lunes, 06 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Para nuestra verguenza

Autor por Emilio Silvera    ~    Archivo Clasificado en Humanidad    ~    Comentarios Comments (11)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

La guerra es un acto monstruoso contra la humanidad en interés de los financieros de Wall Street.
— Charles Schenck, 1919 –
Parece mentira que a estas alturas, podamos permitir que una parte de las criaturas del Mundo estén pasando tanto dolor y tanta miseria, acosados por el hambre, sin un techo bajo el que cobijarse, niños y mujeres desamparados hasta tal punto que, al resto de las seres que habitan neste mundo, les impide el poder llamarse “Humanos”.
¿Cómo podemos ver sin intervenir y poner algún remedio, lo que está pasando?
Mientras muchos gozan de grandes fortunas y tienen mucho más de lo que pudieran necesitar, otros en cambio, están desamparados, no tienen ni ese mínimo necesario para mantener la dignidad intacta y poder mantener a sus familias, poder llevar a sus hijos a la Universidad, poder en fin, tener ausencia de dolor en su Alma al ver, con impotencia, como se pasa la vida sin que nada remedie el inmenso dolor que les aqueja.
No podremos llamarnos Humanos con todo el derecho mientras que estas cosas sigan pasando, mientras que no sintamos el dolor ajeno como el propio dolor, ya que, los seres que habitan este mundo, los que respitan su aire, los que llegan a él y se van por el mismo camino que todos, forman parte de esa gran familia que llamamos Humanidad.
Debemos considerar que todos somos uno.
emilio silvera

Sí, el Universo tiene memoria

Autor por Emilio Silvera    ~    Archivo Clasificado en El saber: ¡Ese viaje interminable!    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

Podríamos hablar del viaje de la luz, desde que surgió a partir del Big Bang (si fue ese el comienzo de todo), y suponiendo que ya tengamos los aparatos tecnológicos precisos para poder leer, los mensajes que la misma luz lleva escritos de lo que allí, en aquellos comienzos, pudo pasar. La Luz que es emitida por los cuerpos celestes y que nos trae su memoria que están recogidas en el interior de las partículas elementales que son las que dan forma a todos los objetos grandes constituídas en moléculas. Es realmente un canto a la Luz, a su compleja estructura que no hemos llegado a comprender. La luz nos trae mensajes y recuerdos de los orígines en remanentes de estrellas supermasivas que dieron lugar a la creación de otras estrellas y sistemas planetarios y, ¿quién sabe? si también formas de vida.

Lo cierto es que, el Universo, como un todo, nos presenta y manifiesta correlacions bien afinadas que desafían cualquier explicación de sentido común y, desde luego, no es que nuestro sentido común no sea el más común de los sentidos, se trata simplemente de que, no llega a captar la esencia verdadera de lo que el Universo nos quiere transmitir.

Decir Universo es decirlo todo,

Inmensas galaxias cuajada de soles,

Donde orbitan los mundos,

Donde, de la vida, surgen los crisoles.

Todo es fuerza y energía,

Inmersas en un espacio-tiempo,

Transiciones de fase que guían,

Grandes acontecimientos.

La Memoria del Universo,

La Huella que deja el Tiempo,

Quedan gravados los sucesos,

Que descubre el conocimiento.

Sí, el Universo es mucho más que simples estrellas o las galaxias que las acogen, el Universo es también el Tiempo y el Espacio, son Universo las interacciones fundamentales que hace que nuestros mundos sean tal como los conocemos y, gracias a la variedad, la diversidad, las fuerzas y las constantes que en él están presentes, podemos decir que, los muchos mundos que son, algún día lejano en el futuro, nos darán la oportunidad de conocernos, nosotros los huamanos de la Tierra y otros seres de más allá de nuestras fronteras que ahora, por imposibilidades físicas y tecnológicas, no podemos hacer una realidad.

 

               En las rocas más antiguas de la Tierra, fósiles con miles de millones de años nos contemplan

El primer signo de vida en nuestro planeta data de 3,850 millones de años. Son simples formas fósiles encontradas en Groenlandia Sí, también eso de arriba es Universo. Cuando se creó la vida, surgieron unos seres que, evolucionados, llegaron a ser conscientes de su ser y pudieron desarrollar ideas y pensamientos y…también sentimientos que nos llevan de manera directa, mediante fuerzas irresistibles de la Naturaleza, a crear Entropía Negativa para compensar la que acompaña al Tiempo y que tanto daño hace en las cosas vivas o inertes.

Hemos realizado muchos estudios y llegado a muchas conclusiones que, finalmente, resultaron prematuras. Las mediciones actuales, por ejemplo, del fondo cósmico nos indican que, aun cuando toda la materia del Universo se hubiera originado en el (supuesto) big bang, sin embargo, el espacio-tiempo es plano: el universo se equilibraría con precisión entre la expansión y la contracción. Y, sin embargo, ¡las galaxias se están expandiéndo! Quizá después de todo, existe una constante cosmológica o fuerza similar no descubierta que es el que mantiene el cosmos en estadode expansión.

