martes, 19 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Descubriendo el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y... ¿nosotros?    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

https://jaivan.files.wordpress.com/2015/06/ciclo-de-vida-de-una-estrella.jpg

No pocas veces hemos explicado aquí lo que son las estrellas, como se forman y como evolucionan y finalmente mueren para convertirse en otros objetos estelares distintos de lo que en “vida” fueron, y, como, dependiendo de sus masas, se quedan en el Espacio Interestelar en forma de estrellas enanas blancas, de neutrones o agujeros negros.

También se habló de las Galaxias y sus clases o tipos, de las radiogalaxias y de los cuásares, además de otras cuestiones de interés que, en todo momento, he tratado de explicar de manera muy sencilla con el objeto de que su comprensión sea fácil para las personas no versadas en Astronomía.

Diagrama que muestra los tipos comunes de estrellas

Desde la Protoestrella siguen su curso hasta la secuencia principal y, allí, consumen elementos cada vez más pesado hasta que al llegar al Hierro, reaccionan sugén su masa y se convierten en Gigantes rojas primero y en enanas blancas después (en estrellas poco masivas como el Sol), y, si sus masas son 3 veces mayores a las del Sol, su final será el de estrella de neutrones. Ya las estrellas muy masivas a partir de 8 masas solares, tienen un final que las lleva hacia la singularidad de los agujeros negros.

Es preciso que todos sepais que, en cualquier región del Universo, por muchos años luz que de nuestra Galaxia esté, las leyes que rigen son las mismas que aquí interaccionan con la Materia. Todo el Cosmos es lo mismo en cualquier lugar. Los Cúmulos de Galaxias y los espacios “vacíos” que existen entre ellos, las Nebulosas, los Agujeros Negros que ocupan el corazón de las Galaxias, el gas y el polvo interestelar que forman nuevas estrellas, y, en fin, todas las maravillas que a través de los procesos nucleares, forman la materia compleja a partir del Hidrógeno y del Helio.

Galaxies_5x7.7_72d.tif                                         0000485A Documents                      B4619D8E:

           Las galaxias tienen un lado oculto que no podemos ver pero que está ahí presente en ellas

 

El Hidrógeno y el Helio es el material primario del Universo y, a partir de ellos, se forman las estrellas que convierten ese material en una especie de plasma a altas temperaturas que en la superficie de la estrella puede ser de 6.000 grados y en el núcleo de 15 millones.

La fusión nuclear, convierte el hidrógeno en helio, el helio en carbono, el carbono en oxígeno, y, de esta manera hasta llegar al hierro. Otros materiales más complejos se producen cuando las estrellas supermasivas explotan en supernovas sembrando el espacio con una nueva Nebulosa y, su núcleo se convierte en una estrella de neutrones o en un agujero negro.

Pero veamos algún objeto más de los que pueblan el inmenso espacio del Universo.

Resultado de imagen de La velocidad de la luz en el vacío

En tiempos de Galileo se creía que su velocidad era instantánea

La luz está compuesta por fotones y precisamente ya se ha dicho que es la luz la que tiene el record de velocidad del universo al correr a unos 300.000 Km/s, exactamente 299.792’458 Km/s.

¿Y los neutrinos?

Los neutrinos se forman en ciertas reacciones nucleares y ningún físico atómico ha sido hasta ahora capaz de medir su masa. Es probable que los neutrinos, como los fotones, tengan una masa en reposo nula, aunque en realidad el neutrino nunca podrá estar en reposo y, como el fotón, siempre se está moviendo a 299.792’458 Km/s y adquieren esa velocidad desde el instante en que se forma.

Primera observación de un neutrino en una cámara de burbujas, en 1970 en el Argonne National Laboratory de EE.UU., la observación se realizó gracias a las líneas observadas en la cámara de burbujas basada en hidrógeno líquido.

