domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Otros Mundos? A miles de millones por todo el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Otros mundos    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Paisajes de otros mundosImagen relacionada

En nuestro inmenso Universo, mundos llenos de vida los tiene que haber a miles de millones, y, la lejanía nos impide visitar esos paraisos que, algunas estarán cargados de vida y otros, posiblemente no. Sin embargo, siendo las fuerzas que rigen el inconmensurable Cosmos, las mismas en todos los lugares por muy lejanos que éstos puedan estar, en todos ellos, como aquí en la Tierra, ocurrirán los mismos fenómenos que están regidos por leyes y constantes inamovibles.

Si nuestro Sistema Solar tiene unos 5.000 millones de años, otros situados en regiones lejanas podrían tener más antigüedad y, sus posibles habitantes habrían tenido tiempo para avanzar mucho más que nosotros en el ámbito de la Física, la Química, la Biología y las tecnologías que les permitan llegar a lugares vedados para nosotros.

No hay que descartar el hecho de que, si alguna de esas Civilizaciones nos estuviera observando, tengan tomada (desde hace muchos años), la decisión de dejarnos seguir nuestro camino y que seámos nosotros los que nos labremos nuestro propio futuro. Es posible, que sólo en caso de algo muy gordo e inesperado, los hiciera intervenir.

Resultado de imagen de Paisajes de otros mundosResultado de imagen de Paisajes de otros mundosImagen relacionada

Un sin fin de Mundos inimaginables con criaturas increíbles, que estarán, como nosotros, especulando sobre la existencia o no, de otras formas de vida en mundos similares a los suyos. ¿Os imagináis esas culturas extraterrestres? ¿Qué costumbren regiran sus pueblos? ¿Qué Normas acatarán y qué sentido tendrán de la Ética y la Moral?

Nosotros, Seres conscientes de Ser y con una gran Imaginación, nos podemos perder en miles de conjeturas de lo que podría o no podría ser. Sin embargo, en una cosa estamos muchos de acuerdo, las leyes del Universo son todas y en todas partes las mismas, así que, las mismas cosas y los mismos sucesos estarán presentes también por esas lejanas regiones.

Imagen relacionadaImagen relacionadaResultado de imagen de Paisajes de otros mundos

En “esos Mundos”, cualquier escenario que podamos imaginar allí podrían estar, por muy extraños que nmos puedan parecer, ya que, las condiciones locales del lugar, tienen una influencia directa con lo que alli puedan ser las cosas y, los mundos, no son repeticiones los unos de los otros. Mientras que la Tierra tiene un Sol amarillo de la clase G2V, que le envía su luz y su calor para hacer posible la vida, en otros, podrán recibir distintas formas de radiación y estar sometidos a una Gravedad mayor o menor que en la Tierrta. Así, esos animales que arriba contemplamos, podrían habitar un Mundo con baja Gravedad, y, de esa manera, sus frágiles patitas soportarían un cuerpo cuya masa es mucho menor que lo sería en la Tierra.

Resultado de imagen de Paisajes de otros mundosImagen relacionadaResultado de imagen de Paisajes de otros mundos

En esos mundos imaginarios (que podrían ser muy reales), podrían estar presentes formas de vida que ni podemos imaginar, incluso, teniéndolas ante nuestros o0jos, nos pasarían desapercibidas. No todo es como nosotros nos creemos que debe ser. La Naturaleza recorre caminos desconocidos para nuestra poco desarrollada inteligencia, y, según sea el escenario que se le presenta, así escoge el camino más corto y eficaz para conseguir sus logros, y, para ella (la Naturaleza), pocas cosas son imposibles.

Resultado de imagen de Paisajes de otros mundosImagen relacionadaImagen relacionada

Una cosa sí es inamovible y en todos los lugares del Universo actúa de la misma manera y hace las mismas cosas. Me refiero a las estrellas que, durante miles de milloones de años fusionan materiales sencillos en otros más complejos y, cuando explotan como Nebulosas, allí está regado (en el Espacio Interestelar), los materiales que miles de millones de años más tarde, forman los mundos y la vida.

Resultado de imagen de Paisajes de otros mundosImagen relacionadaResultado de imagen de Paisajes de otros mundos

Podría darse el caso (cuando estémos preparado para ello), que visitemos mundos de fascinante belleza y de extrañas conformaciones que, no siempre comprenderemos en esos primeros momentos, nos darán mucho para estudiar e investigar y averiguar que, en otros mundos y otros lugares, puedan estar presenters otras cosas y otros acontecimientos que, desconocidos para nosotros, nos asombraran.

A estas alturas de mi vida, la palabra imposible tiene para mí poco significado, ya que, después de haber hallado lo que dentro del átomo puede estar presente, saber de las fuerzas que rigen nuestro Universo, lograr desvelar el misterio asombroiso que rodea a dos partículas entrelazadas, y, los muchos sucesos asombrosos que están en la Mecánica Cuántica… ¿De qué nos podemos extrañar ya?

Resultado de imagen de Paisajes de otros mundosResultado de imagen de Paisajes de otros mundosResultado de imagen de Paisajes de otros mundos

Inusitamos mundos de paisajes imposibles habitados por criaturas que nunca pudimos imaginar, y, sin embargo, es posible, sólo posible, que dichos seres, como nosotros, también estén basados en el Carbono, el elemento de la Vida.

Cuando pasen algunos siglos y milenios, cuando estémos en posesión de tecnologías hoy imposibles, cuando podamos desplazarnos por el Espacio Interestelar y viajar a regiones situadas a miles y millones de años luz… Entonces, y sólo entonces, podremos disfrutar de tantas maravcillas como en nuestro Universo están presentes, sólo a la espera de que vayamos allí.

Resultado de imagen de Criaturas de otros mundosResultado de imagen de Criaturas de otros mundosResultado de imagen de Criaturas de otros mundos

Una cosa está clara, nada tiene que ver niuestros deseos con la realidad, así que, en esos exóticos mundos nos podríamos encontrar con criaturas que, siendo muy distintas a nosotros, no tuvieran los mismos pensamientos en lo que a la amistad se refiere, y, sobre el sentido de la hermandad entre los seres, y, sus intenciones, en lugar de intercambiar los saberes, prevalezcan en primer lugar el de hacer un buen estofado con eos intrusos.

Nada sabemos de los que ahí fuera pueda estar esperando a que vayamos, y, no pocos científicos abogan por quedarnos aquí quietecitos sin tentar la suerte pero, por esa regla de tres… ¿Que hubiera pasado sin aquellos grandes viajeros descubridores del Mundo y de los Pueblos? Estaríamos todavía encerrados en nuestras localidades de origen sin conocer el mundo que habitamos?