Los cosmólogos dudan del vacío cuántico y no creen que sea el origen de las energías extrañas representadas representadas por estas constantes. El espacio está lleno de partículas virtuales, en constante variación. La energía de las partículas virtuales concuerdan con los efectos que le atribuyen, incluso cuando tienen una existencia tan breve que no se puede medir. Se cree que esta energía, la “constante cosmológica positiva” es la responsable de la expansión acelerada de las galaxias. Esta suposición que no es nueva, es una más de las muchas que circulan por el mundo científico de la cosmología en el que, los “expertos” cosmólogos, andan locos por averiguar de qué se trata todo esto que no llegan a comprender.

 El problema del horizonte. La coherencia que presentan las realciones núméricas se ve reforzada por la evidencia de la observación. Ésta última da lugar al llamado “problema del horizonte” : el problema de la uniformidad en la gran escala del Cosmos en todos los puntos del horizonte visto desde la Tierra. Este problema empezó a destacarse tanto en relación a la radiación del fondo del Universo, como en relación a la evolución de sus galaxias.

“Nuestro universo parece ser completamente uniforme. Si miramos a través del espacio desde un extremo del universo visible hacia el otro, se verá que la radiación de fondo de microondas que llena el cosmos presenta la misma temperatura en todas partes.”

Resultado de imagen de El Universo tiene la misma temperatura en todas partes

“Esto podría no parecer muy sorprendente, hasta que se considera que los dos bordes están separados por casi 28 mil millones de años luz y que nuestro universo tiene apenas algo menos de 14 mil millones de años de edad.”

“Nada puede más rápido que la de la luz, de modo que no hay forma en que la radiación pueda haber viajado entre los dos horizontes para igualar los puntos calientes y los fríos creados en el Big Bang y dejar así el equilibrio termal que hoy vemos.”

 

Está claro que el problema del Horizonte se les ha ido de las manos a los Cosmólogos que no lo saben explicar y, para ello, tratan de hilvanar extrañas historias y exóticas teorías que, de ninguna manera nos satisfacen.

 fondo del cielo, la radiación cósmica CMB

 Imagen: Las fluctuaciones de densidad de 1/100 000 de Kelvin son tratados de la radiación de microondas fósiles 2,73 K. Ellos muestran que alrededor de 380 000 años después del Big Bang, había áreas heterogéneas en el mundo, con un tamaño de entre 100 y 1 000 Mpc.

Como suele pasar siempre que mentes pequeñas quieren expñlicar cosas muy grandes, que no llegan a comprender, se limitan a inventar teorías y hacen conjeturas que, más o menos puedan estar acordes con la realidad que debería ser. El desarrollo de la cosmología física está lleno de enigmas que no podemos explicar y de anomalías que las teorías actuales tratan de desarrollar de la manera más coherente posible y, algunas se acercan y otras, quedan lejos de ser, ni siquiera admisibles por fantásticas e increíbles.

Lo dicho tántas veces…¡Nuestra ignorancia!

emilio silvera

¿Vida sólo en la Tierra? ¡Qué disparate!

Autor por Emilio Silvera    ~    Archivo Clasificado en ¡La vida! El misterio persiste    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La vida (a partir de su primer paso, del primer individuo de cada especie) viene de la vida. Ha surgido en el Universo de manera expontánea y, el Azar, bajo ciertas circunstancias muy especiales que estaban presentes en lugares privilegiados del Universo, dio lugar al surgir de la vida tal como la conocemos y, posiblemente, de muchas más formas desconocidas para nosotros. Y, todo eso amigos, es Entropía Negativa. Ahora, Las características de un ser vivo son siempre una recombinación de la información genética heredada.

CONSECUENCIA LOGICA: Las variaciones dentro de una misma especie son el resultado de una gran cantidad de información genética presente ya en sus antepasados y, como consecuencia de la lógica evolución, de la aparición espontánea de nueva información genética…

“La idea de que la vida en el Universo sólo existe en la Tierra es básicamente precopernicana. La experiencia nos ha enseñado de forma repetida que este tipo de pensamiento es probablemente erróneo. ¿Por qué nuestro pequeñísimo asentamiento debe ser único? Al igual que ningún país ha sido el centro de la Tierra, tampoco la Tierra es el centro del Universo.”

Así se expresaba Fred Hoyle.

Los icebergs, esas enormes montañas de hielo desgajado que flotan en el mar y que se hicieron famosas por causar el hundimiento del Titanic, ya no son patrimonio exclusivo de la Tierra. Gracias a la nave espacial Galileo, desde 1997 sabemos que también existen en Europa, uno de los cuatro satélites principales de Júpiter, que con sus 3.138 Km de diámetro tiene un tamaño muy similar al de la Luna. Si exceptuamos Marte, puede que no exista ningún otro lugar próximo a la Tierra sobre el que la ciencia tenga depositadas tantas esperanzas de que pueda haber formas de vida, con el aliciente de que en esta luna joviana ha ocurrido un proceso opuesto al del planeta rojo merced a su exploración.

Existen dos casquetes  de hielo de agua permanentes en los , que nunca se funden. En invierno éstos aumentan de tamaño al convertirse en casquetes de dióxido de carbono congelado hasta alcanzar los 60º de longitud. Ocurren esporádicamente tormentas de polvo que llegan a cubrir la totalidad del planeta con una neblina amarilla, oscureciendo los accidentes superficiales más familiares.