Pero los neutrinos no son fotones, porque ambos tienen propiedades muy distintas. Los fotones interaccionan fácilmente con las partículas de materia y son retardados y absorbidos al pasar por la materia. Los neutrinos, por el contrario, apenas interaccionan con las partículas de materia y pueden atravesar un espesor de años luz de plomo sin verse afectados. Lo cierto es que la cota superior de la masa de los neutrinos es 5.5 eV/c2, lo que significa menos de una milmillonésima parte de la masa de un átomo de hidrógeno

Parece claro, por tanto, que si los neutrinos tienen una masa en reposo nula, no son materia. Por otro lado, hace falta energía para formarlos, y al alejarse se llevan algo de ella consigo, de modo que son una forma de energía.

Resultado de imagen de Los neutrinos atraviesan la materia que está llena de espacios vacíosImagen relacionada

Los neutrinos salen disparados a velocidades relativistas desde los distintos fenómenos astronómicos que se producen en el Universo y, se crean grandes instalaciones para poder localizarlos. La masa del neutrino tiene importantes consecuencias en el modelo estándar de la física de partículas,  ya que implicaría la posibilidad de transformaciones entre los tres tipos de neutrinos existentes en un fenómeno conocido como oscilación de neutrinos.En todo caso, los neutrinos no se ven afectados por las fuerzas electromagnéticas o nuclear fuerte,  pero sí por la fuerza nuclear débil y la gravitatoria.

Resultado de imagen de Los neutrinos atraviesan la materia que está llena de espacios vacíos

En estos momentos, mientras lees este trabajo, miles de neutrinos atraviesan tu cuerpo

Sin embargo, atraviesan cualquier espesor de materia sin interaccionar apenas, de modo que prácticamente no efectúan trabajo. Lo cual les distingue de cualquier otra forma de energía. En su momento se habló de que los neutrinos podían ser la energía oscura que tanto fascina a todos los físicos, astrofísicos y astrónomos, sin embargo, al no haber detectado de manera clara la masa de los neutrinos, se desechó la idea.

El neutrino es de la familia de los leptones y existe en tres formas. Una asociada al electrón y se conoce como neutrino electrónico (Ve), otra al muón y es el neutrino múonico (Vµ) y por último el que está asociado con la partícula tau, que es el neutrino tauónico (Vt). Cada forma tiene su propia antipartícula.

Resultado de imagen de La existencia del neutrino fue postulada por Pauli

El neutrino fue postulado en 1.931 para explicar la energía “perdida” en la desintegración beta. Fue identificado de forma tentativa en 1.953, y definitivamente en 1.956, dando la razón a Wolfgang Pauli que presintió su existencia.

Los neutrinos no tienen carga y como dijimos antes, tampoco tienen masa (o muy poca); son pura energía que viaja siempre por el espacio a la velocidad de la luz (según se cree). En algunas teorías de gran unificación se predice que los neutrinos tienen masa no nula.

Decaimiento β de un núcleo. Se ilustra cómo uno de los neutrones se convierte en un protón a la vez que emite un electrón) y un antineutrino electrónico.

Cuando Pauli propuso su existencia para justificar la energía perdida en la desintegración beta, Enrico Fermi lo bautizó con el nombre de neutrino.  La ley de conservación de la energía prohíbe que ésta se pierda, y en la desintegración beta, que es un tipo de interacción débil en la que un núcleo atómico inestable se transforma en un núcleo de la misma masa atómica pero de distinto número atómico, hace que en el proceso un neutrón se convierta en un protón con la emisión de un electrón, o de un protón en un neutrón con la emisión de un positrón. Pero la cuenta no salía, allí faltaba algo, no se completaba en la transformación la energía original, así que Pauli añadió en la primera un antineutrino electrónico y la segunda la completó con un neutrino electrónico.

Desde el comienzo de ésta página evitamos fórmulas y explicaciones complejas.

Ahora para ir conociendo mejor el Universo, dejemos aquí explicados algunos conceptos:

Asteroide.

                                                    (Planetas menores; planetoides)

Pequeños cuerpos que giran alrededor del Sol entre las órbitas de Marte y Júpiter en una zona alejada entre 1’7 y 4’0 Unidades astronómicas del Sol (cinturón de asteroides).  El tamaño de estos objetos varía desde el más grande, Ceres (con un diámetro de 933 km.), a los objetos con menos de 1 km. De diámetro.  Se estima que hay alrededor de 10 cuerpos con diámetro mayor de 250 km. Y unos 120 cuerpos con diámetros por encima de 130 km.