¡Salgamos al Universo! Las sorpresas pueden ser mayúsculas.

emilio silvera

Descubriendo el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y... ¿nosotros?    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

https://jaivan.files.wordpress.com/2015/06/ciclo-de-vida-de-una-estrella.jpg

No pocas veces hemos explicado aquí lo que son las estrellas, como se forman y como evolucionan y finalmente mueren para convertirse en otros objetos estelares distintos de lo que en “vida” fueron, y, como, dependiendo de sus masas, se quedan en el Espacio Interestelar en forma de estrellas enanas blancas, de neutrones o agujeros negros.

También se habló de las Galaxias y sus clases o tipos, de las radiogalaxias y de los cuásares, además de otras cuestiones de interés que, en todo momento, he tratado de explicar de manera muy sencilla con el objeto de que su comprensión sea fácil para las personas no versadas en Astronomía.

Diagrama que muestra los tipos comunes de estrellas

Desde la Protoestrella siguen su curso hasta la secuencia principal y, allí, consumen elementos cada vez más pesado hasta que al llegar al Hierro, reaccionan sugén su masa y se convierten en Gigantes rojas primero y en enanas blancas después (en estrellas poco masivas como el Sol), y, si sus masas son 3 veces mayores a las del Sol, su final será el de estrella de neutrones. Ya las estrellas muy masivas a partir de 8 masas solares, tienen un final que las lleva hacia la singularidad de los agujeros negros.

Es preciso que todos sepais que, en cualquier región del Universo, por muchos años luz que de nuestra Galaxia esté, las leyes que rigen son las mismas que aquí interaccionan con la Materia. Todo el Cosmos es lo mismo en cualquier lugar. Los Cúmulos de Galaxias y los espacios “vacíos” que existen entre ellos, las Nebulosas, los Agujeros Negros que ocupan el corazón de las Galaxias, el gas y el polvo interestelar que forman nuevas estrellas, y, en fin, todas las maravillas que a través de los procesos nucleares, forman la materia compleja a partir del Hidrógeno y del Helio.

Galaxies_5x7.7_72d.tif                                         0000485A Documents                      B4619D8E:

           Las galaxias tienen un lado oculto que no podemos ver pero que está ahí presente en ellas

 

El Hidrógeno y el Helio es el material primario del Universo y, a partir de ellos, se forman las estrellas que convierten ese material en una especie de plasma a altas temperaturas que en la superficie de la estrella puede ser de 6.000 grados y en el núcleo de 15 millones.

La fusión nuclear, convierte el hidrógeno en helio, el helio en carbono, el carbono en oxígeno, y, de esta manera hasta llegar al hierro. Otros materiales más complejos se producen cuando las estrellas supermasivas explotan en supernovas sembrando el espacio con una nueva Nebulosa y, su núcleo se convierte en una estrella de neutrones o en un agujero negro.

Pero veamos algún objeto más de los que pueblan el inmenso espacio del Universo.

Resultado de imagen de La velocidad de la luz en el vacío

En tiempos de Galileo se creía que su velocidad era instantánea

La luz está compuesta por fotones y precisamente ya se ha dicho que es la luz la que tiene el record de velocidad del universo al correr a unos 300.000 Km/s, exactamente 299.792’458 Km/s.

¿Y los neutrinos?

Los neutrinos se forman en ciertas reacciones nucleares y ningún físico atómico ha sido hasta ahora capaz de medir su masa. Es probable que los neutrinos, como los fotones, tengan una masa en reposo nula, aunque en realidad el neutrino nunca podrá estar en reposo y, como el fotón, siempre se está moviendo a 299.792’458 Km/s y adquieren esa velocidad desde el instante en que se forma.

Primera observación de un neutrino en una cámara de burbujas, en 1970 en el Argonne National Laboratory de EE.UU., la observación se realizó gracias a las líneas observadas en la cámara de burbujas basada en hidrógeno líquido.

Pero los neutrinos no son fotones, porque ambos tienen propiedades muy distintas. Los fotones interaccionan fácilmente con las partículas de materia y son retardados y absorbidos al pasar por la materia. Los neutrinos, por el contrario, apenas interaccionan con las partículas de materia y pueden atravesar un espesor de años luz de plomo sin verse afectados. Lo cierto es que la cota superior de la masa de los neutrinos es 5.5 eV/c2, lo que significa menos de una milmillonésima parte de la masa de un átomo de hidrógeno

Parece claro, por tanto, que si los neutrinos tienen una masa en reposo nula, no son materia. Por otro lado, hace falta energía para formarlos, y al alejarse se llevan algo de ella consigo, de modo que son una forma de energía.

Resultado de imagen de Los neutrinos atraviesan la materia que está llena de espacios vacíosImagen relacionada

Los neutrinos salen disparados a velocidades relativistas desde los distintos fenómenos astronómicos que se producen en el Universo y, se crean grandes instalaciones para poder localizarlos. La masa del neutrino tiene importantes consecuencias en el modelo estándar de la física de partículas,  ya que implicaría la posibilidad de transformaciones entre los tres tipos de neutrinos existentes en un fenómeno conocido como oscilación de neutrinos.En todo caso, los neutrinos no se ven afectados por las fuerzas electromagnéticas o nuclear fuerte,  pero sí por la fuerza nuclear débil y la gravitatoria.

Resultado de imagen de Los neutrinos atraviesan la materia que está llena de espacios vacíos

En estos momentos, mientras lees este trabajo, miles de neutrinos atraviesan tu cuerpo

Sin embargo, atraviesan cualquier espesor de materia sin interaccionar apenas, de modo que prácticamente no efectúan trabajo. Lo cual les distingue de cualquier otra forma de energía. En su momento se habló de que los neutrinos podían ser la energía oscura que tanto fascina a todos los físicos, astrofísicos y astrónomos, sin embargo, al no haber detectado de manera clara la masa de los neutrinos, se desechó la idea.

El neutrino es de la familia de los leptones y existe en tres formas. Una asociada al electrón y se conoce como neutrino electrónico (Ve), otra al muón y es el neutrino múonico (Vµ) y por último el que está asociado con la partícula tau, que es el neutrino tauónico (Vt). Cada forma tiene su propia antipartícula.

Resultado de imagen de La existencia del neutrino fue postulada por Pauli

El neutrino fue postulado en 1.931 para explicar la energía “perdida” en la desintegración beta. Fue identificado de forma tentativa en 1.953, y definitivamente en 1.956, dando la razón a Wolfgang Pauli que presintió su existencia.

Los neutrinos no tienen carga y como dijimos antes, tampoco tienen masa (o muy poca); son pura energía que viaja siempre por el espacio a la velocidad de la luz (según se cree). En algunas teorías de gran unificación se predice que los neutrinos tienen masa no nula.

Decaimiento β de un núcleo. Se ilustra cómo uno de los neutrones se convierte en un protón a la vez que emite un electrón) y un antineutrino electrónico.

