provenientes de los objetos y las cosas cotidianas que nos rodean pero, con una limitación inconmensurable que nos deja inmersos en una nube de ignorancia que, desde hace mucho tiempo, tratamos de desterrar… ¡Sin conseguirlo!

El camino hacia la total comprensión de la Naturaleza comenzó cuando fuímos conscientes de que nuestros conocimientos eran limitados y nuestra ignorancia infinita. Ya nos lo dijo Sócrates: “Solo se que no se nada”, después de él, muchos han sido los filósofos que de una u otra manera han dicho lo mismo en variadas versiones.

No puedo desechar la idea de que, con los “universos” ocurre lo mismo que ocurre con los mundos, con las estrellas y con las galaxias: ¡Que son infinitos! Dentro de un Multiverso mayor al que no hemos podido tener acceso, toda vez que, nuestras limitaciones, en este caso… ¡Son infinitas. Hablamos de ir a otros mundos sin pararnos a pesar en la complejidad que dicho viaje conlleva. Una cosa es enviar ingenios robotizados y, otra muy distinta, que sean personas las que intenten esa empresa que, al menos en los próximas décadas… ¡Será imposible de concretar!

Sin embargo, como nos pasa con las teorías, hablamos, imaginamos y planteados “mundos” ilusorios y viajes imposibles que, si alguna vez son una realidad, esa estará situada muy lejos en el tiempo que está por venir. Sin embargo, nuestra manera de ser, nos lleva a no pararnos ante nada, hacemos como que, las barreras no existen y nos imaginamos haciendo cosas que… “nunca podremos”.

Mientras tanto… ¡Sigamos soñando!

emilio silvera

Una pregunta tonta: ¿Qué es la vida?

Autor por Emilio Silvera    ~    Archivo Clasificado en Noticias    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

        En realidad, así comenzó todo, con los elementos fusionados en las estrellas

El físico Erwin Schrodinger pronunció una serie de conferencias con un tema común: ¿Qué es la vida?

 

          Erwin Schrodinger | Wikipedia-LD

Todos tenemos una idea intuitiva de qué es la vida. Sabemos de su existencia por nuestra propia experiencia pero la cosa se complica cuando tratamos de ponerlo negro sobre blanco. Una cantidad enorme de células deciden ponerse de acuerdo para construir un cuerpo. Actúan unidas, con la misión compartida de mantener la autonomía y la identidad de su existencia.

 

 

 

 

Erwin Schrodinger fue uno de los científicos más importantes del siglo XX. Recibió el Premio Nobel de Física en 1993 gracias al desarrollo de la Teoría Cuántica. Sin embargo, como todo pensador ilustre, trató de desentrañar conceptos que se extienden más allá de su ámbito de estudio. En sus propias palabras: “…se volvió casi imposible, para una única mente, dominar por completo más que una pequeña porción especializada de ese conocimiento. No veo otra salida para este dilema (bajo riesgo de perder nuestro objetivo para siempre) que aventurarnos a embarcar, algunos de nosotros, en una síntesis de hechos y teorías, aunque dotados de un conocimiento incompleto y de segunda mano sobre algunos de ellos, y, peor aun, pudiendo parecer tontos”.

 

 

¿Por qué son los átomos tan pequeños?

 

 

 

 

O dicho de otra forma: ¿por qué los seres vivos son enormes comparados con el tamaño de los átomos? La escala a la que trabaja “la vida” es necesariamente grande, y entiéndaseme; cuando digo “grande” quiero decir comparado con un átomo. Es necesario que sea así porque, si no, las perturbaciones que añaden los procesos atómicos, como por ejemplo el calor, harían que los desarrollos biológicos fueran imposibles. Imaginemos que unos pocos átomos formaran un organismo vivo. Sabemos que el calor produce vibraciones que aumentan la separación entre átomos. Pues si sólo unos pocos formaran un cuerpo, éste se pasaría la vida creciendo y menguando desaforadamente como si se estuvieran bebiendo frascos y frascos del elixir de Alicia en el País de las Maravillas. Aprendemos entonces que la vida tiene una escala necesaria: la del planeta Tierra.