Aunque son millones, su masa total es apenas una pequeña fracción de la Tierra, aunque no por ello dejan de ser preocupantes en el sentido del peligro que pueda suponer para nuestro planeta, la colisión con uno de estos pedruscos enormes del espacio estelar.  La desaparición de los Dinosaurios podría ser una prueba de los efectos devastadores de una colisión de este calibre. Según algunos creen uno de estos cuerpos enormes cayó en Mexico y arrasó con la vida de los grandes reptiles.

Astrofísica.

Resultado de imagen de Astrofísica

Ciencia que estudia la física y la química de objetos extraterrestres.  La alianza de la física y la astronomía, que comenzó con la creación de la espectroscopia, permitió investigar lo que son los objetos celestes, y no solo donde están.

Esta ciencia nos permite saber la composición de elementos que tiene un objeto estelar situado a miles de años-luz de la tierra, y, de momento, se confirma que el material existente en el Universo entero, es igual en todas partes.

El Universo primitivo era un plasma, cuando se enfrió se convirtió en Hidrógeno y algo de Helio (los dos elementos más simples) y más tarde, cuando se formaron las primeras estrellas y galaxias, se pudo fabricar,  en los hornos termonucleares de las estrellas, el resto de elementos más complejos y pesados, tales como litio, carbono, oxigeno, nitrógeno, todos los gases nobles como argón, kriptón, neón, etc., el hierro, mercurio… uranio y se completó la tabla periódica de elementos naturales que están, de una u otra forma dispersos por el Universo.

Nosotros mismos, la especie humana, estamos hechos de un material que solo se puede producir en las estrellas, así qué, sin lugar a ninguna duda,  el material que nos formó se fabricó hace miles de millones de años en estrellas situadas a miles o cientos de miles de años-luz de nuestro Sistema Solar. ¡Qué insignificante somos comparados con la enormidad del Universo! Sin embargo, el hecho de pertenecer a él nos da cierta importancia, y, además, somos conscientes de SER.

Astronomía invisible.

 También la astronomía infrarroja puede llevarse a cabo desde la superficie de la Tierra. Sin embargo, muchas de las otras regiones del espectro electromagnético están seriamente bloqueadas por capas de la atmósfera terrestre, y eso significa que tenemos que utilizar métodos de investigación basados en el espacio, tales como sondas y satélites. Es cierto que para casi toda la astronomía de rayos X y hay un satélite importante, el Observatorio de Rayos X Chandra, de 1999, que ha dado una gran información en esta región.

Así, la Astronomñía invisible es el esstudio de objetos celestes observados mediante la detección de su radiación o longitudes de onda diferentes de las de la luz visible.

Resultado de imagen de Cygnus X-1

Mediante este método se ha detectado, por ejemplo, una fuente emisora de rayos X, Cygnus X-I, que consiste en una estrella supergigante que rota alrededor de un pequeño compañero invisible con una masa unas diez veces mayor que la del Sol y, por tanto, por encima del límite de Chandrasekhar y que todos los expertos le conceden su voto para que, en realidad sea un agujero negro situado en el corazón de nuestra Galaxia a 30.000 años-luz de la Tierra.

Astronómica, unidad.

 Resultado de imagen de Unidad Astronómica

Distancia media de la Tierra al Sol, igual a 149.600 millones de km., ó 499,012 segundos-luz, ó 8’316 minutos-luz.  Cuando se utiliza para medir distancias entre Galaxias, se redondea en 150 millones de km.

Átomo.

 Resultado de imagen de átomo wallpaper

La parte más pequeña que puede existir de un elemento.  Los átomos constan de un pequeño núcleo muy denso de protones y neutrones rodeado de electrones situados por capas o niveles y moviéndose.  El número de electrones es igual al de protones y, siendo la carga de estas positivas y la carga de aquellas negativa, pero equivalentes, el resultado final del total de la carga es cero y procura la estabilidad entre cargas opuestas pero iguales.