Cuando Pauli propuso su existencia para justificar la energía perdida en la desintegración beta, Enrico Fermi lo bautizó con el nombre de neutrino.  La ley de conservación de la energía prohíbe que ésta se pierda, y en la desintegración beta, que es un tipo de interacción débil en la que un núcleo atómico inestable se transforma en un núcleo de la misma masa atómica pero de distinto número atómico, hace que en el proceso un neutrón se convierta en un protón con la emisión de un electrón, o de un protón en un neutrón con la emisión de un positrón. Pero la cuenta no salía, allí faltaba algo, no se completaba en la transformación la energía original, así que Pauli añadió en la primera un antineutrino electrónico y la segunda la completó con un neutrino electrónico.

Desde el comienzo de ésta página evitamos fórmulas y explicaciones complejas.

Ahora para ir conociendo mejor el Universo, dejemos aquí explicados algunos conceptos:

Asteroide.

                                                    (Planetas menores; planetoides)

Pequeños cuerpos que giran alrededor del Sol entre las órbitas de Marte y Júpiter en una zona alejada entre 1’7 y 4’0 Unidades astronómicas del Sol (cinturón de asteroides).  El tamaño de estos objetos varía desde el más grande, Ceres (con un diámetro de 933 km.), a los objetos con menos de 1 km. De diámetro.  Se estima que hay alrededor de 10 cuerpos con diámetro mayor de 250 km. Y unos 120 cuerpos con diámetros por encima de 130 km.

Aunque son millones, su masa total es apenas una pequeña fracción de la Tierra, aunque no por ello dejan de ser preocupantes en el sentido del peligro que pueda suponer para nuestro planeta, la colisión con uno de estos pedruscos enormes del espacio estelar.  La desaparición de los Dinosaurios podría ser una prueba de los efectos devastadores de una colisión de este calibre. Según algunos creen uno de estos cuerpos enormes cayó en Mexico y arrasó con la vida de los grandes reptiles.

Astrofísica.

Resultado de imagen de Astrofísica

Ciencia que estudia la física y la química de objetos extraterrestres.  La alianza de la física y la astronomía, que comenzó con la creación de la espectroscopia, permitió investigar lo que son los objetos celestes, y no solo donde están.

Esta ciencia nos permite saber la composición de elementos que tiene un objeto estelar situado a miles de años-luz de la tierra, y, de momento, se confirma que el material existente en el Universo entero, es igual en todas partes.

El Universo primitivo era un plasma, cuando se enfrió se convirtió en Hidrógeno y algo de Helio (los dos elementos más simples) y más tarde, cuando se formaron las primeras estrellas y galaxias, se pudo fabricar,  en los hornos termonucleares de las estrellas, el resto de elementos más complejos y pesados, tales como litio, carbono, oxigeno, nitrógeno, todos los gases nobles como argón, kriptón, neón, etc., el hierro, mercurio… uranio y se completó la tabla periódica de elementos naturales que están, de una u otra forma dispersos por el Universo.

Nosotros mismos, la especie humana, estamos hechos de un material que solo se puede producir en las estrellas, así qué, sin lugar a ninguna duda,  el material que nos formó se fabricó hace miles de millones de años en estrellas situadas a miles o cientos de miles de años-luz de nuestro Sistema Solar. ¡Qué insignificante somos comparados con la enormidad del Universo! Sin embargo, el hecho de pertenecer a él nos da cierta importancia, y, además, somos conscientes de SER.

Astronomía invisible.

 También la astronomía infrarroja puede llevarse a cabo desde la superficie de la Tierra. Sin embargo, muchas de las otras regiones del espectro electromagnético están seriamente bloqueadas por capas de la atmósfera terrestre, y eso significa que tenemos que utilizar métodos de investigación basados en el espacio, tales como sondas y satélites. Es cierto que para casi toda la astronomía de rayos X y hay un satélite importante, el Observatorio de Rayos X Chandra, de 1999, que ha dado una gran información en esta región.

Así, la Astronomñía invisible es el esstudio de objetos celestes observados mediante la detección de su radiación o longitudes de onda diferentes de las de la luz visible.

Resultado de imagen de Cygnus X-1

Mediante este método se ha detectado, por ejemplo, una fuente emisora de rayos X, Cygnus X-I, que consiste en una estrella supergigante que rota alrededor de un pequeño compañero invisible con una masa unas diez veces mayor que la del Sol y, por tanto, por encima del límite de Chandrasekhar y que todos los expertos le conceden su voto para que, en realidad sea un agujero negro situado en el corazón de nuestra Galaxia a 30.000 años-luz de la Tierra.

Astronómica, unidad.

 Resultado de imagen de Unidad Astronómica

Distancia media de la Tierra al Sol, igual a 149.600 millones de km., ó 499,012 segundos-luz, ó 8’316 minutos-luz.  Cuando se utiliza para medir distancias entre Galaxias, se redondea en 150 millones de km.

Átomo.

 Resultado de imagen de átomo wallpaper

La parte más pequeña que puede existir de un elemento.  Los átomos constan de un pequeño núcleo muy denso de protones y neutrones rodeado de electrones situados por capas o niveles y moviéndose.  El número de electrones es igual al de protones y, siendo la carga de estas positivas y la carga de aquellas negativa, pero equivalentes, el resultado final del total de la carga es cero y procura la estabilidad entre cargas opuestas pero iguales.

La estructura electrónica de un átomo se refiere a la forma en la que los electrones están dispuestos alrededor del núcleo y, en particular, a los niveles de energía que ocupan.  Cada electrón puede ser caracterizado  por un conjunto de cuatro números cuánticos: el núm. Cuántico principal, el orbital, el magnético y el número cuántico de espín.

De acuerdo con el principio de exclusión de Pauli, dos electrones en un átomo no pueden tener el mismo conjunto de números cuánticos.  Los números cuánticos definen el estado cuántico del electrón y explicar como son las estructuras electrónicas de los átomos.

En el núcleo reside casi por completo, la masa del átomo que esta compuesta, como se ha dicho por protones y neutrones que, a su vez, están hechos por quarks.

Se puede dar el caso  de que, en ocasiones, se encuentren átomos exóticos en el que un electrón ha sido reemplazado por otra partícula cargada negativamente, como un muón o mesón.  En este caso, la partícula negativamente cargada finalmente colisiona con el núcleo con la emisión de fotones de rayos X.  Igualmente, puede suceder que sea el núcleo de un átomo el que sea reemplazado por un mesón positivamente cargado.  Ese átomo exótico tiene que ser creado artificialmente y es inestable.

Big Bang.