 

Orden a partir del desorden y orden a partir del orden

 

 

 

 

Ya hemos hablado en alguna ocasión de la relación entre orden, entropía y vida. Cualquier proceso vital lo es gracias al aumento de desorden en el Universo. La naturaleza realiza procesos en los que trata de organizar, de reglar, de acumular. Sin embargo este “orden a partir del desorden” requiere un paso más. Sería imposible que una especie perdurara en el tiempo, más allá de su corta vida como individuo sin la existencia de la información genética. Las especies son capaces de comunicar su esencia a sus descendientes. Un mecanismo de transmisión del “orden a partir del orden” que perdura durante siglos. La información es parte fundamental de la existencia de la vida.

 

¿Se basa la vida en leyes físicas?

 

 

 

Bueno, algunos dicen que lo único que no cambia es el Cambio. Por eso hay vida

 

Se puede entrever que la Biología será útil a la Física, provocando el descubrimiento de nuevas leyes y, también, la Física a la Biología, porque ofrecerá una explicación unificada de la vida. Sin embargo, e inevitablemente, aunque aún no conozcamos todos los procesos que hacen que la vida exista, sólo podrán ser físicos, puesto que cuanto se encuentra en la materia de un ser vivo son los elementos con los que están hechos el resto del universo. Nuestros cabellos, las hojas de los arboles, el agua o el polvo estelar están hechos de los mismos componentes. Elementos únicos regidos por las leyes universales de la física. Sólo eso puede explicarlo todo. ¿O no?

– Seguir leyendo: http://www.libertaddigital.com/ciencia-tecnologia/ciencia/2016-06-08/una-pregunta-tonta-que-es-la-vida-1276575691/

 

¿Lo que pasó? ¿Lo que pasará? o, simple imaginación

Autor por Emilio Silvera    ~    Archivo Clasificado en Astrofísica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  electrones

 Disco circumnuclear de La Galaxia

 

 

 

“Imaginaos ahora este instante en que los murmullos se arrastran discretamente y las espesas tinieblas llenan el navío del Universo.”

 

Esas palabras de Chakesperare en Enrique V (acto IV, esc. 1), nos podría valer ahora a nosotros para estrapolarlas a este tiempo y haciendo un ejercicio de imaginación, convertir esas tinieblas en la “materia oscura”, esa clase de materia que postulan los cosmólogos, que no podemos ver, que no emite radiación, que no sabemos de qué está hecha y, en realidad, tampoco sabemos donde está (sólo lo suponemos) pero, nos soluciona, de un plumazo, todos los problemas de la estructura del Universo. Esa clase de materia “transparente” que sí emite la fuerza gravitatoria podría explicar el ritmo a grandes escalas que hemos podido observar en el comportamiento de nuestro universo y que antes de la llegada de la “materia oscura”, no sabíamos, a qué era debido… “¡ahora sí lo sabemos!”. Bueno, al menos, eso dicen algunos pero, lo tienen que demostrar.

 

¿Cómo es posible que, a partir de la materia “inerte”, hayan podido surgir seres vivos e incluso, algunos que, como nosotros puedan pensar? Que codsa mágica se pudo producir en el corazón de las estrellas para que, materiales sencillos como el Hidrógeno se convirtieran a miles de millones de grados de calor en otros que, como el Carbono, Oxigeno y Nitrógeno, muchos miles de Millones de años más tardes, en mundos perdidos en sistemas solares como el nuestro, dieran lugar a la formación de Protoplasma vivo del que surgieron aquellos infinitesimales seres que llamamos bacterias y que, posibilitaron la evolución hacia formas de vida superiores?
               La matería “inerte” evolucionó hasta la vida
El suministro de datos que llega en forma de multitud de mensajes procede de los sentidos, que detectan el entorno interno y externo, y luego envía el resultado a los músculos para dirigir lo que hacemos y decimos. Así pues, el cerebro es como un enorme ordenador que realiza una serie de tareas basadas en la información que le llega de los sentidos. Pero, a diferencia de un ordenador, la cantidad de material que entra y sale parece poca cosa en comparación con la actividad interna. Seguimos pensando, sintiendo y procesando información incluso cuando cerramos los ojos y descansamos.