La estructura electrónica de un átomo se refiere a la forma en la que los electrones están dispuestos alrededor del núcleo y, en particular, a los niveles de energía que ocupan.  Cada electrón puede ser caracterizado  por un conjunto de cuatro números cuánticos: el núm. Cuántico principal, el orbital, el magnético y el número cuántico de espín.

De acuerdo con el principio de exclusión de Pauli, dos electrones en un átomo no pueden tener el mismo conjunto de números cuánticos.  Los números cuánticos definen el estado cuántico del electrón y explicar como son las estructuras electrónicas de los átomos.

En el núcleo reside casi por completo, la masa del átomo que esta compuesta, como se ha dicho por protones y neutrones que, a su vez, están hechos por quarks.

Se puede dar el caso  de que, en ocasiones, se encuentren átomos exóticos en el que un electrón ha sido reemplazado por otra partícula cargada negativamente, como un muón o mesón.  En este caso, la partícula negativamente cargada finalmente colisiona con el núcleo con la emisión de fotones de rayos X.  Igualmente, puede suceder que sea el núcleo de un átomo el que sea reemplazado por un mesón positivamente cargado.  Ese átomo exótico tiene que ser creado artificialmente y es inestable.

Big Bang.

 Resultado de imagen de Al comienzo del universo le llamamos Big Bang

Teoría cosmológica en la que toda la materia y energía del Universo se originó a partir de un estado de enorme densidad y temperatura que explotó en un momento finito en el pasado hace unos 15 mil millones de años.  Esta teoría explica de forma satisfactoria la expansión del Universo, la radiación de fondo de microondas observada, característica de la radiación de cuerpo negro a una temperatura de 3 K y la abundancia observada de helio en el Universo, formado por los primeros 100 segundos después de la explosión a partir del denterio a una temperatura de 10.000.000.000 K. Ahora es considerada generalmente como más satisfactoria que la teoría de estado estacionario de un Universo quieto e inamovible.  La teoría del Big Bang fue desarrollada por primera vez en 1.927 por A.G.E. Lamaitre (1894-1966) y retomada y revisada en 1.946 por George Camow (1904-1968). Han sido propuestas varias variantes de ella.

Resultado de imagen de singularidad espaciotemporal

La teoría de la relatividad general predice la existencia de una singularidad en el comienzo, cuando la temperatura y la densidad eran infinitas.  La mayoría de los cosmólogos interpretan esta singularidad como una indicación de que la relatividad general deja de ser válida en el Universo muy primitiva, y que el comienzo mismo debe ser estudiado utilizando una teoría cosmológica cuántica.

Con el conocimiento actual de la física de partículas de altas energías, podemos hacer avanzar el reloj, hacia atrás y a través de las eras Leptónica y la hadrónica hasta una millonésima de segundo después del Big Bang cuando la temperatura era de 1013 k.  Utilizando una teoría más especulativa los cosmólogos han intentado llevar el modelo hasta 10-35 segundos después de la singularidad, cuando la temperatura estaba en 1018 k.

Resultado de imagen de En el instante del Big Bang comenzço la expansión del Universo

En el instante del Big Bang comenzó la expansión del Universo y en ese mismo momento, nació el espacio-tiempo. En un principio la simetría lo dominaba todo y reinaba una sola fuerza unificada.  Más tarde, a medida que el Universo se enfriaba, la simetría se rompió y surgió la materia y las 4 fuerzas fundamentales que rigen hoy, la opacidad desapareció y todo fue transparencia, surgieron los fotones que transportaron la luz a todos los rincones del cosmos. Doscientos mil años más tarde surgieron las primeras estrellas, se formaron las Galaxias y, partir de la materia inerte, nosotros, la especie humana que, hoy, tan pretenciosa, quiere explicar como ocurrió todo.

Todo esto quedó bien explicado en días anteriores, sin embargo, se deja aquí un resumen como recordatorio para que todos, sin excepción, se familiaricen con estos conceptos del Cosmos.

Carbono, reacción de.

 Resultado de imagen de La reacción del CarbonoResultado de imagen de Carbono, reacción de

Importante proceso de fusión nuclear que se produce en las estrellas.  Lo inicia, el carbono 12 y, después de interacciones con núcleos de nitrógeno, hidrógeno, oxígeno y otros elementos, reaparece al final.