 Resultado de imagen de Al comienzo del universo le llamamos Big Bang

Teoría cosmológica en la que toda la materia y energía del Universo se originó a partir de un estado de enorme densidad y temperatura que explotó en un momento finito en el pasado hace unos 15 mil millones de años.  Esta teoría explica de forma satisfactoria la expansión del Universo, la radiación de fondo de microondas observada, característica de la radiación de cuerpo negro a una temperatura de 3 K y la abundancia observada de helio en el Universo, formado por los primeros 100 segundos después de la explosión a partir del denterio a una temperatura de 10.000.000.000 K. Ahora es considerada generalmente como más satisfactoria que la teoría de estado estacionario de un Universo quieto e inamovible.  La teoría del Big Bang fue desarrollada por primera vez en 1.927 por A.G.E. Lamaitre (1894-1966) y retomada y revisada en 1.946 por George Camow (1904-1968). Han sido propuestas varias variantes de ella.

Resultado de imagen de singularidad espaciotemporal

La teoría de la relatividad general predice la existencia de una singularidad en el comienzo, cuando la temperatura y la densidad eran infinitas.  La mayoría de los cosmólogos interpretan esta singularidad como una indicación de que la relatividad general deja de ser válida en el Universo muy primitiva, y que el comienzo mismo debe ser estudiado utilizando una teoría cosmológica cuántica.

Con el conocimiento actual de la física de partículas de altas energías, podemos hacer avanzar el reloj, hacia atrás y a través de las eras Leptónica y la hadrónica hasta una millonésima de segundo después del Big Bang cuando la temperatura era de 1013 k.  Utilizando una teoría más especulativa los cosmólogos han intentado llevar el modelo hasta 10-35 segundos después de la singularidad, cuando la temperatura estaba en 1018 k.

Resultado de imagen de En el instante del Big Bang comenzço la expansión del Universo

En el instante del Big Bang comenzó la expansión del Universo y en ese mismo momento, nació el espacio-tiempo. En un principio la simetría lo dominaba todo y reinaba una sola fuerza unificada.  Más tarde, a medida que el Universo se enfriaba, la simetría se rompió y surgió la materia y las 4 fuerzas fundamentales que rigen hoy, la opacidad desapareció y todo fue transparencia, surgieron los fotones que transportaron la luz a todos los rincones del cosmos. Doscientos mil años más tarde surgieron las primeras estrellas, se formaron las Galaxias y, partir de la materia inerte, nosotros, la especie humana que, hoy, tan pretenciosa, quiere explicar como ocurrió todo.

Todo esto quedó bien explicado en días anteriores, sin embargo, se deja aquí un resumen como recordatorio para que todos, sin excepción, se familiaricen con estos conceptos del Cosmos.

Carbono, reacción de.

 Resultado de imagen de La reacción del CarbonoResultado de imagen de Carbono, reacción de

Importante proceso de fusión nuclear que se produce en las estrellas.  Lo inicia, el carbono 12 y, después de interacciones con núcleos de nitrógeno, hidrógeno, oxígeno y otros elementos, reaparece al final.

Este es el fenómeno que hace posible que las estrellas estén brillando en los cielos.

Cefeida variable.

Resultado de imagen de Cefeida variable

Este concepto engloba cualquier estrella cuyo brillo, visto desde la Tierra, no es constante. Pueden ser estrellas cuya emisión de luz fluctúa constantemente y pulsa variando tanto en temperatura como diámetro para producir cambios de brillo con un periodo y amplitud estables muy regulares.

Una estrella variable pulsante cuya periocidad (esto es, el tiempo que su brillo tarde en variar) está directamente relacionada con su magnitud absoluta. Esta correlación entre el brillo y el período hace útiles las cefeidas para medir distancias intergalácticas.

Uno de los grupos importantes de gigantes o supergigantes amarillas variables pulsantes, llamadas así por su prototipo, Delta Cephei.  Este término general y aplicado comúnmente a más de un tipo estelar, en particular a los cefeadas clásicas antes mencionadas Delta Cephei, y a los menos numerosas estrellas conocidas como W virginia.

En su tamaño máximo, los Cefeidas son típicamente un 7-15% mayores que en su tamaño mínimo.

Centauros A.

ESO Centaurus A LABOCA.jpg

Intensa radiofuente o fuente de rayos X situada en la constelación Centauros,  identificada con la Galaxia elíptica gigante de una magnitud 7 NGC 5128.  Centauros A es una radio galaxia clásica con dos pares de lóbulos radioemisores, el mayor de los cuales extendiéndose hasta a 1’5 millones de a.l. y con un chorro que unos 10.000 a.l. de longitud.  Estando situada a 15 millones de a.luz, se trata de la radiogalaxia más cercana al Sol.  Aunque la Galaxia madre se identifica como eliptica, tiene una banda de polvo poco característica cruzándola, que se cree es el resultado de la unión de una galaxia eliptica en otra espiral.

Esta situada entre el Grupo Local y el centro del supercúmulo de Virgo.

Colapso gravitacional

 Resultado de imagen de Colapso gravitacional

NGC 6745 (la primera imagen) comporta densidades tan altas como para desencadenar la formación de estrellas a través del colapso gravitatorio.Pero en realidad el colapso gravitario se refiere… Al fenómeno predicho por la teoría de la relatividad general en el que la materia comprimida más allá de una densidad crítica se colapsa como consecuencia de la atracción gravitacional hasta que aparece una singularidad puntual.

La singularidad resultante del colapso gravitacional puede ser interpretada como una indicación de que se ha llegado al límite de la teoría de la relatividad general y de la necesidad de construir una gravedad cuántica.

La hipótesis de la censura cósmica sugiere que el punto final del colapso gravitacional debe ser un agujero negro, pues las singularidades están siempre ocultas en astrofísica, pues suministra una evidencia indirecta de la existencia de los Agujeros negros.

También, dependiendo de la masa de la estrella, cuándo finalmente agotan su combustible nuclear de fusión (hidrógeno, helio, oxigeno, carbono, etc.) y la gravedad no encuentra oposición para realizar su trabajo, las estrellas colapsan bajo su propio peso, no siempre hasta agujeros negros, como nuestro Sol un día en el futuro, podrán colapsar a estrellas enanas blancas o estrellas de neutrones y los supermasivas, estas así, serán agujeros negros.

Cometas

Resultado de imagen de Cometas

Miembros secundarios del Sistema Solar que, según se cree, son montones de suciedad y hielo que son residuos de la formación del sistema solar.  Se cree que hay millones de cometas en la Nube de Oort, una región esférica con un radio de treinta mil a cien mil unidades astronómicas con centro en el Sol.  Los cometas que llegan de la Nube de Oort son calentados por el Sol y desarrollan colas brillantes que los hacen visibles en los cielos de la Tierra.

Corrimiento al rojo.

Resultado de imagen de Corrimiento al rojo

Desplazamiento de las líneas espectrales en la luz proveniente de las estrellas de las galaxias distantes, que se considera producido por la velocidad de alejamiento de las galaxias en un universo en expansión (ley de Hubble). Cuando las galaxias en lugar de alejarse se acercan (caso de Andrómeda), el corrimiento es hacia el azul.