                          Sitios como este, en nuestro planeta, los tenemos en multitud de lugares

No pocas veces me encuentro mirando al cielo nocturno estrellado desde la orilla del Atlántico cuya superficie brilla con millones de luces titilando al reflejar el resplendor de la Luna, la inmensidad del océano que se pierde en el horizonte y, la infinitud del firmamento me podrían hacer sentir insignificante.  Sin embargo, no es así como lo siento.  He dicho alguna vez que todo lo grande está hecho de cosas pequeñas, y, esa afirmación, nos dá la respuesta.  Formamos parte de algo muy grande:  El Universo.

Estamos en un punto, o en un nivel de sabiduría aceptable pero insuficiente, es mucho el camino que nos queda por recorrer y, como dijo el sabio, la energía necesaria para explorar la décima dimensión es mil millones de veces mayor que la energía  que puede producirse en nuestros mayores colisionadores de átomos.  La empresa resulta difícil para seres que, como nosotros, apenas tenemos medios seguros para escapar del débil campo gravitatorio del planeta Tierra.

A veces, a solas con mis pensamientos, no puedo dejar de cabilar sobre esa idea que rige como Modelo “inamovible” al que llaman Big Bang, nos cuentan de a partir de un punto de densidad y energías “infinitas”, surgió nuestro Universo, y, en el momento del suceso, no existían ni el Espacio ni El Tiempo. El desarrollo del Modelo nos habla de energías inconmensurables y de cómo se fueron formando, a partir de las partículas elementales, otras más complejas que formaron átomos y más tarde cuerpos.

                                                                       Nada puede surgir de la “nada”, si surgió, es porque había

Energías del tal calibre, que sepamos, solo han estado disponibles en el instante de la creación del Universo, en su nacimiento, en eso que llamamos Big Bang.  Solamente allí estuvo presente la energía del Hiperespacio de diez dimensiones y, por eso se suele decir que, cuando se logre la teoría de cuerdas sabremos y podremos desvelar el secreto del origen del Universo.

A los físicos teóricos siempre les resultó provechoso introducir dimensiones más altas para fisgar libremente en secretos celosamente escondidos.

Según esa nueva teoría, antes del Big Bang nuestro cosmos era realmente un universo perfecto de diez dimensiones, decadimensional, un mundo en el que el viaje interdimensional era posible.  Sin embargo, ese mundo decadimensional era inestable, y eventualmente se “rompió” en dos, dando lugar a dos universos separados: un universo de cuatro y otro universo de seis dimensiones.

El Universo en el que vivimos nació en ese cataclismo cósmico. Nuestro Universo tetradimensional se expandió de forma explosiva, mientras que nuestro universo gemelo hexadimensional se contrajo violentamente hasta que se redujo a un tamaño casi infinitesimal.

           Surgió la sustancia cósmica de la que, miles de millones de años más tarde, nacería la consciencia

Eso podría explicar el origen del Big Bang, y, si la teoría es correcta, demuestra que la rápida expansión del Universo fue simple consecuencia de un cataclismo cósmico mucho mayor, la ruptura de los propios espacio y tiempo.  La energía que impulsa la expansión observada del Universo se halla entonces en el colapso del espacio-tiempo de diez dimensiones.  Según la teoría, las estrellas y las Galaxias distantes están alejándose de nosotras a velocidades astronómicas debido al colapso original del espacio y el tiempo de diez dimensiones.

Esta teoría predice que nuestro Universo sigue teniendo un gemelo enano, un universo compañero que se ha enrollado en una pequeña bola de seis dimensiones (en la escala de Planck) muy pequeña para ser observada.

Ese Universo decadimensional, lejos de ser un apéndice inútil de nuestro mundo, podría ser en última instancia, nuestra salvación. Claro que, si las galaxias siguen alejándose las unas de las otras, será la muerte térmica del universo, y, en ese escenario, ni los átomos se moveran.

          Todo quedará quieto, congelado en los -273 ºC, la Densidad Crítica que se vislumbra nos habla de la muerte térmica del Universo

Para el cosmólogo, la única certeza es que el Universo morirá un día.  Algunos creen que la muerte final del Universo llegará en la forma del big crunch. La gravitación invertirá la expansión cósmica generada por el big bang y comprimirá las estrellas y las galaxias, de nuevo, en una masa primordial.  A medida que las estrellas se contraen, las temperaturas aumentan espectacularmente hasta que toda la materia y la energía del universo están concentradas en una colosal bola de plasma ardiente que será el resultado final de la destrucción del Universo tal como lo conocemos. Esta teoría parece que ha dejado de tener “creyentes” y, casi todos los expertos se decantan por la muertetérmica. Las Galaxias se alejan las unas de las otras, el universo está en continua expansiòn y, el frío, se apodera más y más de todo el Cosmos, así, cuando se alcancen los -273 ºC… ‘Todo se acabará!

Todas las formas de vida serán borradas de la faz de los mundo que las pudieran contener: evaporadas por las enormes temperaturas o aplastadas, ¡qué más dá! No habrá escape. Y, sabiendo lo que ahora sabemos, conociendo la historia del universo mismo que, durante miles de millones de años ha estado fabricando materiales en las estrellas para que los seres vivos conscientes pudieran venir, ¿cómo imaginar un final así? ¿Para qué tánto trabajo y tanto tiempo perdido? Seguramente, para cuando eso puede ir llegando, si es que la inteligencia sigue aquí, habrá buscado ya la manera de escapar a tal desastre y, las especies inteligentes se salvarán saltanto a otros universos, o, incluso, ¿por qué no? viajando hacia atrás en el Tiempo, hacia otras épocas de tiempos más benignas para tener otros miles de millones de años por delante y hacer las cosas, de manera diferente. ¡Una segunda oportunidad!

                                     Bertrand Russell

Científicos y filósofos, como Charles Darwin y Bertrand Russell, han escrito lamentándose de la futilidad de nuestras míseras existencias, sabiendo que nuestra civilización morirá inexorablemente cuando llegue el fin de nuestro mundo.  Las leyes de la física, aparentemente, llevan la garantía de una muerte final e irrevocable para todas las formas de vida, inteligente o no, del Universo.

Yo, como Gerald Feinberg, físico de la Universidad de Columbia (ya desaparecido), creo que sí puede haber, quizá sólo una esperanza de evitar la calamidad final. Ese atisbo de esperanza está en nosotros mismos, es decir, si somos capaces de no destruirnos antes, si procuramos comprender los mensajes que el universo nos envía continuamente, si desvelamos secretos de la Naturaleza que nos posibilitarán para hacer cosas, ahora inimaginables, entonces y solo entonces, habrá alguna esperanza.

                     Poder escapar a universos conexos que, como el nuestro, nos de cobijo

Gerald Feinberg especuló que la vida inteligente, llegando a dominar los misterios del espacio de más dimensiones (para lo que contaba con un poderoso aliado, el Tiempo de miles de millones de años), sabría utilizar las dimensiones extras para escapar de la catástrofe del Big Crunch.  En los momentos finales del colapso de nuestro Universo, el Universo hermano se abriría de nuevo y el viaje interdimensional se haría posible mediante un túnel en el Hiperespacio hacia un Universo alternativo, evitando así la pérdida irreparable de la inteligencia de la que somos portadores.

Si algo así es posible, entonces, desde su santuario en el espacio de más dimensiones, la Humanidad, podría ser testigo de la muerte del Universo que la vio nacer y florecer.