Este es el fenómeno que hace posible que las estrellas estén brillando en los cielos.

Cefeida variable.

Resultado de imagen de Cefeida variable

Este concepto engloba cualquier estrella cuyo brillo, visto desde la Tierra, no es constante. Pueden ser estrellas cuya emisión de luz fluctúa constantemente y pulsa variando tanto en temperatura como diámetro para producir cambios de brillo con un periodo y amplitud estables muy regulares.

Una estrella variable pulsante cuya periocidad (esto es, el tiempo que su brillo tarde en variar) está directamente relacionada con su magnitud absoluta. Esta correlación entre el brillo y el período hace útiles las cefeidas para medir distancias intergalácticas.

Uno de los grupos importantes de gigantes o supergigantes amarillas variables pulsantes, llamadas así por su prototipo, Delta Cephei.  Este término general y aplicado comúnmente a más de un tipo estelar, en particular a los cefeadas clásicas antes mencionadas Delta Cephei, y a los menos numerosas estrellas conocidas como W virginia.

En su tamaño máximo, los Cefeidas son típicamente un 7-15% mayores que en su tamaño mínimo.

Centauros A.

ESO Centaurus A LABOCA.jpg

Intensa radiofuente o fuente de rayos X situada en la constelación Centauros,  identificada con la Galaxia elíptica gigante de una magnitud 7 NGC 5128.  Centauros A es una radio galaxia clásica con dos pares de lóbulos radioemisores, el mayor de los cuales extendiéndose hasta a 1’5 millones de a.l. y con un chorro que unos 10.000 a.l. de longitud.  Estando situada a 15 millones de a.luz, se trata de la radiogalaxia más cercana al Sol.  Aunque la Galaxia madre se identifica como eliptica, tiene una banda de polvo poco característica cruzándola, que se cree es el resultado de la unión de una galaxia eliptica en otra espiral.

Esta situada entre el Grupo Local y el centro del supercúmulo de Virgo.

Colapso gravitacional

 Resultado de imagen de Colapso gravitacional

NGC 6745 (la primera imagen) comporta densidades tan altas como para desencadenar la formación de estrellas a través del colapso gravitatorio.Pero en realidad el colapso gravitario se refiere… Al fenómeno predicho por la teoría de la relatividad general en el que la materia comprimida más allá de una densidad crítica se colapsa como consecuencia de la atracción gravitacional hasta que aparece una singularidad puntual.

La singularidad resultante del colapso gravitacional puede ser interpretada como una indicación de que se ha llegado al límite de la teoría de la relatividad general y de la necesidad de construir una gravedad cuántica.

La hipótesis de la censura cósmica sugiere que el punto final del colapso gravitacional debe ser un agujero negro, pues las singularidades están siempre ocultas en astrofísica, pues suministra una evidencia indirecta de la existencia de los Agujeros negros.

También, dependiendo de la masa de la estrella, cuándo finalmente agotan su combustible nuclear de fusión (hidrógeno, helio, oxigeno, carbono, etc.) y la gravedad no encuentra oposición para realizar su trabajo, las estrellas colapsan bajo su propio peso, no siempre hasta agujeros negros, como nuestro Sol un día en el futuro, podrán colapsar a estrellas enanas blancas o estrellas de neutrones y los supermasivas, estas así, serán agujeros negros.

Cometas

Resultado de imagen de Cometas

Miembros secundarios del Sistema Solar que, según se cree, son montones de suciedad y hielo que son residuos de la formación del sistema solar.  Se cree que hay millones de cometas en la Nube de Oort, una región esférica con un radio de treinta mil a cien mil unidades astronómicas con centro en el Sol.  Los cometas que llegan de la Nube de Oort son calentados por el Sol y desarrollan colas brillantes que los hacen visibles en los cielos de la Tierra.

Corrimiento al rojo.

Resultado de imagen de Corrimiento al rojo

Desplazamiento de las líneas espectrales en la luz proveniente de las estrellas de las galaxias distantes, que se considera producido por la velocidad de alejamiento de las galaxias en un universo en expansión (ley de Hubble). Cuando las galaxias en lugar de alejarse se acercan (caso de Andrómeda), el corrimiento es hacia el azul.