Cósmica, densidad de la materia. (Densidad crítica)

Resultado de imagen de Densidad Crítica

Densidad de materia que se obtendría si toda la materia contenida en las Galaxias fuera distribuida uniformemente a lo largo de todo el Universo.  Aunque las estrellas y los planetas tienen densidades mayores que la densidad del agua (alrededor 1 gr/cm3),  la densidad media cosmológica es extremadamente baja (menos de 10-29 gr/cm3, o 10-5 átomos/cm), ya que el Universo está formado casi exclusivamente por espacio virtualmente vacío entre galaxias.  La densidad media de materia determina si el Universo continuará expandiéndose o no.

La llamada densidad crítica, es la densidad media de materia requerida para que la Gravedad detenga la expansión del Universo. Un Universo con una densidad muy baja se expandirá por siempre, mientras que uno con una densidad muy alta colapsará finalmente.  Un Universo con exactamente la densidad crítica, alrededor de 10-29 gr/cm3, es descrito por el modelo Einstein- de Sitter, que se encuentra en la línea divisoria de estos dos extremos.

La densidad media de materia que puede ser observada directamente en nuestro Universo representa sólo el 20% del valor crítico.  Puede haber, sin embargo, una gran cantidad de materia oscura que elevaría la densidad hasta el valor crítico.  Las teorías de universo inflacionario predicen que la densidad presente debería ser muy próxima a la densidad crítica; estas teorías requieren la existencia de materia oscura que, hoy por hoy, es el misterio más grande de la Astrofísica.

Cósmicos, rayos.

Resultado de imagen de Rayos Cósmicos

Partículas subatómicas, principalmente protones,  que atraviesan velozmente el espacio y chocan con la Tierra.  El hecho de que sean masivas sumado a sus altas velocidades, hace que contengan considerable energía: de 108 a más de 1022 eV (electrón-voltios).

El 90% de los rayos cósmicos son protones (núcleos de hidrógeno) y partículas alfa (núcleos de helio) la mayor parte del resto.  Los núcleos más pesados son muy raros.   También están presentes un pequeño número de electrones, positrones, antiprotones y neutrinos y rayos gamma.

Los rayos cósmicos fueron detectados por primera vez durante el vuelo de un globo en 1.912 por V.F.Hess, y el término fue acuñado en 1.925 por el físico norteamericano Robert Andrews Millikan (1868-1953).

Cosmología.

 Resultado de imagen de Cosmología

En la física la cosmología se refiere al estudio de la evolución y el destino del universo, así como también al desarrollo de las teorías de la relatividad.

  1. Ciencia que se ocupa de estudiar la estructura y la composición del Universo como un todo.  Combina la astronomía, la astrofísica y la física de partículas y una variedad de enfoques matemáticos que incluyen la geometría y la topología.
  2. Teoría cósmica particular.

Cosmología constante.

Resultado de imagen de Cosmología constante

Un término empleado a veces en cosmología pasa expresar una fuerza de “repulsión” o “repulsión cósmica”, como la energía liberada por el falso vacío que los modelos del Universo inflacionario consideran que potenció exponencialmente la expansión del universo.  Que exista tal repulsión cósmica o que haya desempeñado alguna vez un papel en la historia cósmica es un problema aún no resuelto, como ocurre con la constante cosmológica de Einstein.

Cúmulo de estrellas.

 

                                                            Cúmulo globular M13

Conjunto de estrellas unidas por la Gravitación, más pequeños y menos masivos que las Galaxias.  Los cúmulos “globulares” son más abundantes; son viejos y pueden contener de cientos de miles de millones de estrellas; se les encuentra dentro y lejos del disco Galactico.

Se extienden sobre un radio de unos pocos megaparsecs (también existen pequeños Grupos de Galaxias, como nuestro Grupo Local de solo unas pocas Galaxias.)

He querido comenzar el año explicando algunas cosas que, no por conocidas debemos olvidar, el universo es muy complejo y de una riqueza inconmensurable de objetos y cuestiones que, de vez en cuando, debemos recordar.

emilio silvera

La importancia del Carbono para la Vida y otros

Autor por Emilio Silvera    ~    Archivo Clasificado en Bioquímica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de GaiaResultado de imagen de Gaia

                  El concepto de Gaia, considera a la Tierra como un Ente Vivo que evoluciona y se recicla

Nuestro planeta, la Tierra, forma parte del Universo, y, es una prueba indiscutible de que sus componentes biológicos y físicos forman parte de una única red que funciona de un modo autorregulado, y, de esa forma, mantiene las condiciones que son ampliamente adecuadas para la existencia de vida, pero que sufren fluctuaciones a todas las escalas (incluidos los ritmos de alternancia de glaciaciones y periodos interglaciales, así como las extinciones masivas). En un sentido real, la Tierra es el lugar que alberga una red de vida como seguramente estará presente en muchos otros mundos en el que se den las circunstancias adecuadas, y la existencia de esta red (Gaia) sería visible para cualquier forma de vida inteligente que hubiera en Marte o en cualquier otro planeta y que fuera capaz de aplicar la prueba conocida de Lovelock y buscar señales de reducción de la entropía.

Cuando Lovelock publicó la hipótesis de Gaia, provoco una sacudida en muchos científicos, sobre todo en aquellos con una mente más lógica que odiaban un concepto que sonaba tan místico. Les producía perplejidad, y lo más desconcertante de todo era que Lovelock era uno de ellos. Tenía fama de ser algo inconformista, pero sus credenciales científicas eran muy sólidas. Entre otros logros a Lovelock se le conocía por ser el científico que había diseñado los instrumentos de algunos de los experimentos para buscar vida que la nave estadounidense Viking había llevado a cabo en la superficie de Marte.

Ni la NASA, tomó nunca la prueba de Lovelock lo suficientemente en serio como para aplicarla a la búsqueda de vida en el Sistema Solar; pero si se lo tomó en serio para buscar vida más allá del Sistema Solar. Pero recapacitaron y comenzaron a enviar al planeta Marte, una serie de ingenios en forma de pequeñas navez robotizadas como la Mars Phoenix que comenzó encontrando hielo de agua diluyendo porciones de la tierra marciana en agua y debidamente tratada, hallaron la presencia de magnesio, sodio, potasio y cloruros.  Uno de los científicos responsables llegó a decir:

 

“Hay más que evidencia de agua porque las sales están ahí. Además hemos encontrado los compuestos químicos necesarios para la vida como la conocemos. y, lo sorprendente de Marte es que no es un mundo extraño, sino que, en muchos aspectos es igual que la Tierra.”

 

Se están analizando los gases y los compuestos químicos del suelo y del hielo allí encontrados, y, todo ello, debidamente procesado nos dará una respuesta de lo que allí existe.