                                   Son muchas las cosas que no sabemos

Aunque la teoría de campos demuestra que la energía necesaria para crear estas maravillosas distorsiones del espacio y el tiempo está mucho más allá de cualquier cosa que pueda imaginar la civilización moderna, esto nos plantea dos cuestiones importantes:

¿cuánto tardaría nuestra civilización, que está creciendo exponencialmente en conocimiento y poder, en alcanzar el punto de dominar la teoría de hiperespacio?

¿Y qué sucede con otras formas de vida inteligente en el Universo, que puedan haber alcanzado ya este punto?

Lo que hace interesante esa discusión es que científicos serios han tratado de cuantificar el progreso de la civilización en un futuro lejano, cuando los viajes por el espacio sean una rutina en los sistemas estelares o incluso las galaxias vecinas hayan sido colonizadas.  Aunque la escala de energía necesaria para manipular el Hiperespacio es astronómicamente grande, estos científicos señalan que el crecimiento del conocimiento científico aumentara, sin ninguna duda, de forma exponencial durante los siglos y milenios próximos, superando las capacidades de las mentes humanas para captarlo (como ocurre ahora con la teoría M, parada en seco, esperando que alguien vea las matemáticas necesarias para continuar su desarrollo).

    Calaboré con el Año Internacional de la Astronomía y, por aquellos días, pude aprender muchas cosas

Somos conscientes de que el Tiempo inexorable sigue su implacable caminar y la Entropía, que sabe hacer bien su trabajo, lo transforma todo, lo que ayer era una cosa, hoy se ha convertido en otra distinsta, irreconocible, y, sin embargo, ese deterioro natural no es algo perdido, sino que, por el contrario, hasta que llega ese final, se hizo un trabajo que dará sus frutos en la mente de otros seres, en las cosas mismas que, transformadas, servirán y tendrán cometidos nuevos. Nada se pierde y todo tiene su por qué. La Naturaleza no hace nada porque sí, todo está programado y tiene un fin. Y, si eso es así (que los es), ¿que nos deparará el destino a nosotros? Habiendo llegado al nivel de cpomprensión alcanzado, no creo que el final sea el de la desaparición sin más, algo más debe estar oculto en los designios de la Naturaleza que no llegamos a comprender.

Ahora, sin temor a equivocarnos, podemos decir que tenemos en Mundo en las manos. No existen ningún rincón de la Tierra que se nos escape y con el que no podamos contactar en unos instantes. Tampoco existen aquellas largas separaciones de seres queridos en largos viajes, ni existe ningún problema para saber de alguna cosa que, incluso con imágenes podemos obtener al instante con sólo preguntar. En cuanto a los nuevos métodos de trabajo en la computación, es algo de increíblñe eficacia e impensada realidad hace sólo unos pocos años. ¿Qué decir de los nuevos materiales? La medicina ha dado un salto cualitativo gracias a los avances del CERB y el mismo LHC, los viajes espaciales ha mejorado nuestr0 confort en la vida cotidiana y del hogar…

Con el LHC queremos llegar muy lejos, tanto como al corazón del Big Bang. Sin embargo, no tiene energía suficiente para ello, y, de momento, dicen haber descubierto un Pentaquark que, vaya usted a saber que es eso. De todas las maneras, hoy por hoy, es lo mejor que tenemos para profundizar en el corazón de la materia y… ¡En algún secretillo más del Universo!

Cada 10/15 años el conocimiento científico se doblará, crecerá el cien por ciento, así que, el avance superará todas las previsiones.  Tecnologías que hoy solo son un sueño (la energía de fusión o en robótica, los cerebros positrónicos), serán realidad en un tiempo muy corto en el futuro.  Quizá entonces podamos discutir con cierto sentido la cuestión de si podremos o no ser señores del Hiperespacio.

Viaje en el tiempo.  Universos paralelos.  Ventana dimensional.

¡Sueños! Claro que, si echamos una atenta mirada a la Historia veremos que, muchos sueños se hicieron realidad.

emilio silvera

¿Dónde estarán las respuestas?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

Einstein y las cosas que decía »

René Descartes, filósofo, matemático y físico  francés, considerado el padre de la filosofía moderna, así como uno de los nombres más destacados de la revolución científica. El método científico ( del latín scientia = conocimiento; camino hacia el conocimiento) es un método de investigación usado principalmente en la producción de conocimiento en las ciencias. Para ser llamado científico, un método de investigación debe basarse en la empírica y en la medición, sujeto a los principios específicos de las pruebas de razonamiento.  El método científico es: «un método o procedimiento que ha caracterizado a la ciencia natural desde el siglo XVII, que consiste en la observación sistemática, medición, experimentación, la formulación, análisis y modificación de las hipótesis»
El método científico está sustentado por dos pilares fundamentales. El primero de ellos es la reproducinilidad, es decir, la capacidad de repetir un determinado experimento, en cualquier lugar y por cualquier persona. Este pilar se basa, esencialmente, en la comunicación y publicidad de los resultados obtenidos (por ej. en forma de artículo científico). El segundo pilar es la refutabilidad. Es decir, que toda proposición científica tiene que ser susceptible de ser falsada o refutada. Esto implica que se podrían diseñar experimentos, que en el caso de dar resultados distintos a los predichos, negarían la hipótesis puesta a prueba.

 

¡Son posibles tántas cosas!

Algunos quieren encontrar las respuestas en la religión (que si ha sido escogida voluntariamente… ¡bien está!). Pero, como todos sabemos, es cosa de fe. Creer en aquello que no podemos ver ni comprobar no es precisamente el camino de la ciencia que empieza por imaginar, después conjeturar, más tarde teorizar, se comprueba una y mil veces la teoría aceptada a medias y sólo cuando todo está amarrado y bien atado, todas esas fases pasan a la categoría de una ley o norma que se utiliza para continuar investigando en la buena dirección. Einstein solía decir: “La religión sin Ciencia es ciega.”

Otros han sido partidarios de la teoría del caos y argumentan que a medida que el nivel de complejidad de un sistema aumenta, entran en juego nuevos tipos de leyes. Entender el comportamiento de un electrón o un quark es una cosa; utilizar este conocimiento para comprender el comportamiento de un tornado es otra muy distinta. La mayoría está de acuerdo con este aspecto. Sin embargo, las opiniones divergen con respecto a si los fenómenos diversos y a veces inesperados que pueden darse en sistemas más complejos que las partículas individuales son realmente representativos del funcionamiento de los nuevos principios de la física, o si los principios implicados son algo derivado y están basados, aunque sea de un modo terriblemente complicado, en los principios físicos que gobiernan el ingente número de componentes elementales del universo.

 

 

 

“La teoría del todo o teoría unificada fue el sueño incumplido de Einstein. A este empeñó dedicó con pasíón los últimos 30 años de su vida. No lo logró, y hoy continúa sin descubrirse. Consiste en una teoría definitiva, una ecuación única que dé respuesta a todas las preguntas fundamentales del Universo. Claro que, Einstein no sabía que las matemáticas para plasmar esa Teoría mágica… ¡No se habían inventado en su tiempo ni tampoco en el nuestro!

La teoría del todo debe explicar todas la fuerzas de la Naturaleza, y todas las características de la energía y la materia. Debe resolver la cuestión cosmológica, es decir, dar una explicación convincente al origen del Universo. Debe unificar relatividad y cuántica, algo hasta ahora no conseguido. Y además, debe integrar otros universos en caso de que los haya. No parece tarea fácil. Ni siquiera se sabe si existe una teoría del todo en la Naturaleza. Y, en caso de que exista, si es accesible a nuestro entendimiento y a nuestras limitaciones tecnológicas para descubrirla.”

Einstein se pasó los últimos treinta años de su vida en la bíusqueda de esa teoría que nunca pudo encontrar. En los escaparates de la 5ª Avenida de Nueva York, exponían sus ecuaciones y la gente, sin entender lo que veían, se arremolinaban ante el cristal para verlas.

 

 

 

 

Casi todo el mundo está de acuerdo en que el hallazgo de la Gran Teoría Unificada (teoría del Todo), no significaría de modo alguno que la psicología, la biología, la geología, la química, y también la física, hubieran resuelto todos sus problemas.

El universo es un lugar tan maravilloso, rico y complejo que el descubrimiento de una teoría final, en el sentido en el que esta planteada la teoría de supercuerdas, no supondría de modo alguno el fin de la ciencia ni podríamos decir que ya lo sabemos todo y para todo tendremos respuestas.  Más bien será, cuando llegue, todo lo contrario: el hallazgo de esa teoría de Todo (la explicación completa del universo en su nivel más microscópico, una teoría que no estaría basada en ninguna explicación más profunda) nos aportaría un fundamento mucho más firme sobre el que podríamos construir nuestra comprensión del mundo y, a través de estos nuevos conocimientos, estaríamos preparados para comenzar nuevas empresas de metas que, en este momento, nuestra ignorancia no nos dejan ni vislumbrar. La nueva teoría de Todo nos proporcionaría un pilar inmutable y coherente que nos daría la llave para seguir explorando un universo más comprensible y por lo tanto, más seguro, ya que el peligro siempre llega de lo imprevisto, de lo desconocido que surge sin aviso previo; cuando conocemos bien lo que puede ocurrir nos preparamos para evitar daños.

 

 

 

 

 

La búsqueda de esa teoría final que nos diga cómo es el universo, el tiempo y el espacio, la materia y los elementos que la conforman, las fuerzas fundamentales que interaccionan, las constantes universales y en definitiva, una formulación matemática o conjunto de ecuaciones de las que podamos obtener todas las respuestas, es una empresa nada fácil y sumamente complicada; la teoría de cuerdas es una estructura teórica tan profunda y complicada que incluso con los considerables progresos que ha realizado durante los últimos décadas, aún nos queda un largo camino antes de que podamos afirmar que hemos logrado dominarla completamente. Se podría dar el caso de que el matemático que encuentre las matemáticas necesarias para llegar al final del camino, aún no sepa ni multiplicar y esté en primaria en cualquier escuela del mundo civilizado.

Muchos de los grandes científicos del mundo (Einstein entre ellos), aportaron su trabajo y conocimientos en la búsqueda de esta teoría, no consiguieron su objetivo pero sí dejaron sus ideas para que otros continuaran la carrera hasta la meta final. Por lo tanto, hay que considerar que la teoría de cuerdas es un trabajo iniciado a partir de las ecuaciones de campo de la relatividad general de Einstein, de la mecánica cuántica de Planck, de las teorías gauge de campos, de la teoría de Kaluza-Klein, de las teorías de… hasta llegar al punto en el que ahora estamos.

 

 

 

 

El Universo de lo muy grande y el de lo muy pequeño… ¡Es el mismo universo! Simplemente se trata de mirar en distintos ámbitos del saber, y, la importancia de las medidas… ¡también es relativia! Porque, ¿podríamos valorar la importancia de los electrones. La existencia de los fotones,  o, simplemente la masa del protón? Si alguno de esos objetos fuese distinto, el Universo también lo sería.

La armoniosa combinación de la relatividad general y la mecánica cuántica es un éxito muy importante. Además, a diferencia de lo que sucedía con teorías anteriores, la teoría de cuerdas tiene la capacidad de responder a cuestiones primordiales que tienen relación con las fuerzas y los componentes fundamentales de la naturaleza.

Igualmente importante, aunque algo más difícil de expresar, es la notable elegancia tanto de las respuestas que propone la teoría de cuerdas, como del marco en que se generan dichas respuestas. Por ejemplo, en la teoría de cuerdas muchos aspectos de la naturaleza que podrían parecer detalles técnicos arbitrarios (como el número de partículas fundamentales distintas y sus propiedades respectivas) surgen a partir de aspectos esenciales y tangibles de la geometría del universo. Si la teoría de cuerdas es correcta, la estructura microscópica de nuestro universo es un laberinto multidimensional ricamente entrelazado, dentro del cual las cuerdas del universo se retuercen y vibran en un movimiento infinito, marcando el ritmo de las leyes del cosmos.

Lejos de ser unos detalles accidentales, las propiedades de los bloques básicos que construyen la naturaleza están profundamente entrelazadas con la estructura del espacio-tiempo.

 

 

 

 

“El espacio-tiempo es una estructura suave, al menos así lo sugiere un nuevo estudio, anotando una posible victoria para Einstein sobre los teóricos cuánticos que vinieron después de él.”

Accede al artículo original espacioprofundo.es/2013/01/11/einstein-tenia-razon-el-espacio-tiempo-es-una-estructura-suave/ © Espacio Profundo

 

 

teoría_de_cuerdas.jpg

Claro que, siendo todos los indicios muy buenos, para ser serios, no podemos decir aún que las predicciones sean definitivas y comprobables para estar seguros de que la teoría de cuerdas ha levantado realmente el velo de misterio que nos impedía ver las verdades más profundas del universo, sino que con propiedad se podría afirmar que se ha levantado uno de los picos de ese velo y nos permite vislumbrar algo de lo que nos podríamos encontrar.

La teoría de cuerdas, aunque en proceso de elaboración, ya ha contribuido con algunos logros importantes y ha resuelto algún que otro problema primordial como por ejemplo, uno relativo a los agujeros negros, asociado con la llamada entropía de Bekenstein-Hawking, que se había resistido pertinazmente durante más de veinticinco años a ser solucionada con medios más convencionales. Este éxito ha convencido a muchos de que la teoría de cuerdas está en el camino correcto para proporcionarnos la comprensión más profunda posible sobre la forma de funcionamiento del universo, que nos abriría las puertas para penetrar en espacios de increíble belleza y de logros y avances tecnológicos que ahora ni podemos imaginar.

Como he podido comentar en otras oportunidades, Edward Witten, uno de los pioneros y más destacados experto en la teoría de cuerdas, autor de la versión más avanzada y certera, conocida como teoría M, resume la situación diciendo que: “la teoría de cuerdas es una parte de la física que surgió casualmente en el siglo XX, pero que en realidad era la física del siglo XXI“.

Witten, un físico-matemático de mucho talento, máximo exponente y punta de lanza de la teoría de cuerdas, reconoce que el camino que está por recorrer es difícil y complicado. Habrá que desvelar conceptos que aún no sabemos que existen.

El hecho de que nuestro actual nivel de conocimiento nos haya permitido obtener nuevas perspectivas impactantes en relación con el funcionamiento del universo es ya en sí mismo muy revelador y nos indica que podemos estar en el buen camino revelador de la rica naturaleza de la teoría de cuerdas y de su largo alcance. Lo que la teoría nos promete obtener es un premio demasiado grande como para no insistir en la búsqueda de su conformación final.

El universo, la cosmología moderna que hoy tenemos, es debida a la teoría de Einstein de la relatividad general y las consecuencias obtenidas posteriormente por Alexandre Friedmann. El Big Bang, la expansión del universo, el universo plano y abierto o curvo y cerrado, la densidad crítica y el posible Big Crunch que, según parece, nunca será un hecho y, el universo, tendrá una “muerte” térmica, es decir, cuando el alejamiento de las galaxias lo haga más grande, más oscuro y más frío. En el cero absoluto de los -273 ºC, ni los átomos se moverán.

Un comienzo y un final que abarcará miles y miles de millones de años de sucesos universales a escalas cosmológicas que, claro está, nos afectará a nosotros, insignificantes mortales habitantes de un insignificante planeta, en un insignificante sistema solar creado por una insignificante y común estrella.

Pero… ¿somos en verdad tan insignificantes

emilio silvera