Es una imagen de la parte de Marte con el Sino Sabaus y de Regio Deucalionis. El cráter a la derecha inferior es Flaugergues, y el doble cráter en la parte inferior izquierda es Wislicenus. Esta imagen fue tomada por el Mariner 6 en 1969. En esta imagen pueden encontrarse muchas características que sugieren ríos Marcianos, e incluso la salida de una llanura central. Se recomienda ver esta imagen en alta resolución. (Cortesía de la NASA/JPL)

¿Quien puede negar la presencia de agua en este lugar en el remoto pasado, o…, puede que no tan lejos. El paisaje marciano nos habla de correntías violentas que surcaron la tierra  oradándola y dejando a la vista esos inmensos cañones naturales.

Mientras que los ingenios espaciales enviados por el hombre revelaron que la naturaleza marciana es mucho más hostil para la vida de lo que insinuaban los telescopios de Schiaparelli, Lowell y Pickering, las sondas Voyager y Galileo han encontrado en Europa el mejor candidato del Sistema solar para albergar la vida extraterrestre (sin olvidar Encelado).

Para los exobiólogos, esos científicos que estudian la existencia de la vida en otros lugares del Universo, Europa ha sido la gran revelación del siglo XX, y Titán, una luna de Saturno que es la segunda más grande del Sistema Solar, constituye una gran incógnita que, poco a poco, se va desvelando gracias a la misión Cassini-Huygens, uno de los más ambiciosos proyectos de la NASA.

Visión artística de Encélado

Visión artística del cielo de Encélado, por David Seal (NASA). Encelado tiene mucha actividad volcánica y también, es poseedor de mucha agua en su interior. Es una de las lunas de Saturno que deben ser estudiadas.

Esos dos satélites de Júpiter y Saturno conforman, junto a Marte (y Encelado), los principales puntos de atención en la búsqueda de la vida extraterrestre, aunque eso no significa que vayamos a encontrarla allí, según todos los datos que se van acumulando, el índice de probabilidades de que ciertamente exista alguna clase de vida en el planeta y las lunas mencionadas, es muy alto. Es decir, si al margen del caso privilegiado de la Tierra existen tres nombres propios en el Sistema Solar donde no está descartada su existencia, esos son, Marte, Europa y Titán.

Sobre Marte, el planeta más parecido a la Tierra, a pesar de sus notables diferencias, nuestros conocimientos actuales son extensos y muy valiosos, pero nos falta desvelar lo fundamental. Y es que, a pesar de los grandes avances conseguidos durante las exploraciones espaciales, los astrónomos actuales siguen obligados a contestar con un “no lo sé” cuando alguien le pregunta sobre la existencia de vida en aquel planeta.

En lo concerniente a Europa, pocas fotografías entre las centenares de miles logradas desde que se inició la era espacial han dejado tan atónitos a los científicos como las transmitidas en 1997 por la nave Galileo. Desde 1979 se sospechaba, gracias a las imágenes de la Voyager 2, que la superficie del satélite joviano estaba formada por una sorprendente costra de hielo. Su predecesora, la Voyager 1, llegó al sistema de Júpiter en marzo de ese año, pero no se aproximó lo necesario a Europa y sólo envió fotografías de apariencia lisa como una bola de billar surcada por una extraordinaria red de líneas oscuras de naturaleza desconocida. En julio de 1979, poco después, la Voyager 2 obtuvo imágenes más detalladas, que desconcertaron a los científicos porque sugerían que la helada superficie podía ocultar un océano líquido, un paisaje inédito hasta el momento en el Sistema Solar.

Pero lo más asombroso estaba por ver, y transcurrieron dieciocho años hasta que una nueva misión espacial les mostró a los científicos que Europa es una luna tan extraordinaria que incluso parece albergar escenarios naturales como los descritos por Arthur C. Clarke en su novela 2010, Odisea dos. En enero de 1997, la NASA presentó una serie de imágenes en las que la helada superficie de Europa aparecía fragmentada en numerosos puntos. La increíble red de líneas oscuras que había mostrado una década antes la nave Voyager apareció en estas imágenes con notable detalle, que permitió ver surcos, cordilleras y, sobre todo, hielos aparentemente flotantes, algo así como la réplica joviana a los icebergs terrestres.

Interior de Europa pq

Lo más importante de la exploración sobre Europa, a pesar de su enorme interés científico, no fueron sus fotografías, sino los indicios inequívocos de su océano líquido bajo la superficie que, además, tiene todas las características de ser salado. La NASA ha tenido que reconocer que todos los estudios realizados en Europa dan a entender la posibilidad y muestran una notable actividad geológica y fuentes intensas de calor. Las posibilidades de vida en la superficie parecen prácticamente nulas, puesto que se halla a una distancia media del Sol de unos ochocientos millones de kilómetros y su temperatura es inferior a los 150 grados bajo cero. Sin embargo, si bajo la helada corteza existe un océano de agua líquida como creen la mayor parte de los investigadores y expertos, nos encontramos ante la mayor oportunidad para la vida en el Sistema Solar después de la Tierra.

Los sensores de las naves exploradoras han detectado un campo magnético en Europa que cambia de forma constante de dirección, hecho que sólo puede explicarse si este mundo en miniatura posee elementos conductores muy grandes. Como quiera que el hielo, presente en la corteza, no sea un buen conductor, la NASA ha sugerido que esas fluctuaciones del campo magnético de Europa estarían asociadas a la existencia de un océano de agua salada bajo la superficie.

Quizá no debamos dejarnos llevar por la imaginación pero, incluso muchos de los científicos de la NASA, tras haber visto los Icebergs fotografiados por la Galileo, recordaron emocionados el pasaje de 2010, Odisea dos, en el que el profesor Chang lanza a la Tierra un estremecedor grito desde los lejanos abismos del Sistema Solar: “¡Hay vida en Europa!” Repito: “¡Hay vida en Europa!”.

Del extraordinario viaje emprendido para dar un merecido homenaje a Cassini y Huygens y financiado de manera conjunta por la NASA y la ESA, todos tenemos un conocimiento aceptable a través de las noticias y de nuestras lecturas científicas. En el año 2004 la nave nodriza Cassini, lanzada en 1997, inició la exploración de Saturno y su corte de satélites y, la información recibida hasta el momento es de tan alto valor científico que nunca podremos agradecer bastante aquel esfuerzo.

                                       Tenemos motivos -también- para estar orgullosos

No cabe dudas de que la NASA tenía su principal interés puesto en la nave Cassini y Saturno, pero Titán ha tenido una atención especial que los americanos compartieron con la Agencia Europea ESA, la nave principal o nodriza Cassini se desprendió del módulo Huygens de la ESA, cuya misión será caer sobre Titán, pero antes tenía que estudiar su atmósfera, su superficie y otros elementos científicos de interés que nos dijeran como era aquel “mundo”.

Titán es, de hecho, la luna más enigmática que se conocía. Junto a Io y Tritón en Neptuno forma el trío de únicos satélites del Sistema Solar que mantiene atmósfera apreciable; pero Titán es radicalmente diferente, puesto que mientras en aquellos dos la densidad atmosférica es muy baja, en la luna mayor de Saturno supero, incluso a la de la Tierra. Esto es algo insólito que dejó pasmado a los científicos del Jet Propulsión Laboratory de la NASA cuando obtuvieron los primeros datos a través de la Voyager. La presión atmosférica es 1,5 veces la de la Tierra, un hecho sorprendente para su tamaño, puesto que en otros lugares más grandes como el mismo Marte, la Gravedad ha sido insuficiente para retener una atmósfera apreciable.

No estaría nada mal construir un Hotel en Titán y, por la venta, ver todas las mañanas la magnificencia de Saturno y todo el entorno que con el camino por el espacio interestelar.

Titán tiene 5 150 Km de diámetro, es la segunda luna mas grande conocida y supera en tamaño a Mercurio, pero en comparación con nuestro planeta es un mundo en miniatura, por lo que resulta excepcional algunas de las características en el halladas. Orbita Saturno en 15,945 días a una distancia de 1 221 830 Km. Es conocido desde 1655, cuando Huygens lo descubrió.

                                                                             La sonda Huygens

De ahí que la NASA, pusiera su nombre a la sonda que acompañó a la Cassini para investigar Titán. Aunque está compuesto por rocas y hielos a partes iguales, aproximadamente. De sus océanos de metano, ¿qué podemos decir? Sabemos que es el único satélite del Sistema Solar que tiene una atmósfera sustancial, de una gran densidad y que su composición es muy parecida a la de la Tierra, ya que el elemento fundamental, como aquí, es el nitrógeno. El papel secundario -aunque primordial- que en la Tierra desempeña el oxígeno, le corresponde en Titán al metano y también se han hallado trazas de hidrógeno. Se tienen muchas esperanzas de que, ésta luna de características tan especiales, sino ahora, algún día más lejano en el futuro podría contener formas de vida y, más adelante, incluso ser un hábitat para nosotros.

Resultado de imagen de La Huygens nos ha enviado imágenes más que suficientes para poder estudiar el enorme conglomerado de datos que en ellas aparecen

   Titán resulta fascinante con sus lagos de metano

La Huygens nos ha enviado imágenes más que suficientes para poder estudiar el enorme conglomerado de datos que en ellas aparecen y, tantos las fotografías como otros datos de tipo técnico tomados por los censores de la Huygens y enviados a la Tierra, tendrán que ser estudiados durante mucho tiempo hasta estar seguros de muchos de los enigmas que con ellos podamos desvelar.

La verdadera incógnita de Titán está en su superficie que aún, no se ha estudiado debidamente y, aparte de esos océanos de metano, ¿podrían existir también océanos de agua? Científicamente nada lo impide.

¡Ya veremos!

emilio silvera

Sobre Próxima b. El planeta podría albergar alguna clase de vida

Autor por Emilio Silvera    ~    Archivo Clasificado en Futuro    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Resultado de imagen de Próxima b

    Próxima b alumbrado por la enana roja

ABC -Ciencia

Las auténticas posibilidades de vida en el planeta Próxima b

Astrobiólogos llegan a conclusiones bastante desalentadoras, pero no definitivas, respecto al nuevo mundo hallado alrededor de la estrella más cercana

 

 

Resultado de imagen de Próxima b

 

 

Aunque hace apenas unas semanas que se anunció su descubrimiento, ha pasado ya más de un año en Próxima b, el planeta rocoso y potencialmente habitable que orbita la estrella más cercana al Sol, Próxima Centauri, a solo 4,2 años luz de distancia. Y en este corto espacio de tiempo, un grupo de astrobiólogos ha empezado ya a devanarse los sesos para averiguar, con los datos disponibles en la mano, qué clase de vida podría albergar este mundo tan parecido al nuestro. Con resultados, por cierto, que por ahora no son demasiado alentadores. El trabajo acaba de publicarse, en forma de dos artículos, en arXiv.org.

Los investigadores han considerado un amplio rango de escenarios para el planeta. Y en la mayor parte de ellos Próxima b resulta del todo inhabitable, aunque los científicos admiten un cierto margen de posibilidades que sí serían compatibles con la vida. En otras palabras, la vida en Próxima b es una posibilidad remota, pero no imposible.

Resultado de imagen de Próxima b

En las dos últimas semanas, este mundo tan cercano a nosotros ha acaparado centenares de titulares de prensa debido a su masa, tan similar a la de la Tierra (1,3 veces), y especialmente al hecho de que se encuentra a la distancia exacta de su estrella, ni demasiado cerca ni demasiado lejos, para que su temperatura, ni demasiado caliente ni demasiado fría, permita la existencia de agua líquida en su superficie.

Sin embargo, los investigadores recuerdan en su estudio que existen muchos otros factores, además del tamaño y la distancia a su estrella, que resultan determinantes a la hora de ser un buen candidato para albergar vida.

Resultado de imagen de Próxima b

El estudio, llevado a cabo por Rory Barnes y su equipo del Instituto de Astrobiología de la NASA, considera diferentes posibilidades y valores para los datos que aún no conocemos de Próxima b, como la variabilidad del brillo de su estrella madre o la composición de su atmósfera, si es que la tiene. De modo que los científicos fueron modificando esas variables y simularon qué clase de mundo resultaba en cada combinación.

En los dos artículos de arXiv.org, los astrobiólogos explican que una de las mayores cuestiones que marcan la posible habitabilidad de Próxima b es el hecho de que su estrella, Próxima Centauri, es una enana roja, lo cual implica que a pesar de que se trata de un astro mucho menos brillante y caliente que el Sol, su brillo puede ser muy variable y cambiante. Por ejemplo, su producción de energía, tras una observación de varios meses, ha descendido hasta un 17%, Una barbaridad si se compara con la variabilidad del brillo de nuestro Sol, de apenas el 0,1%, pero aún así suficiente para causar en la Tierra una o dos edades de hielo cada cien mil años.

Además, las enanas rojas también son conocidas por su capacidad de producir “mega llamaradas”, hasta 10.000 veces más poderosas de las mayores de nuestro Sol. Y cuando nuestra estrella lanza una llamarada sobre nosotros, todo un torrente de partículas cargadas puede provocar apagones generalizados y espectaculares auroras. La mega llamadara de una enana roja, mucho más potente, podría, por ejemplo, barrer de un solo golpe toda la atmósfera de un planeta si éste no dispone de un campo magnético lo suficientemente fuerte como para desviar el ataque.

Resultado de imagen de Próxima b

Ni amaneceres ni atardeceres

 

Otra cuestión clave es el modo en que la cercanía de Próxima b a su estrella puede haber afectado a su evolución. De hecho, los escasos siete millones de km. que separan al planeta de la estrella (mucho más cerca, incluso, de lo que Mercurio está del Sol) podrían haber hecho que Próxima b esté “anclado” gravitatoriamente a ella, haciendo que siempre le muestre la misma cara, igual que la Luna hace con la Tierra. Si fuera así, en Próxima b no habría ni amaneceres ni atardeceres. Desde su superficie (en la cara que mira hacia su sol) veríamos contínuamente el gran disco rojizo de la estrella madre, que estaría siempre fijo en el cielo.

Ya en la década de los 90 los astrónomos hallaron que los planetas que siempre muestran la misma cara a sus estrellas pierden inevitablemente sus atmósferas, cuyos gases se congelan en su lado frío. Sin embargo, otros estudios posteriores discrepan de este punto, ya que los fuertes vientos superficiales podrían llevar, en determinadas condiciones, calor a la “parte trasera” del planeta. Una posibilidad crucial en el caso que nos ocupa.

En su estudio, Barnes y sus colegas consideran estos aspectos, junto a muchos otros, para tratar de averiguar cuáles son realmente las condiciones que reinan en Próxima b en la actualidad. Y la conclusión es que, a pesar de sus aparentes similitudes con la Tierra, Próxima b podría ser un mundo completamente distinto al nuestro, hirviendo en una de sus caras y congelado en la otra, como Mercurio, o quizá envuelto en una atmósfera tórrida, como Venus, o incluso ser un planeta templado y seco, como lo es Marte.

maxresdefault

                         Agua y oxígeno no son suficientes

 

Existe también otra posibilidad, en la que el planeta contiene tanto agua como oxígeno, y aún así sigue siendo inhabitable, dado que un exceso de oxígeno podría obstaculizar, en vez de favorecer, la formación de biomoléculas complejas. Lo cual significa que, en las condiciones de Próxima b, ni siquiera la futura detección de agua y oxígeno serían garantías suficientes de la existencia de vida. Más fiable sería la detección de metano, un gas producido por los organismos vivientes.

Sin embargo, y entre los múltiples y descorazonadores escenarios posibles para Próxima b, los investigadores admiten un puñado de ellos en los que este esperanzador mundo podría haber evolucionado de una forma similar a la de la Tierra. Aunque para que sea así, el planeta debería de haber partido de unas condiciones iniciales muy concretas, con una enorme cantidad de agua disponible y una atmósfera muy rica en hidrógeno desde el principio. Cosa que, por desgracia, no sabremos a ciencia cierta hasta que la nueva generación de instrumentos, especialmente el nuevo telescopio espacial James Webb, sea puesto en órbita en 2018.

Vela solar japonesa Ikaros 1 (JAXA).
Vela solar japonesa Ikaros (JAXA).

Pero expliquemos las velas láser. Forward se dio cuenta de que la relativamente baja dispersión de un haz láser permite iluminar una vela solar continuamente, aumentando su velocidad hasta velocidades compatibles con el viaje interestelar tripulado (un eufemismo para decir que un astronauta puede llegar a su destino antes de morir de viejo). En 1969 el canadiense Philip Norem perfeccionaría el concepto de Forward de nave interestelar propulsada por láser, pero había dos pequeñas pegas que se interponían entre esta brillante idea y la realidad. Una era que la vela láser debería ser increíblemente fina e increíblemente grande para acelerar a velocidades relativistas. Y uso increíble en el sentido literal. Por ejemplo, Norem imaginó una vela láser de 40 kilómetros de diámetro con un espesor de solo 0,3 micras (!) capaz de mantenerse a una temperatura de 1200º C de forma constante sin perder una reflectividad de un 99% en la longitud de onda del láser (si la reflectividad fuera inferior, la temperatura de la vela aumentaría y esta se vaporizaría). Vamos, unas características de ciencia ficción pura y dura.

Seguimos el reportaje

Mientras, el descubrimiento de Próxima b ha dado un gran impulso al Proyecto Starshot, que planea utilizar rayos láser para impulsar un enjambre de micro naves (del tamaño de granos de arroz) hasta un 20% de la velocidad de la luz. En suorigen, el proyecto contemplaba enviar las micro naves a Alfa Centauri, pero sus objetivos se han redefinido para que puedan dirigirse a Próxima b.

publica emilio silvera

Seguimos soñando pero, ¡mañana, será realidad!

Constantes de la Naturaleza

Autor por Emilio Silvera    ~    Archivo Clasificado en Constantes universales    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Si alguna de estas constantes de la Naturaleza, variaran tan sólo una millonésima, la vida no estaría presente

“En la Física existen una serie de magnitudes que contienen información que es independiente del sistema de medida que elijamos, lo cual es muy valioso no sólo en los cálculos. Además, estos parámetros que fija la naturaleza aparecen en las ecuaciones como parámetros que debemos ajustar lo más que podamos para que nuestras predicciones y nuestros modelos se ajusten a la realidad en la medida de lo posible.

Y aquí es donde viene el problema. Que son parámetros, es decir, su valor cuantitativo no es deducible de la teoría y por tanto hay que medirlo. Y esto añade la dificultad no sólo de idear un experimento, sino de hacerlo lo bastante preciso como para que el modelo sirva para algo.

El Modelo Estándar por ejemplo, que es el paradigma actual en el que se mueve la física de partículas y que recoge las interacciones fundamentales tiene unos 25 parámetros que se deben ajustar. Parámetros tales como la carga eléctrica, la masa, el espín, las constantes de acoplamiento de los campos, que miden la intensidad que éstos tienen, etcétera.

Ya no sólo se trata de averiguar el valor de cada una de ellas. Tampoco sabemos decir de antemano cuantas constantes fundamentales puede haber. Y es evidente que cuantas más constantes hay, más complicado se nos hace nuestro modelo.”

Resultado de imagen de Las constantes de la Naturaleza

Si miramos hacia atrás en el Tiempo podemos contemplar los avances que la Humanidad logró en los últimos tiempos, caigo en la cuenta de que poco a poco hemos sido capaces de identificar una colección de números mágicos y misteriosos arraigados en la regularidad de la experiencia.

¡Las constantes de la naturaleza!

Dan al universo su carácter distintivo y lo hace singular, distinto a otros que podría nuestra imaginación inventar. Estos números misteriosos, a la vez que dejan al descubierto nuestros conocimientos, también dejan al desnudo nuestra enorme ignorancia sobre el universo que nos acoge. Las medimos con una precisión cada vez mayor y modelamos nuestros patrones fundamentales de masa y tiempo alrededor de su invarianza; no podemos explicar sus valores.

Resultado de imagen de La constante de estructura fina

Nunca nadie ha explicado el valor numérico de ninguna de las constantes de la naturaleza. ¿Recordáis el 137? Ese número puro, adimensional, que guarda los secretos del electrón (e), de la luz (c) y del cuanto de acción (h). Hemos descubierto otros nuevos, hemos relacionado los viejos y hemos entendido su papel crucial para hacer que las cosas sean como son, pero la razón de sus valores sigue siendo un secreto profundamente escondido.

Buscar esos secretos ocultos implica que necesitamos desentrañar la teoría más profunda de todas y la más fundamental de las leyes de la naturaleza: descubrir si las constantes de la naturaleza que las definen están determinadas y conformadas por alguna consistencia lógica superior o si, por el contrario, sigue existiendo un papel para el azar.

Si estudiamos atentamente las constantes de la naturaleza nos encontramos con una situación muy peculiar. Mientras parece que ciertas constantes estuvieran fijadas, otras tienen espacio para ser distintas de las que son, y algunas no parecen afectadas por ninguna otra cosa del ­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­­- o en el – universo.

¿Llegaron estos valores al azar?

¿Podrían ser realmente distintos?

¿Cuán diferentes podrían ser para seguir albergando la existencia de seres vivos en el universo?

En 1.986, el libro The Anthropic Cosmological Principle exploraba las diez maneras conocidas en que la vida en el universo era sensible a los valores de las constantes universales. Universos con constantes ligeramente alteradas nacerían muertos, privados del potencial para desarrollar y sostener la complejidad que llamamos vida.

En la literatura científica puede encontrarse todo tipo de coincidencias numéricas que involucran a los valores de las constantes de la naturaleza. He aquí algunas de las fórmulas propuestas (ninguna tomada en serio) para la constante  de estructura fina.

Valor experimental: 1/α = 137’035989561…

  • Lewis y Adams: 1/α = 8π (8π5 / 15)1/3 = 137’384
  • Eddington: 1/α = (162 – 16) / 2 + 16 – 1 = 137
  • Wiler: 1/α = (8π4 / 9)(245! / π5)1/4 = 137’036082
  • Aspden y Eagles: 1/α = 108π (8 / 1.843)1/6 = 137’035915

Resultado de imagen de La Teoría M

Por supuesto, si la teoría M da al fin con una determinación del valor de 1/α podría parecerse perfectamente a una de estas fórmulas especulativas. Sin embargo ofrecería un amplio y constante edificio teórico del que seguiría la predicción.

También tendría que haber, o mejor, que hacer, algunas predicciones de cosas que todavía no hemos medido; por ejemplo, las siguientes cifras decimales de 1/α, que los futuros experimentadores podrían buscar y comprobar con medios más adelantados que los que ahora tenemos, a todas luces insuficientes en tecnología y potencia.

Todos estos ejercicios de juegos mentales numéricos se acercan de manera impresionante al valor obtenido experimentalmente, pero el premio para el ingeniero persistente le corresponde a Gary Adamson, cuya muestra de 137-logía se mostraron en numerosas publicaciones.

Estos ejemplos tienen al menos la virtud de surgir de algún intento de formular una teoría de electromagnetismo y partículas. Pero hay también matemáticos “puros” que buscan cualquier combinación de potencias de números pequeños y constantes matemáticas importantes, como π, que se aproxime al requerido 137’035989561… He aquí algún ejemplo de este tipo.

  • Robertson: 1/α = 2-19/4 310/3 517/4 π-2 = 137’03594
  • Burger: 1/α = (1372 + π2)1/2 = 137’0360157

Unidades naturales que no inventó el hombre

Ni siquiera el gran físico teórico Werner Heisenberg pudo resistirse a la ironía o irónica sospecha de que…

“En cuanto al valor numérico, supongo que 1/α = 24 33 / π, pero por supuesto es una broma.”

Arthur Eddington, uno de los más grandes astrofísicos del siglo XX y una notable combinación de lo profundo y lo fantástico, más que cualquier figura moderna, fue el responsable impulsor de poner en marcha los inacabables intentos de explicar las constantes de la naturaleza mediante auténticas proezas de numerología pura. Él también advirtió un aspecto nuevo y especular de las constantes de la naturaleza.

“He tenido una visión muy extraña, he tenido un sueño; supera el ingenio del hombre para decir qué sueño era. El hombre no es más que un asno cuando tiene que exponer este sueño. Se llamará el sueño del fondo, porque no tiene fondo.”

A. S. Eddington

 

“El conservadurismo recela del pensamiento, porque el pensamiento en general lleva a conclusiones erróneas, a menos que uno piense muy, muy intensamente.”

Roger Scruton

 

Resultado de imagen de Agujeros negros

           Todo lo que existe… ¡Tiene una explicación!

 

Hay que prestar atención a las coincidencias. Uno de los aspectos más sorprendentes en el estudio del universo astronómico durante el siglo XX, ha sido el papel desempeñado por la coincidencia: que existiera, que fuera despreciada y que fuera recogida. Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y a explorar y explorar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de unirlas.

Entró en escena Arthur Eddington; un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También hizo importantes contribuciones a nuestra comprensión de la galaxia, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de verificar, en una prueba decisiva durante un eclipse de Sol, la veracidad de la teoría de Einstein en cuanto a que el campo gravitatorio del Sol debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segmentos de arco cuando pasaba cerca de la superficie solar, y así resultó.

Resultado de imagen de El número de Eddington

La imagen fue tomada en Leiden en el año 1923, y, aparecen de izquierda a derecha Einstein, P. Ehrenfest, W. de Sitter, A. Eddington y H. Lorentz

“Arthur Eddington creyó en las teorías de Einstein desde el principio, y fueron sus datos tomados durante el eclipse solar de 1919 los que dieron la prueba experimental de la teoría general de la relatividad. La amplia cobertura informativa de los resultados de Eddington llevó a la teoría de la relatividad, y al propio Einstein, a unos niveles de fama sin precedentes.

Arthur Eddington está considerado uno de los más importantes astrónomos ingleses del siglo XX. Se especializó en la interpretación de las observaciones de los movimientos de las estrellas en el Observatorio de Greenwich. En 1913, fue uno de los primeros científicos no alemanes en entrar en contacto con las primeras versiones de la teoría general de la relatividad, e inmediatamente se convirtió en un declarado partidario.”

( http://www.experientiadocet.com)

 

 

Resultado de imagen de El número de Eddington

Albert Einstein y Arthur Stanley Eddington se conocieron y se hicieron amigos. Se conservan fotos de los dos juntos conversando sentados en un banco en el jardín de Eddington en el año 1.930, donde fueron fotografiados por la hermana del dueño de la casa.

Aunque Eddington era un hombre tímido con pocas dotes para hablar en público, sabía escribir de forma muy bella, y sus metáforas y analogías aún las utilizan los astrónomos que buscan explicaciones gráficas a ideas complicadas. Nunca se casó y vivió en el observatorio de Cambridge, donde su hermana cuidaba de él y de su anciana madre.

Eddington creía que a partir del pensamiento puro sería posible deducir leyes y constantes de la naturaleza y predecir la existencia en el universo de cosas como estrellas y galaxias. ¡Se está saliendo con la suya!

Entre los números de Eddington, uno lo consideró importante y lo denominó “número de Eddington”, que es igual al número de protones del universo visible. Eddington calculó (a mano) este número enorme y de enorme precisión en un crucero trasatlántico concluyendo con esta memorable afirmación.

Resultado de imagen de El número de Eddington

“Creo que en el universo hay

15.747.724.136.275.002.577.605.653.961.181.555.468.044.717.914.527.116.709.366.231.425.076.185.631.031.296

protones y el mismo número de electrones.”

 

Este número enorme, normalmente escrito NEdd, es aproximadamente igual a 1080. Lo que atrajo la atención de Eddington hacia él era el hecho de que debe ser un número entero, y por eso en principio puede ser calculado exactamente.

Durante la década de 1.920, cuando Eddington empezó su búsqueda para explicar las constantes de la naturaleza, no se conocían bien las fuerzas débil y fuerte, y las únicas constantes dimensionales de la física que sí se conocían e interpretaban con confianza eran las que definían la gravedad y las fuerzas electromagnéticas.

No siempre sabemos valorar la grandeza a la que puede llegar la mente humana: “… puedan haber accedido a ese mundo mágico de la Naturaleza para saber ver primero y desentrañar después, esos números puros y adimensionales …”

Eddington las dispuso en tres grupos o tres puros números adimensionales. Utilizando los valores experimentales de la época, tomó la razón entre las masas del protón y del electrón:

mp / me ≈ 1.840

La inversa de la constante de estructura fina:

2πhc / e2 ≈ 137

Y la razón entre la fuerza gravitatoria y la fuerza electromagnética entre un electrón y un protón:

e2 / Gmpme ≈ 1040

A éstas unió o añadió su número cosmológico, NEdd ≈ 1080.

¿No cabría la posibilidad de que todos los grandes sucesos presentes correspondan a propiedades de este Gran Número [1040] y, generalizando aún más, que la historia entera del universo corresponda a propiedades de la serie entera de los números naturales…? Hay así una posibilidad de que el viejo sueño de los filósofos de conectar la naturaleza con las propiedades de los números enteros se realice algún día.

Eddington a  estos cuatro números los llamó “las constantes últimas”, y la explicación de sus valores era el mayor desafío de la ciencia teórica.

“¿Son estas cuatro constantes irreducibles, o una unificación posterior de la física demostrará que alguna o todas ellas pueden ser prescindibles?

¿Podrían haber sido diferentes de los que realmente son?”

 

 

Resultado de imagen de Una gran teoría unificada

El Modelo estándar es la teoría que tenemos pero…

 

De momento, con certeza nadie ha podido contestar a estas dos preguntas que, como tantas otras, están a la espera de esa Gran Teoría Unificada del Todo, que por fin nos brinde las respuestas tan esperadas y buscadas por todos los grandes físicos del mundo. ¡Es todo tan complejo! ¿Acaso es sencillo y no sabemos verlo? Seguramente un poco de ambas cosas; no será tan complejo, pero nuestras mentes aún no están preparadas para ver su simple belleza. Una cosa es segura, la verdad está ahí, esperándonos.

Para poder ver con claridad no necesitamos gafas, sino evolución. Hace falta alguien que, como Einstein hace 100 años, venga con nuevas ideas y revolucione el mundo de la física que, a comienzos del siglo XXI, está necesitada de un nuevo y gran impulso. ¿Quién será el elegido? Por mi parte me da igual quién pueda ser, pero que venga pronto. Quiero ser testigo de los grandes acontecimientos que se avecinan, la teoría de supercuerdas y mucho más.

emilio silvera