Resultado de imagen de El Carbono y la Vida en el Universo

Lo que para mí está muy claro es que, los mecanismos del Universo son los mismos en cualquier región del cielo, y, las estrellas y los planetas surgen en todas partes de la misma manera. Y, si eso es así, sería lógico pensar que la vida podría estar en cualquier parte, y, además, con muchas probabilidades de que sea más o menos tal como la conocemos, ya que, la nuestra, basada en el Carbono y el Nitrógeno (siempre en presencia de agua), es la más natural dadas las características de estos elementos para unirse.

La historia de la vida en el Universo es otro ejemplo de complejidad superficial construida sobre cimientos de una profunda sencillez. Actualmente la prueba de que el universo tal como lo conocemos surgió a partir de un estado denso y caliente (Big Bang) hace unos 14.000 millones de años, es poco discutida.

Resultado de imagen de El Universo joven y el Hidrógeno y el Helio como bloques primordiales

Con los elementos primordiales creados en las estrellas, miles de años más tarde, en los mundos situados en las zonas habitables de sus estrellas, se habrán podido conformar células replicantes que habrían dado comienzo a la aventura de la vida. En la Tierra, el único planeta con vida que conocemos (por el momento), las formas de vida y especies que han estado aquí y siguen estando ha sido de una rica variedad y de asombrosos metabolismos.

Imagen relacionada

Los bloques de construcción básicos que emergieron del big bang fueron el hidrógeno y el helio, casi exactamente en una proporción de 3:1. Todos los demás elementos químicos (excepto unos leves vestigios de unos pocos elementos muy ligeros, como el litio) han sido fabricados en el interior de las estrellas y dispersados por el espacio cuando estas se dilataron y expulsaron materiales, o, al final de sus vidas, agotado el combustible nuclear de fusión, explotaron como Supernovas regando grandes regiones con Nebulosas creadoras de nuevas estrellas y nuevos mundos.

Resultado de imagen de La fusión nuclear en el Sol

Una estrella como el Sol genera calor convirtiendo hidrógeno en helio dentro de su núcleo; en otras estrellas los procesos cruciales incluyen fusiones sucesivas de núcleos de helio. Dado que cada núcleo de helio es una unidad que contiene cuatro “nucleones” (dos protones y dos neutrones), y este elemento se denomina abreviadamente helio-4, esto significa que los elementos cuyos núcleos contienen un número de nucleones que es múltiplo de cuatro son relativamente comunes en el universo, excepto el berilio-8, que es inestable.

Resultado de imagen de Carbono 12 y Oxígeno 16

El carbono-12 es el más abundante de los dos isótopos estables del elemento Carbono, representando el 98,89% de todo el carbono terrestre. Está conformado por 6 protones, 6 neutrones y 6 electrones.

Adquiere particular importancia al usarse como patrón para el cálculo de la masa atómica de los distintos nucleidos existentes en la naturaleza; dado que la masa atómica del 12C es, por definición, 12 umas.

Concretamente, en las primeras etapas de este proceso se produce carbono-12 y oxígeno-16, y resulta que el nitrógeno-14, aunque no contiene un número entero de núcleos de helio-4, se obtiene como subproducto de una serie de interacciones en las que participan núcleos de oxígeno y de carbono que operan en estrellas de masa un poco mayor que la de nuestro Sol.

Resultado de imagen de El Helio

Como consecuencia, estos son, con gran diferencia, los elementos más comunes, aparte del hidrógeno y del helio. Dado que éste último es un gas inerte (noble) que no reacciona químicamente, se deduce que los cuatro elemenbtos reactivos más comunes en el universo son el Carbono, el Hidrógeno, el Oxígeno y el Nitrógeno, conocidos en el conjunto por el acrónimo CHON.

No es casualidad que los cuatro elementos químicos que participan con una aplastante mayoría en la composición de los seres vivos de la Tierra sean el carbono, el hidrógeno, el oxígeno y el nitrógeno.

carbono

En estado puro y dependiendo de cómo estén dispuestos sus átomos, este elemento puede formar tanto el mineral más duro que ocurre en la naturaleza, el diamante, como uno de los más blandos, el grafito. Organizados en hexágonos y formando láminas, los átomos de carbono dan lugar al grafeno, un material del que habréis oído hablar estos últimos años por sus “increíbles” propiedades

Resultado de imagen de El Carbono y la Vida

              Estructuras basadas en el Carbono

El Carbono desarrolla el papel clave en el desarrollo de la vida, porque un solo átomo de este elemento es capaz de combinarse químicamente nada menos que con otros cuatro átomos al mismo tiempo (incluídos otros átomos de carbono, que pueden estar unidos a su vez  a más átomos de carbono, formando anillos y cadenas), de tal modo que este elemento tiene una química excepcionalmente rica. Así decimos con frecuencia que la vida en la Tierra está basada en el Carbono, el elemento más ductil y crucial en nuestra formación.

Importancia del carbono• Existen varios millones de compuestos  orgánicos conocidos, más de diez veces  el número de compu...Claro que, tal comentario, no implica la negación de que pudieran existir otras clases de vida basadas en el Silicio o en cualquier otra combinación química, pero todas las pruebas que aporta la Astronomía sugieren que es mucho mayor la probabilidad de que la vida más allá de nuestras fronteras esté basada también en el CHON.

Trascendencia del carbono para la                 vida• Biología celular: Los organismos vivos (células)  están construido...

Es inadmisible lo poco que la gente común sabe del Universo al que pertenecen y también lo poco que se valora el trabajo de Astrónomos, Astrofísicos y Cosmólogos, ellos son los que realizan las pruebas y las comprobaciones que finalmente nos llevan al conocimiento que hoy tenemos del cielo y de los objetos que lo pueblan y de las fuerzas que allí actúan.

luna

La Nebulosa de la Quilla, una de las regiones de nacimiento de estrellas más grandes del universo: pilares de 3 años luz de altura que parecen abultados como las velas de un barco por la fuerza tirante de los astros que, literalmente, da a luz en su interior.

Gran parte de estas pruebas proceden del análisis espectroscópico del material que está presente en las Nebulosas, esas inmensas nubes de gas y polvo que se encuentran en el espacio como resultado de explosiones de supernovas o de otros fenómenos que en el Universo son de lo más frecuente. A partir de esas nubes se forman los sistemas planetarios como nuestro sistema solar, allí, nacen nuevas estrellas que contienen los mismos materiales expulsados por estrellas de generaciones anteriores.

En estas nubes hay muchos compuestos construidos en torno a átomos de carbono, y este elemento es tan importante para la vida que sus compuestos reciben en general el nombre de compuestos “orgánicos”. Entre los compuestos detectados en nubes interestelares hay sustancias muy sencillas, como metano y dióxido de carbono, pero también materiales orgánicos mucho más complejos, entre los que cabe citar el formaldehído, el alcohol etílico, e incluso al menos un aminoácido, la glicina. Lo que constituye un descubrimiento muy esclarecedor, porque es muy probable que toso los materiales existentes en las nubes interestelares hayan estado presentes en la nube a partir de la cual se formó nuestro Sistema Solar, hace unos cinco milo millones de años.

luna

En este cúmulo estelar llamado NGC 602, cerca de la Pequeña Nube de Magallanes, millones de estrellas jóvenes emiten radiación y energía en forma de ondas que erosionan el material que las rodea creando formaciones visualmente interesantes. El tamaño de lo que se ve en la foto abarca 200 años luz de lado a lado

A partir de estos datos, equipos científicos han llevado a cabo en la Tierra experimentos en los que unas materias primas, debidamente tratadas simulando las condiciones de densidad y energías de aquellas nubes interestelares (ahora en laboratorio), dieron como resultado el surgir expontáneo de tres aminoácidos (glicina, serina y alanina). Todos conocemos el experimento de Miller.

En otro experimento utilizando otra mezcla de ingredientes ligeramente distinta, se producian no menos de dieciseis aminoácidos y otros compuestos orgánicos diversos en unas condiciones que eran las existentes en el espacio interestelar.

Para hacernos una idea, las proteínas de todos los seres vivos de la Tierra están compuestas por diversas combinaciones de tan sólo veinte aminoácidos. Todas las evidencias sugieren que este tipo de materia habría caído sobre los jóvenes planetas durante las primeras etapas de formación del sistema planetario, deposita por cometas que habría sido barridos por la influencia gravitatoria de unos palnetas que estaban aumentando de tamaño.

Formación de una estrella en la nebulosa Tarántula.

En idénticas condiciones de temperatura y presión que el universo de hace 4.600 millones de años, Experimentos llevados a cabo en el laboratorio, han logrado originar ribosa, la molécula que luego acabó convirtiéndose en ADN.

Como hemos podido deducir, una sopa de aminoácidos posee la capacidad de organizarse por sí sóla, formando una red con todas las propiedades que ha de tener la vida. De esto se deduce que los aminoácidos que estuvieron formando durante largos períodos de tiempo en las profundidades del espacio (utilizando energias proporciona por la luz de las estrellas), serían transportados a la superficie de cualquier planeta joven, como la Tierra.

Algunos planetas pueden resultar demasiado calientes para que se desarrolle la vida, y otros demasiado fríos. Pero ciertos planetas como la propia Tierra (existentes a miles de millones), estarían justo a la temperatura adecuada. Allí, utilizando la expresión de Charles Darwin, en alguna “pequeña charca caliente” tendrían la oportunidad de organizarse en sistemas vivos.

Sopa primitiva: el origen de la vida

                      Sopa primigenia de la que surgió la primera célula replicante precursora de la Vida

Claro que, por mi parte, como dijo aquel famoso Astrofísico inglés del que ahora no recuerdo el nombre: ” milagro no es que aparezca vida fuera de la Tierra, el verdadero milafro sería que no apareciera”.

Y, en cuanto a las condiciones para que haga posible la existencia de vida, conviene ser reservados y no emitir un juicio precipitado, ya que, todos sabemos de la existencia de vida en condiciones que se podrían comparar o denominar de infernales. Así que, estaremos a la espera de que, el Universo nos de una respuesta.

Veamos algunos conceptos: Nova.

http://eltamiz.com/images/nova_luminosa_roja.jpg

Antiguamente, a una estrella que aparecía de golpe donde no había nada, se le llamaba nova o ” estrella nueva “. Pero este nombre no es correcto, …


En realidad es una estrella que durante el periodo de sólo unos pocos días, se vuelve 103-10veces más brillantes de lo que era.  Ocurren 10 ó 15 sucesos de ese tipo cada año en la Vía Láctea.  Las novas se cree que son binarias próximas en las que, uno de sus componentes es usualmente una enana blanca y la otra una gigante roja.

La materia se transfiere de la gigante roja a la enana blanca, en cuya superficie se acumula, dando lugar a una explosión termonuclear, y, a veces se convierte en una estrella de neutrones al ver incrementada su masa.

Nucleones.

Resultado de imagen de Nucleones

Protones y neutrones, los constituyentes de los núcleos atómicos que, a su vez, están conformados por tripletes de Quarks. Un protón está hecho por 2 Quarks up y 1 Quark Down, mientras que un Neutrón está conformado por 2 Quarks Down y 1 Quark up. Son retenidos en el núcleo por los Bosones llamados Gluones que son transmisores de la fuerza nuclear fuerte.

Núcleo.

Resultado de imagen de Núcleo del átomo

Corazón central de un átomo que contiene la mayor parte de su masa.  Está positivamente cargado y constituido por uno o más nucleones (protones y neutrones).

La carga positiva del núcleo está determinada por el número de protones que contiene (número atómico) y en el átomo neutro está compensada por un número igual de electrones, que se mueven alrededor del núcleo y cuya carga eléctrica negativa anula o compensa a la positiva de los (electro) protones.

El núcleo más simple es el núcleo de hidrógeno, consistente en un único protón.  Todos los demás núcleos contienen además uno o más neutrones.

Los neutrones contribuyen a la masa atómica, pero no a la carga nuclear.

El núcleo más masivo que se encuentra en la Naturaleza es el Uranio-238, que contiene 92 protones y 146 neutrones.

Nucleosíntesis,  nucleogénesis.

Imagen relacionada

Fusión de nucleones para crear los núcleos de nuevos átomos más complejos.  La nucleosíntesis tiene lugar en las estrellas y, a un ritmo más acelerado, en las supernovas.

La nucleosíntesis primordial tuvo lugar muy poco después del Big Bang, cuando el Universo era extremadamente caliente y, ese proceso fue el responsable de la abundancia de elementos  ligeros, por todo el cosmos, como el Helio y el Hidrógeno que, en realidad es la materia primordial de nuestro Universo, a partir de estos elementos se obtienen todos los demás en los procesos estelares de fusión.

Omega.

Resultado de imagen de Omega negro como densidad de materia del Universo

Índice de densidad de materia del Universo, definida como la razón entre la actual densidad y la “Densidad crítica” requerida para “cerrar” el Universo y, con el tiempo, detener su expansión.

Para la materia oscura se dirá: “Omega Negro”.

Si Omega es mayor que 1, el Universo se detendrá finalmente y las galaxias recorrerán, a la inversa, el camino recorrido para colapsar en una gran Bola de fuego, el Big Crunch, estaríamos en un Universo cerrado.

Se dice que, un Universo con exactamente 1, la Densidad crítica ideal, estará alrededor de 10-29 g/cm3 de materia, lo que esta descrito por el modelo e Universo descrito por Einstein-de Setter.

En cualquier caso, sea cual fuere Omega, no parece muy atractivo el futuro de nuestro Universo que según todos los datos que tenemos acabará en el hielo o en el fuego y, en cualquier de estos casos.

¿Dónde nos meteremos?

Onda, función.

Resultado de imagen de Función de Onda

Función, denotada por Y (w,y,z), que es solución de la ecuación de Schrödinger en la mecánica cuántica.  La función de ondas es una expresión matemática que depende de las coordenadas de una partícula en el espacio.

Si la función de ondas (ecuación de Schrödinger) puede ser resuelta para una partícula en un sistema dado (por ejemplo, un electrón en un átomo), entonces, dependiendo de las colisiones en la frontera, la solución es un conjunto de soluciones, mejor de funciones de onda permitidas de la partícula (autofunciones), cada una correspondiente a un nivel de energía permitido.

El significado físico de la función de ondas es que el cuadrado de su valor absoluto en un punto, [Y]2, es proporcional a la probabilidad de encontrar la partícula en un pequeño elemento  de volumen, dxdydz, en torno a ese punto.  Para un electrón de un átomo, esto da lugar a la idea de orbitales atómicos moleculares.

elimino ecuación para no confundir al lector no versado.

donde Y es la función de ondas, Ñ2 es el operador Laplace, h es la constante de Planck, m es la masa de la partícula, E la energía total= y È la energía potencial.

Colaboración de Emilio Silvera.

Ondas.

Imagen relacionada

La velocidad de una estrella puede generar enormes onda

Propagación de la energía mediante una vibración coherente.

Está referido a la perturbación periódica en un medio o en el espacio.  En una onda viajera (u onda progresiva) la energía es transferida de un lugar a otro por las vibraciones. En el Espacio puede estar causada por el movimiento de las estrellas.

Resultado de imagen de Ondas en el Océano

En una onda que atraviesa la superficie del agua, por ejemplo, el agua sube y baja al pasar la onda, pero las partículas del agua en promedio no se mueven.  Este tipo de onda se denomina onda transversal, porque las perturbaciones están en ángulo recto con respecto a la dirección de propagación.  La superficie del agua se mueve hacia arriba y abajo mientras que la onda viaja a lo largo de la superficie del agua.

Resultado de imagen de Ondas electromagnéticas

Las ondas electromagnéticas son de este tipo, con los campos eléctricos y, magnéticos variando de forma periódica en ángulo recto entre sí y a la dirección de propagación.

En las ondas de sonido, el aire es alternativamente comprimido y rarificado por desplazamiento en la dirección de propagación.  Dichas ondas se llaman longitudinales.

Las principales características de una onda es su velocidad de propagación, su frecuencia, su longitud de onda y su amplitud.  La velocidad de propagación y la distancia cubierta por la onda en la unidad de tiempo.  La frecuencia es el número de perturbaciones completas (ciclos) en la unidad de tiempo, usualmente expresada en hertzios.  La longitud de onda es la distancia en metros entre puntos sucesivos de igual fase de onda es la distancia en metros entre puntos sucesivos de igual fase de onda.  La amplitud es la diferencia  máxima de la cantidad perturbada medida con referencia a su valor medio.

Resultado de imagen de Detectadas las ondas gravitacionales

Recuerdo cuando allá por el año 2009 publiqué: “Pronto oiremos que Kip S. Thorne ha detectado y medido las ondas gravitacionales de los Agujeros Negros.” Y, en el presente es noticias pasada.

Las ondas gravitacionales son aquellas que se propagan a través de un campo gravitacional. Cuando eso suceda, tendremos nuevos conocimientos sobre el Universo, ya que, el que ahora conocemos sólo está dado por las lecturas de las ondas electromagnéticas, no de las gravitatorias.

La predicción de que una masa acelerada radia ondas gravitacionales (y pierde energía) proviene de la teoría general de la relatividad. Por ejemplo cuando dos agujeros negros chocan y se fusionan.

Deutschland Max-Planck-Institut Gravitationswellen

El Experimento LIGO se afanó en localizar y medir estas ondas y, a la cabeza del proyecto, como he dicho, está el experto en agujeros negros, el físico y cosmólogo norteamericano, amigo de Stephen Hawking, kip S.Thorne, que está buscando las pulsaciones de estos monstruos del espacio, cuya energía infinita (según él), algún día podrá ser aprovechada por la humanidad cuando la tecnología lo permita.

Aunque podríamos continuar hablando sobre onda continua, onda cósmica, onda cuadrada, onda de choque, onda de espín (magnón), onda de tierra, onda estacionaria, onda ionosférica, onda portadora, onda sinuosidad, onda viajera, onda sísmica, onda submilimétrica, onda de ecuación, etc., sería salirse del objeto perseguido aquí.

Oort, nube de ; Constante de.

Imagen relacionada

La nube de Oort está referida a un halo aproximadamente esférico de núcleos cometarios  que rodea al Sol hasta quizás unas 100.000 UA (más de un tercio de la distancia a la estrella más próxima).  Su existencia fue propuesta en 1950 por J.H.Oort (1900-1992) astrónomo holandés, para explicar el hecho de que estén continuamente acercándose al Sol nuevos cometas con órbitas altamente elípticas y con todas las inclinaciones.

La nube Oort sigue siendo una propuesta teórica, ya que no podemos en la actualidad detectar cometas inertes a tan grandes distancias.  Se estima que la nube contiene unos 1012 cometas restantes de la formación del Sistema Solar.  Los miembros más distantes se hallan bastante poco ligados por la gravedad solar.

Imagen relacionada

Puede exitir una mayor concentración de cometas relativamente cerca de la eclíptica, a  10.000-20.000 ÈA del Sol, extendiéndose hacia adentro para unirse al Cinturón de kuiper.  Los comentas de la Nube de Oort se ven afectados por la fuerza gravitatoria de los estrellas cercanas, siendo perturbadas ocasionalmente poniéndoles en órbitas que los llevan hacia el Sistema Solar interior.

La constante de Oort está referida a dos parámetros definidos por J.H.Oort para describir las características más importantes de la rotación diferencial de nuestra Galaxia en la vecindad del Sol.  Son usualmente expresadas en unidades de kilómetros por segundo por kiloparsec.  Los dos parámetros están dados por los símbolos A y B.  Restando B de A se obtiene la velocidad angular del estándar local de repaso alrededor del centro de la Galaxia, que corresponde al periodo de unos 200 millones de años.

Órbita.

Resultado de imagen de Orbita

En astronomía es el camino a través del espacio de un cuerpo celeste alrededor de otro.  Para un cuerpo pequeño que se mueve en el campo gravitacional de otro, la órbita es una cónica.  La mayoría de esas órbitas son elípticas y la mayoría de las órbitas planetarias en el sistema solar son casi circulares.  La forma y tamaño de una órbita elíptica se determina por su excentricidad, e, y la longitud de su semieje mayor, a.

En física, la órbita esta referida al camino de un electrón al viajar alrededor del núcleo del átomo (ver orbitales).

emilio silvera