Cósmica, densidad de la materia. (Densidad crítica)

Resultado de imagen de Densidad Crítica

Densidad de materia que se obtendría si toda la materia contenida en las Galaxias fuera distribuida uniformemente a lo largo de todo el Universo.  Aunque las estrellas y los planetas tienen densidades mayores que la densidad del agua (alrededor 1 gr/cm3),  la densidad media cosmológica es extremadamente baja (menos de 10-29 gr/cm3, o 10-5 átomos/cm), ya que el Universo está formado casi exclusivamente por espacio virtualmente vacío entre galaxias.  La densidad media de materia determina si el Universo continuará expandiéndose o no.

La llamada densidad crítica, es la densidad media de materia requerida para que la Gravedad detenga la expansión del Universo. Un Universo con una densidad muy baja se expandirá por siempre, mientras que uno con una densidad muy alta colapsará finalmente.  Un Universo con exactamente la densidad crítica, alrededor de 10-29 gr/cm3, es descrito por el modelo Einstein- de Sitter, que se encuentra en la línea divisoria de estos dos extremos.

La densidad media de materia que puede ser observada directamente en nuestro Universo representa sólo el 20% del valor crítico.  Puede haber, sin embargo, una gran cantidad de materia oscura que elevaría la densidad hasta el valor crítico.  Las teorías de universo inflacionario predicen que la densidad presente debería ser muy próxima a la densidad crítica; estas teorías requieren la existencia de materia oscura que, hoy por hoy, es el misterio más grande de la Astrofísica.

Cósmicos, rayos.

Resultado de imagen de Rayos Cósmicos

Partículas subatómicas, principalmente protones,  que atraviesan velozmente el espacio y chocan con la Tierra.  El hecho de que sean masivas sumado a sus altas velocidades, hace que contengan considerable energía: de 108 a más de 1022 eV (electrón-voltios).

El 90% de los rayos cósmicos son protones (núcleos de hidrógeno) y partículas alfa (núcleos de helio) la mayor parte del resto.  Los núcleos más pesados son muy raros.   También están presentes un pequeño número de electrones, positrones, antiprotones y neutrinos y rayos gamma.

Los rayos cósmicos fueron detectados por primera vez durante el vuelo de un globo en 1.912 por V.F.Hess, y el término fue acuñado en 1.925 por el físico norteamericano Robert Andrews Millikan (1868-1953).

Cosmología.

 Resultado de imagen de Cosmología

En la física la cosmología se refiere al estudio de la evolución y el destino del universo, así como también al desarrollo de las teorías de la relatividad.

  1. Ciencia que se ocupa de estudiar la estructura y la composición del Universo como un todo.  Combina la astronomía, la astrofísica y la física de partículas y una variedad de enfoques matemáticos que incluyen la geometría y la topología.
  2. Teoría cósmica particular.

Cosmología constante.

Resultado de imagen de Cosmología constante

Un término empleado a veces en cosmología pasa expresar una fuerza de “repulsión” o “repulsión cósmica”, como la energía liberada por el falso vacío que los modelos del Universo inflacionario consideran que potenció exponencialmente la expansión del universo.  Que exista tal repulsión cósmica o que haya desempeñado alguna vez un papel en la historia cósmica es un problema aún no resuelto, como ocurre con la constante cosmológica de Einstein.

Cúmulo de estrellas.

 

                                                            Cúmulo globular M13

Conjunto de estrellas unidas por la Gravitación, más pequeños y menos masivos que las Galaxias.  Los cúmulos “globulares” son más abundantes; son viejos y pueden contener de cientos de miles de millones de estrellas; se les encuentra dentro y lejos del disco Galactico.

Se extienden sobre un radio de unos pocos megaparsecs (también existen pequeños Grupos de Galaxias, como nuestro Grupo Local de solo unas pocas Galaxias.)

He querido comenzar el año explicando algunas cosas que, no por conocidas debemos olvidar, el universo es muy complejo y de una riqueza inconmensurable de objetos y cuestiones que, de vez en cuando, debemos recordar.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting