El Agua es mucho más de lo que se deja ver
Publica El Español en el apartado de Química
El agua es más rara de lo que piensas
IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (0)
Con esta imagen y las palabras que lleva debajo cerramos la primera parte de este trabajo recopilado del Libro “El Universo como una Obra de Arte” de JOHN D. BARROW.
La regularidad de la Tierra que viene dada por la intensidad de energía que nos envía el Sol, desde 150 millones de kilómetros, y, la intensidad está amortiguada por la rica y densa atmósfera terrestre, y, los seres vivos, tienen un escudo contra las radiaciones nosivas.
El día en Marte dura 687 días terrestres, su período de rotación es de 24 horas
Al contrario que ocurre con la Tierra, muy distinto es el caso de Marte que, aunque situado a mayor distancia, no tiene atmósfera que le preserve de esos rayos solares tan nosivos para la vida.
Así que la vida en marte (si es que finalmente está `resente en aquel planeta alguna forma de ella), tendría que haber emigrado al subsuelo, lejos de la superficie, a salvo de la radiación y, en las profundidades, con temperaturas más altas, probablemente, el agua correría líquida por los regusos caminos oradados por la antigua actividad volcánica que, en aquel planeta fue rica y dejó la huella de profundos túneles, grutas y cuevas que, en la actualidad, podrían ser idóneos para albergar algunas formas de vida como líquenesw y hongos, sin olvidar las bacterias.
Pero sigamos con los mecanismos más familiares que afectan a nuestro planeta y a todos sus moradores, entre los que, nuestra especie también cuenta. Las influencias lunares a nuestro alrededor son notables y han dejado su huella en nuestros cuerpos por las presiones del Tiempo.
La doceava parte del año que llamamos mes, un período próximo a 27,32 días, es el tiempo que la Luna tarda en dar una vuelta alrededor de la Tierra, con respecto a las lejanas estrellas fijas.
Durante este período que llamamos el período Sidereo de la Luna, la Tierra también se habrá movido en su órbita alrededor del Sol, y la Luna tendrá que moverse una distancia adicional (unos 27 grados) para completar el ciclo de fases con respecto al Sol. De hecho, teniendo esto en cuenta, el ciclo mensual entero de las fases lunares es de 29,53 días.
La presencia de la Luna como todos sabemos, ejerce una atracción gravitatoria sobre el planeta Tierra y viceversa. Esa atracción, lógicamente, es más fuerte en el lado de la Tierra que está más próxima a la Luna.
Esa atracción crea una variación de marea en las alturas de los océanos, que varía mensualmente con el movimiento de la Luna alrededor de la Tierra. Existen indicios sorprendentes de que esta variación ha dejado su huella de diversas maneras en las pautas de conducta de los seres vivos que pueblan el planeta.
En el caso de criaturas que viven en aguas someras, o son anfibias, la variación de las mareas les proporciona una escena diversificada importante que les obliga a tener que adaptarse para podr beneficiarse de esos cambios.
La producción de ovocitos en la mujer es cíclica. Implica tanto la interacción de hormonas como cambios en las células foliculares y en las paredes del útero. A este ciclo se lo conoce como ciclo menstrual o ciclo sexual femenino
Todos sabemos que las mujeres muestran un ciclo de producción de estrógenos de 28 días, que está próximo al período mensual lunar. Le llamamos “ciclo menstrual” -derivado de menses, o mes-
Muchos otros mamíferos tienen ciclos menstruales con variaciones asociadas a la temperatura corparal, y se ha encontrado que el tiempo de ovulación, en los primates, varía entre 25 y 35 días.
No se han encontrado explicaciones simples para estas correlaciones entre las fases de la Luna y los ciclos menstruales. ¿Por qué la fertilidad Humana debería reflejar el ciclo de las fases cambiantes de la Luna?Se ha sugerido que podía ser un vestigio de una etapa anterior de nuestra evolución, cuando nuestros ancestros vivían en el mar, y estaban sometidos de alguna manera, al cicvlo de las mareas.
Otra propuesta es que estos ciclos son ligeras adaptaciones del período en que los Humanos eran cazadores recolectores primitivos. En tales circunstancias, la luz del día era un bien escaso y la Luna llena debía explotarse al máximo.
El período oscuro, cuando la Luna habñia desaparecido podría dedicarse de forma natural a la actividad del apareamiento, y entonces habría adaptación a un ciclo corporal con una periodicidad química que rflejaría la variación lunar.
Pero sigue siendo un misterio como una variación suficientemente robusta se podría preservar de forma universal hasta el presente, y, en tantas especies.
De todo lo anterior, no tenemos más opción que pensar dos cosas:
Pasó el Tiempo y los Mamut desaparecieron
Sabemos que nada es Eterno, que todo cambia con el paso del Tiempo, y, la Tierra, no podía ser ninguna excepción, así que, de esas dos opciones que nos habla el Autor del trabajo, podrían ser:
UNA: Que nuestro mundo, como cualquier otro objeto del Universo, ha tenido un principio que, con el paso del tiempo cambió, y, lo que fue primero se transformó en algo diferente en el presente, y, como el tiempo inexorable no deja de transcurrir llevando con él a esa temible “compañera” que llamamos Entropía, el resultado previsible será que, los cambios serán imparables y nada permanecerá estático tal y como hoy lo conocemos que es como se conocío hace cientos o miles o millones de años.
Todos los seres vivos que viven actualmente en el planeta Tierra, se verán abocados a mutar para que, en el mejor de los casos, sus especies perduren a los cambios que se avecinan. Los que no se adapten, como antes pasó en la historia de nuestro planeta, sucumbiran y esas especies desaparecerán para siempre.
Un equipo científico ha encontrado en las rocas del oeste de Australia microbios fosilizados que vivían hace 3.400 millones de años en un mundo sin oxígeno …
Todas las especies que han vivido en este planeta desede hace unos 3.800 millones de años, unas más y otras menos, trataron de adaptarse a esos cambios irreversibles que la Naturaleza impone. Sabemos de las importantes extenciones que por uno u otro motivo ha padecido la fauna del planeta, y, actualmente el 99% de todas las especies que poblaron la Tierra, han dejado de existir.
De hecho, hoy día, sólo el 1% de las especie que vivieron en el planeta están vivas y compartiendo el planeta con nosotros, algunas son muy antiguas, otras han surgido recientemente, y, por ejemplo nosotros, que hemos podido sobresalir por nuestras características de los demás seres vivos de la Tierra, se podría decir que somos unos recien llegados, y, sin embargo, nos cremos “los amos”.
Aunque no sea parte del texto que transcribo (bueno algunos otros pasajes tampoc0), tenemos que recordar aquí que los Dinosaurios reinaron en nuestro planeta durante 150 millones de años, según parece, aquel meteorito caído en el Yucatán (México), acabó con ellos, y, gracias a ese suceso, 65 millones de años más tarde, llegamos nosotros aquí. Es decir, se abrió el callejón sin salido en el que estabn metidos mos mamíferos que, con estas bestias campando por el planeta, poco porvenir podían tenerr. Ahí cabe perfectamente aquella frase: “No hab mal que por bien no venga”.
De todas las maneras y con respecto a la vida, hasta donde podemos saber, ésta se abre paso en los lugares más insospechados y, los materiales que son necesarios para que pueda surgir en planetas como la Tierra, es fusionado en el corazón de los hornos nucleares de las estrellas, donde materiales sencillos hacen su transición de fase a otros más complejos, y, cuando la estrella “muere”, se esparcen en inmensas Nebulosas de las que surgen nuevas estrellas, nuevos mundos y, seguramente, nuevas formas de vida.
Desde siempre hemos querido saber y preguntamos por el por qué de las cosas. Así que, procuremos seguir conquistando ese saber que tanto necesitamos hoy, y, posiblemente, mañana necesitemos más, ya que, se avecinan acontecimientos que, de no conocer sus posibles efectos, ningún remedio podremos preparar para paliar los destrozos.
Es bastante instructivo el saber de hechos del pasado que nos abren “los ojos de la mente” a nuestro escaso entendimiento para que nos hagan saber el por qué, de algunos sucesos que han quedado registrados en la Historia del Planeta y de la Humanidad.
Resulta que, el 28 de mayo del año 585 a. C., cuando la guerra en Lidios y Medas era más cruenta y duraba ya cinco años, de pronto, el día se convirtió en noche, asombrados, todos los contendientes dejaron de luchar y, se tomaron aquello como una señal “divina”, los dioses no querían que la lucha continuara. Así que, los reyes y nobles, casaron a sus hijos e hijas con los de los hasta entonces enemigos y, la paz, perduró durante mucho, mucho tiempo.
Claro que, lo que no supieron nunca Lidios y Medos es que, el evento había sido un simple eclipse solar producido por la Luna al tapar por completo el astro rey. Y, aquel acontecimiento astronómico, en este caso, sirvió para algo bueno.
Ahora sabemos que la inclinación del eje terrestre hace posible las Estaciones del planeta y que, dichas cambios, son tan beneficiosos para todo y para todos. También conocemos de los fenómenos naturales como los volcanes y movimientos de las placas tectónicas, Tsunamis y otros acontecimientos naturales que no achacamos a ninguna divinidad y para los que tenenos explicaciones cinetíficas.
El repaso ha sido bueno de una parte de la obra y, aquí lo dejo transcrito con algún que otro matiz propio como licencia que, de ninguna manera, perjudica a la idea original que el autor nos cuenta.
La Fuente: “El Universo como Obra de Arte” JOHN D. BARROW.
por Emilio Silvera ~ Clasificado en El agua... ¡esa maravilla! ~ Comments (2)
Está comenzando a comprenderse cómo es la estructura íntima de un líquido con propiedades aberrantes a las que debemos la existencia de la vida en la Tierra.
¿Qué ocurriría si el hielo se hundiera en lugar de flotar? A primera vista, no gran cosa: tal vez habría que remover el gin & tonic de vez en cuando para que se mantuviera frío. Y, sin duda, el Titanic habría llegado a puerto sano y salvo. Pero en realidad, todo sería muy diferente. De hecho, ni siquiera estaríamos aquí: si el agua congelada cayera al fondo del mar, y se formara nuevo hielo que a su vez se hundiera, el resultado final durante las grandes glaciaciones de la Tierra habría sido una gran masa de océanos sólidos que no podría haber sostenido la existencia de vida.
Así pues, debemos nuestra existencia al hecho de que el hielo flote, es decir, que el agua en estado sólido sea menos densa que en fase líquida. Pero lo cierto es que esto es una completa anomalía. Como las demás sustancias, el agua aumenta su densidad al enfriarse, pero por debajo de los 4 oC sucede algo extraño: a medida que comienza a pasar al estado sólido, su volumen aumenta, lo que reduce su densidad.
Y ésta es sólo una de las cualidades aberrantes del agua, la única sustancia que en las condiciones ambientales terrestres puede encontrarse en tres estados distintos: sólido, líquido y gas. Nada en el agua es típico, aunque la costumbre nos tenga habituados.
Fijémonos en su temperatura de ebullición: 100 oC. El agua, H2O, es la combinación de hidrógeno y oxígeno. Este último encabeza un grupo de la tabla periódica formado por otros elementos con los que comparte propiedades, como el azufre (S), el selenio (Se) o el teluro (Te). Si sustituimos el oxígeno por sus compañeros, obtenemos la tendencia que siguen sus puntos de ebullición: de abajo arriba, el H2Te hierve a -4 grados, el H2Se a -42 y el H2S a -62. Así, el agua debería hervir por debajo de los 80 grados bajo cero. Algo similar ocurre con los puntos de congelación: si se comportara como el resto de su grupo, el agua debería helarse a unos 100 bajo cero.
Otra propiedad que nos parece normal, pero en realidad sumamente insólita, es su inmensa tensión superficial, la mayor en un líquido exceptuando el metal mercurio. Vemos esta tensión superficial cuando llenamos un vaso por encima del borde sin que rebose, o en las gotas de rocío sobre las hojas, y algunos insectos acuáticos la aprovechan para deslizarse patinando sobre la superficie de las charcas.
La tensión superficial del agua permite que algunos insectos puedan caminar sobre ella. Markus Gayda (CC)
El agua lubrica y adhiere al mismo tiempo: podemos resbalar sobre un suelo mojado, pero prueben a despegar dos láminas de vidrio unidas por la humedad. El agua es un solvente universal, capaz de disolver sustancias tan dispares como las sales, los alcoholes, los ácidos o los álcalis. Y por si fuera poco, en ciertos casos el agua caliente se congela más deprisa que el agua fría; es el llamado efecto Mpemba, descubierto por un estudiante de secundaria de Tanzania cuyo profesor se carcajeó de él… hasta que un científico lo confirmó.
Así prosigue una lista de anomalías que ha mantenido perplejos a los científicos durante siglos. En 1612, Galileo Galilei escribía: “A mi juicio, el hielo debería ser agua rarificada más que condensada; […] el agua al congelarse aumenta de volumen, y el hielo que se produce es más ligero que el agua sobre la cual nada”. Obvio hoy para nosotros, pero no en su día para los detractores de Galileo, que atribuían la flotación del hielo a su forma.
Las peculiaridades del agua dieron pie a uno de los episodios más rocambolescos de la historia de la ciencia. En 1966, un científico soviético llamado Boris Deryagin presentó en Londres un chocante hallazgo. Un colega suyo, Nikolai Fedyakin, había descubierto que el agua presentaba un comportamiento excepcional cuando se aislaba en finos tubos capilares de cuarzo. El líquido así confinado era mucho más denso y viscoso de lo normal, su punto de ebullición se disparaba hasta los 150o C y el de congelación se desplomaba hasta -40o C, solidificándose en una especie de masa marrón.
La fiebre se desató cuando un equipo de investigadores de EEUU repitió los experimentos y confirmó sus resultados en la revista Science, bautizando la nueva sustancia con un nombre irresistible: poliagua. La hipótesis sugería que el agua confinada formaba un polímero del que se derivaban exóticas propiedades. La revista Time, el diario The New York Times y otros grandes medios cubrieron aquel extrordinario hallazgo que olía a premio Nobel. La revista Popular Sciencepublicaba instrucciones sobre “cómo crear tu propia poliagua”. En la revista Nature, un científico advertía de que la poliagua podía ser “el material más peligroso de la Tierra”, ya que su simple contacto con el agua normal podía polimerizarla y dejar el planeta seco, como un “facsímil de Venus”. El Pentágono se involucró, temeroso de que la URSS llevara ventaja en la explotación de sus posibles aplicaciones militares.
Hasta que a un científico de EEUU llamado Denis Rousseau, pensando que podía tratarse simplemente de agua contaminada, se le ocurrió repetir las pruebas practicadas a la poliagua analizando el sudor de su camiseta después de un partido de balonmano. Y resultó que la presunta poliagua y el sudor eran, a todos los efectos y valga la expresión, como dos gotas de agua. La poliagua no era más que agua normal con impurezas.
Las propiedades del agua están también en el corazón de otro mito, la homeopatía. En 1988 el francés Jacques Benveniste logró publicar en Nature un estudio que decía aportar pruebas sobre la capacidad del agua de recordar las sustancias que había contenido.
El principio homeopático sostiene que, cuanto menos compuesto, más efectividad; sus preparaciones se basan en diluir un ingrediente una y otra vez hasta que desaparece de la solución, quedando sólo agua con una especie de memoria. Otros investigadores trataron sin éxito de reproducir los resultados de Benveniste, que fueron después refutados, y la hipótesis de la memoria del agua ha sido repetidamentedesacreditada. Sin embargo, en este caso el mito no ha desaparecido; a diferencia de la poliagua, la homeopatía sostiene una poderosa industria.
Hoy la ciencia ha descubierto que las propiedades anómalas del agua tienen mucho que ver con una estructura muy cambiante y dinámica, todo lo contrario de un material con memoria. El secreto está en la química del H2O. El oxígeno es uno de los elementos más electronegativos de la tabla periódica; es decir, que atrae con más fuerza los electrones. En el átomo de oxígeno predomina la carga negativa, mientras que en los dos hidrógenos se acumula la carga positiva. Ambas se compensan de modo que la carga neta es cero, pero esta estructura convierte a la molécula de agua en lo que se llama un dipolo: polo negativo y polo positivo. Ninguna de las moléculas parecidas a ella tiene un carácter dipolar tan marcado. Y esta es la razón de la enorme tensión superficial, ya que las moléculas de agua tienden a pegarse fuertemente unas a otras a través de estos polos, que se unen por un tipo de enlace llamado puente de hidrógeno.
Hasta hace poco más de una década, primaba la idea de que el agua líquida tenía una estructura homogénea. En el hielo, el agua está ordenada formando pirámides triangulares, o tetraedros, con una molécula en su centro y otras cuatro en los vértices, unidas a la central por puentes de hidrógeno. Se pensaba que al pasar a líquido se mantenía la misma estructura básica, pero los huecos del tetraedro se rellenaban con más moléculas, y de ahí su mayor densidad. Hasta que en 2004 los suecos Anders Nilsson y Lars Petterson lo pusieron todo patas arriba.
Mientras estudiaban por rayos X la estructura de otra molécula en disolución, Nilsson, de la Universidad de Stanford, y Pettersson, de la de Estocolmo, descubrieron que lo más interesante estaba en el agua. En contra de lo que decían los libros de texto, su potente fuente de rayos X les revelaba que sólo una pequeña parte de las moléculas de agua líquida formaban tetraedros. La inmensa mayoría estaban en una configuración más desordenada y compacta con sólo dos puentes de hidrógeno, y no cuatro. “Proponíamos que la estructura dominante estaba seriamente distorsionada”, resume Nilsson a EL ESPAÑOL.
Resultó que esta estructura en dos fases distintas, tetraedros y masa desordenada, lo explicaba todo. Por ejemplo, cuando el hielo se derrite, el agua comienza a pasar a la estructura compacta, lo que eleva su densidad. Pero por encima de 4 oC, al aumentar las moléculas desordenadas, la vibración de éstas las aparta unas de otras, lo que resulta en un agua más ligera a mayor temperatura.
Curiosamente, el modelo de Nilsson y Pettersson se parecía mucho a una hipótesis propuesta varios años antes para el agua superenfriada. Se llama así al agua por debajo del punto de congelación que se mantiene en estado líquido al impedirse la formación de hielo; en la naturaleza existe, por ejemplo, en las nubes a gran altura. En 1992, un equipo de la Universidad de Boston propuso que el agua superenfriada se compone de dos fases, una de baja y otra de alta densidad. Estas dos fases se han relacionado con una estructura en tetraedros, la primera, y otra más desordenada, la segunda.
Así, las dos líneas de investigación, la del agua que vemos a diario y la de la superenfriada, han confluido en un mismo modelo: una mezcla de dos estructuras que conviven y que se dan en mayor o menor grado dependiendo de la temperatura. En su última revisión, publicada en Nature Communications en diciembre de 2015, Nilsson y Pettersson cuentan que el agua es heterogénea, una mezcla cambiante de fases de alta y baja densidad. “La estructura distorsionada que proponíamos se relaciona con el líquido de alta densidad que es dominante a temperatura ambiente”, dice Nilsson. Y todo encaja, añade: “Las fluctuaciones entre los líquidos de alta y baja densidad explican las propiedades anómalas del agua”.
Un iceberg es una enorme masa de agua en forma de hielo que flota. Dan Rea, USAF (PD)
Esta idea del agua como la mezcla de aceite y vinagre en el aliño, pero ambos compuestos por una misma sustancia, aún se está abriendo paso en la comunidad científica. Por el momento, no todos están dispuestos a dejarse convencer. Pero mientras los expertos debaten, también comienzan a reflexionar sobre un intrigante enigma.
Cuando Nilsson y Pettersson dibujan un gráfico con presiones en un eje y temperaturas en el otro, resulta que las propiedades anómalas del agua se dan exclusivamente en una región central con forma de embudo. Por encima y por debajo de esta zona desaparece la doble personalidad del agua, que adopta sólo un estado y se comporta como un líquido cualquiera. Pero se da la circunstancia de que la región del embudo corresponde a las condiciones de la Tierra. “Al parecer, el agua se vuelve anómala a las temperaturas a las que suele existir la vida”, apunta Nilsson. “¿Es pura coincidencia o es algo significativo?”, se pregunta.
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (0)
El psicólogo Eric Ericsson llegó a proponer una teoría de estadios psicológicos del desarrollo. Un conflicto fundamental caracteriza cada fase. Si este conflicto no queda resuelto, puede enconarse e incluso provocar una regresión a un periodo anterior. Análogamente, el psiicólogo Jean Piaget demostró que el desarrollo mental de la primera infancia tampoco es un desarrollo continuo de aprendizaje, sino que está realmente caracterizado por estadios discontinuos en la capacidad de conceptualización de un niño. En un mes, un niño puede dejar de buscar una pelota una vez que ha rodado fuera de su campo de visión, sin comprender que la pelota existe aunque no la vea. Al mes siguiente, esto resultará obvio para el niño.
Los procesos siguen, las cosas cambian, el Tiempo inexorable transcurre, si hay vida vendrá la muerte, lo que es hoy mañana no será.
Esta es la esencia de la dialéctica. Según esta filosofía, todos los objetos (personas, gases, estrellas, el propio universo) pasan por una serie de estadios. Cada estadio está caracterizado por un conflicto entre dos fuerzas opuestas. La naturaleza de dicho conflicto determina, de hecho, la naturaleza del estadio. Cuando el conflicto se resuelve, el objeto pasa a un objetivo o estadio superior, llamado síntesis, donde empieza una nueva contradicción, y el proceso pasa de nuevo a un nivel superior.
Los filósofos llaman a esto transición de la “cantidad” a la “cualidad”. Pequeños cambios cuantitativos se acumulan hasta que, eventualmente, se produce una ruptura cualitativa con el pasado. Esta teoría se aplica también a las sociedades o culturas. Las tensiones en una sociedad pueden crecer espectacularmente, como la hicieron en Francia a finales del siglo XVIII. Los campesinos se enfrenaban al hambre, se produjeron motines espontáneos y la aristocracia se retiró a sus fortalezas. Cuando las tensiones alcanzaron su punto de ruptura, ocurrió una transición de fase de lo cuantitativo a lo cualitativo: los campesinos tomaron las armas, tomaron París y asaltaron la Bastilla.
Las transiciones de fases pueden ser también asuntos bastante explosivos. Por ejemplo, pensemos en un río que ha sido represado. Tras la presa se rápidamente un embalse con agua a enorme presión. Puesto que es inestable, el embalse está en el falso vacío. El agua preferiría estar en su verdadero vacío, significando esto que preferiría reventar la presa y correr aguas abajo, hacia un estado de menor energía. Así pues, una transición de fase implicaría un estallido de la presa, que tendría consecuencias desastrosas.
También podría poner aquí el ejemplo más explosivo de una bomba atómica, donde el falso vacío corresponde al núcleo inestable de uranio donde residen atrapadas enormes energías explosivas que son un millón de veces más poderosas, para masas iguales, que para un explosivo químico. De vez en cuando, el núcleo pasa por efecto túnel a un estado más bajo, lo que significa que el núcleo se rompe espontáneamente. Esto se denomina desintegración radiactiva. Sin embargo, disparando neutrones contra los núcleos de uranio, es posible liberar de golpe esta energía encerrada según la formula de Einstein E = mc2. Por supuesto, dicha liberación es una explosión atómica; ¡menuda transición de fase! De nefasto recuerdo por cierto.
Las transiciones de fase no son nada nuevo. Trasladémoslo a nuestras propias vidas. En un libro llamado Pasajes, el autor, Gail Sheehy, destaca que la vida no es un flujo continuo de experiencias, como parece, sino que realmente pasa por varios estadios, caracterizados por conflictos específicos que debemos resolver y por objetivos que debemos cumplir.
Los contornos recubiertos muestran la estructura de la galaxia al ser reconstruida desde las observaciones hechas bajo el fenómeno de lente gravitatorio con el radiotelescopio Submillimeter Array. La formación de nuevas estrellas en el Universo es imparable y, la materia más sencilla se constituye en una estructura que la transformará en más compleja, más activa, más dispuesta para que, la vida, también pueda surgir en mundos ignotos situados muy lejos del nuestro.
Sí, todo cambia y nada permanece: transiciones de fases hacia la complejidad
Las nuevas características descubiertas por los científicos en las transiciones de fases es que normalmente van acompañadas de una ruptura de simetría. Al premio Nobel Abdus Salam le gusta la ilustración siguiente: consideremos una mesa de banquete circular, donde todos los comensales están sentados con una copa de champán a cada lado. Aquí existe simetría. Mirando la mesa del banquete reflejada en un espejo, vemos lo mismo: cada comensal sentado en torno a la mesa, con copas de champán a cada lado. Asimismo, podemos girar la mesa de banquete circular y la disposición sigue siendo la misma.
Rompamos ahora la simetría. Supongamos ahora que el primer comensal toma la copa que hay a su derecha. Siguiendo la pauta, todos los demás comensales tomaran la copa de champán de su derecha. Nótese que la imagen de la mesa del banquete vista en el espejo produce la situación opuesta. Cada comensal ha tomado la copa izquierda. De este modo, la simetría izquierda-derecha se ha roto.
El niño del espejo le da a su amiguito reflejado la mano derecha y aquel, le saluda, con la izquierda. ¡La simetría especular…! Así pues, el estado de máxima simetría es con frecuencia también un estado inestable, y por lo tanto corresponde a un falso vacío.
Con respecto a la teoría de supercuerdas, los físicos suponen (aunque todavía no lo puedan demostrar) que el universo decadimensional original era inestable y pasó por efecto túnel a un universo de cuatro y otro de seis dimensiones. Así pues, el universo original estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero vacío.
Al principio, cuando el universo era simétrico, sólo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo. Más tarde, cuando el universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron las primeras quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos. Doscientos millones de años más tarde, se formaron las primeras estrellas y galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol. Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.
En las estrellas se tiene que producir el proceso triple alfa para que exista el Carbono
Las estrellas evolucionan desde que en su núcleo se comienza a fusionar hidrógeno en helio, de los elementos más ligeros a los más pesados. Avanza creando en el hornotermonuclear, cada vez, metales y elementos más pesados. Cuando llega al hierro y explosiona en la forma explosiva de una supernova. Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienza de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.
Puesto que el peso promedio de los protones en los productos de fisión, como el cesio y el kriptón, es menor que el peso promedio de los protones de uranio, el exceso de masa se ha transformado en energía mediante la conocida fórmula E = mc2. Esta es la fuente de energía que también subyace en la bomba atómica. Es decir, convertir materia en energía.
Así pues, la curva de energía de enlace no sólo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos ahora aquí y, muy posiblemente, será también el factor determinante para que, lejos de aquí, en otros sistemas solares a muchos años luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie humana, se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del universo, los componentes de la materia y, como nosotros, se interesen por el destino que nos espera en el futuro.
Cuando alguien oye por vez primera la historia de la vida de las estrellas, generalmente (lo sé por experiencia), no dice nada, pero su rostro refleja escepticismo. ¿Cómo puedo vivir una estrella 10.000 millones de años? Después de todo, nadie ha vivido tanto tiempo como para ser testigo de su evolución y poder contarlo.
Hay cosas que, cambiando… ¡Nunca cambian! La entropía se encarga de ello
Pero volviendo a las cosas de la Naturaleza y de la larga vida de las estrellas, sí, tenemos los medios técnicos y científicos para saber la edad que tiene, por ejemplo, el Sol. Nuestro Sol, la estrella alrededor de la que giran todos los planetas de nuestro Sistema Solar, la estrella más cercana a la Tierra (150 millones de Km = 1 UA), con un diámetro de 1.392.530 Km, tiene una edad de 4.500 millones de años, y, como todo en el Universo, su discurrir la va desgantando, evoluciona hacia su imparable destino como gigante roja primero y enana blanca después.
Una gigante roja engulle a un planeta cercano
Cuando ese momento llegue, ¿dónde estaremos? Pues nosotros, si es que estamos, contemplaremos el acontecimiento desde otros mundos. La Humanidad habrá dado el gran salto hacia las estrellas y, colonizando otros planetas se habrá extendido por regiones lejanas de la Galaxia.
El Universo siempre nos pareció inmenso, y, al principio, aquellos que empezaron a preguntarse cómo sería, lo imaginaron como una esfera cristalina que dentro contenía unos pocos mundos y algunas estrellas, hoy, hemos llegado a saber un poco más sobre él. Sin embargo, dentro de unos cuantos siglos, los que detrás de nosotros llegaran, hablarán de universos en plural, y, cuando pasen algunos eones, estaremos de visita de un universo a otro como vamos de una ciudad a otra.
¡Quién pudiera estar allí!
¡Es todo tan extraño! ¡Es todo tan complejo! y, sobre todo…¡sabemos tan poco!
Todo lo grande está hecho de cosas pequeñas
Según lo que podemos entender y hasta donde han podido llegar nuestros conocimientos actuales, ahora sabemos donde están las fronteras: donde las masas o las energías superan 1019 veces la masa del protón, y esto implica que estamos mirando a estructuras con un tamaño de 10-33 centímetros.
Esta ecuación nos habla de lo que se conoce como masa de Planck y a la distancia correspondiente la llamamos distancia de Planck. La masa de Planck expresada en gramos es de 22 microgramos, que es la masa de un grano muy pequeño de azúcar (que, por otra parte, es el único número de Planck que parece más o menos razonable, ¡los otros números son totalmente extravagantes!).
Esto significa que tratamos de localizar una partícula con la precisión de una Longitud de Planck, las fluctuaciones cuánticas darán tanta energía que su masa será tan grande como la masa de Planck, y los efectos de la fuerza gravitatoria entre partículas, así, sobrepasarán los de cualquier otra fuerza. Es decir, para estas partículas la gravedad es una interacción fuerte.
Lo cierto es que, esas unidades tan pequeñas, tan lejanas en las distancias más allá de los átomos, son las que marcan nuestros límites, los límites de nuestras teorías actuales que, mientras que no puedan llegar a esas distancias… No podrán avanzar en el conocimiento de la Naturaleza y, tampoco, como es natural, en la teoría de supercuerdas o en poder saber, lo que pasó en el primer momento del supuesto big bang, hasta esos lugares, nunca hemos podido llegar.
emilio silvera
por Emilio Silvera ~ Clasificado en Física Cuántica ~ Comments (0)
El Universo y la Vida… ¡Nuestra imaginación!
En su Libro Partículas, Gerard ´t Hofft, Premio Nobel de Física, nos cuenta:
“En el mundo de los seres vivos, la escala o tamaño crea importantes diferencias. En muchos aspectos, la anatomía de un ratón es una copia de la de un elefante, pero mientras que un ratón trepar por una pared prácticamente vertical sin mucha dificultad (y se puede caer desde una altura varias veces mayor que su propio tamaño sin hacerse daño), un elefante no sería capaz de realizar tal hazaña. Con bastante generalidad se puede afirmar que los efectos de la gravedad son menos importantes cuanto menores sean los objetos que consideremos (sean vivos o inanimados).”
Cuando llegamos a los seres unicelulares, se ve que ellos no hay distinción entre arriba y abajo. Para ellos, la tensión superficial del agua es mucho más importante que la fuerza de la gravedad a esa escala. Tranquilamente se pueden mover y desplazar por encima de una superficie acuática. Los pluricelulares no pueden hacer tal cosa.
La tensión superficial es una consecuencia de que todas las moléculas y los átomos se atraen unos a otros con una fuerza que nosotros llamamos de Van der Waals. fuerza tiene un alcance muy corto; para ser precisos, diremos que la intensidad de esta fuerza a una distancia r es aproximadamente 1/r7. Esto significa que si se reduce la distancia dos átomos a la mitad de la fuerza de Van der Waals con la que se atraen uno a otro se hace 2 × 2 × 2 × 2 × 2 × 2 × 2 = 128 veces más intensa. Cuando los átomos y las moléculas se acercan mucho unos a otros quedan unidos muy fuertemente a través de esta fuerza. El conocimiento de esta fuerza se debe a Johannes Diderik Van der Waals (1837 – 1923) con su tesis sobre la continuidad del líquido y gaseoso que le haría famoso, ya que en esa época (1873), la existencia de las moléculas y los átomos no estaba completamente aceptado.
La tensión superficial del agua, es el efecto físico (energía de atracción entre las moléculas) que “endurece” la capa superficial del agua en reposo y permite a algunos insectos, como el mosquito y otros desplazarse por la superficie del agua sin hundirse.
El famoso físico inglés James Clerk Maxwell, que formuló la teoría del electromagnetismo de Faraday, quedó muy impresionado por este de Van der Waals.
Los tamaños de los seres uniceculares, animales y vegetales, se miden en micrómetros o “micras”, donde 1 micra es 1/1.000 de milímetro, aproximadamente el tamaño de los detalles más pequeños que se pueden observar con un microscopio ordinario. El mundo de los microbios es fascinante, pero no es el objeto de este trabajo, y continuaremos el viaje emprendido las partículas elementales que forman núcleos, átomos, células y materia, así como las fuerzas que intervienen en las interacciones fundamentales del universo y que afecta a todo lo que existe.
Hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; una masa de solamente 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el universo.
Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).
Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.
Un cuerpo negro es un objeto teórico o ideal que absorbe toda la luz y toda la energía radiante que incide sobre él. Nada de la radiación incidente se refleja o pasa a través del cuerpo negro. A pesar de su , el cuerpo negro emite luz y constituye un modelo ideal físico para el estudio de la emisión de radiación electromagnética. El nombre Cuerpo negro fue introducido por Gustav Kirchhoff en 1862.
La luz emitida por un cuerpo negro se denomina radiación de cuerpo negro. Todo cuerpo emite energía en de ondas electromagnéticas, siendo esta radiación, que se emite incluso en el vacío, tanto más intensa cuando más elevada es la temperatura del emisor. La energía radiante emitida por un cuerpo a temperatura ambiente es escasa y corresponde a longitudes de onda superiores a las de la luz visible (es decir, de menor frecuencia). Al elevar la temperatura no sólo aumenta la energía emitida sino que lo hace a longitudes de onda más cortas; a esto se debe el cambio de color de un cuerpo cuando se calienta. Los cuerpos no emiten con igual intensidad a todas las frecuencias o longitudes de onda, sino que siguen la ley de Planck.
Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = h?, donde E es la energía del paquete, ? es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo nueva condición, el resultado coincidió perfectamente con las observaciones.
Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ? de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilantes de campos de fuerza, esto lo veremos más adelante.
El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.
Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.
Pero los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?
Niels Bohr consiguió responder a esta pregunta de tal que con su explicación se pudo seguir trabajando, y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica.
Si la mecánica cuántica tiene cosas extrañas y el espín es una de ellas. Y si uno piensa que la intuición le ayudará a comprender todo esto, pues no lo hará, o es poco probable que lo haga. Las partículas tienen un espín fundamental. Al igual que la carga eléctrica o la masa, el espín ayuda a definir que de partícula es cada una.
Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.
La posición y el momento de una partícula nunca lo podremos saber con precisión ilimitada.
No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.
Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo, la constante de Planck, h, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.
La mecánica cuántica es muy extraña a nuestro “sentido común”, sabemos que se desenvuelve en ese “universo” de lo muy pequeño, alejado de nuestra vida cotidiana en el macrocosmos tetradimensional que, no siempre coincide con lo que, en aquel otro ininitesimal acontece.
Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisemberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.
Es cierto que, existe otro universo dentro de nuestro del que, aún, nos queda mucho por aprender.
La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (?) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un dado.
Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.”
También Gerard ‘t Hooft es el autor de lo que han dado en llamar l principio holográfico es una conjetura especulativa acerca de las teorías de la Gravedad Cuántica propuesta en 1993 por este autor, y mejorada y promovida por Leonard Susskin en 1995. Postula que toda la información contenida en cierto volumen de un espacio concreto se puede conocer a partir de la información codificable sobre la frontera de dicha región. Una importante consecuencia es que la cantidad máxima de información que puede contener una determinada región de espacio rodeada por una superficie diferenciable está limitada por el área total de dicha superficie.
Por ejemplo, se pueden modelar todos los eventos que ocurran en un cuarto o una habitación creando una teoría en la que sólo tome en cuenta lo que suceda en sus paredes. En el principio holográfico también se afirma que por cada cuatro Unidades de Planck existe al menos un grado de libertad (o una unidad constante de Bolttzmann k de máxima entropía). Esto se conoce como frontera de Bekenstein:
donde S es la entropía y A es la unidad de mensura considerada. En unidades convencionales la fórmula anterior se escribe:
donde:
Claro que esta… ¡Es otra Historia!
emilio silvera
por Emilio Silvera ~ Clasificado en Noticias ~ Comments (0)
Con solo tres tipos de partículas diferentes: el electrón y los dos quarks que forman los protones y neutrones, tenemos los ladrillos necesarios para construir y describir toda la materia que nos rodea, desde las estrellas hasta los animales y plantas de la Tierra. Sin embargo, hay un cuarto tipo de partícula elemental con propiedades muy diferentes a las anteriores: el neutrino.
Su nombre viene del italiano “neutron bambino” y ya nos da idea de qué le distingue de las otras partículas elementales. Es neutro, sin carga eléctrica y con interacciones extremadamente débiles con el resto de la materia. También es increíblemente ligero. De hecho, la masa de los neutrinos es tan pequeña que no ha podido medirse directamente aún. Sólo sabemos que debe ser menor que una millonésima parte de la masa del electrón, la siguiente partícula más ligera que conocemos. Estas dos propiedades hacen que los neutrinos sean más de mil millones de veces más numerosos que todos los átomos del Universo pero que, al mismo tiempo, apenas podamos detectar su presencia.
El premio Nobel de física 2015 ha sido concedido a Takaaki Kajita y Arthur McDonald por “el descubrimiento de las oscilaciones de neutrinos que demuestran que los neutrinos tienen masa”.
Los neutrinos existen en tres “sabores” o especies que determinan sus interacciones con el resto de partículas. La “oscilación de neutrinos” es un fenómeno mediante el cual estos tres “sabores” de neutrino se transforman unos en otros simplemente en vuelo, “oscilando” entre los tres tipos. Los neutrinos, como el resto de las partículas en el contexto de la física cuántica, son descritos como ondas. Y como las ondas en el agua, se pueden superponer unas con otras, dando lugar a nuevas combinaciones. Pues bien, estos tres “sabores” de neutrinos corresponden a tres superposiciones diferentes de ondas.
Su nombre viene del italiano “neutron bambino” Diagrama del detector ALEPH mostrando la existencia de tres generaciones de neutrinos ligeros.
Si estas ondas viajaran todas igual, simultáneamente, la superposición nunca cambiaría y no habría oscilaciones. Pero si los neutrinos asociados a estas ondas tienen masa, y sus masas son diferentes, cada onda se propaga con velocidad diferente y la superposición entre ellas, el “sabor”, cambia con el vuelo del neutrino. Por eso, la observación de la oscilación de los sabores de neutrinos implica que éstos deben tener masa, aunque sea tan pequeña que aún no la hemos podido determinar de forma directa.
El simple hecho de que estas partículas tengan masa nos obliga a replantear nuestro entendimiento de la física con la que explicamos y describimos la materia, que solo predecía neutrinos sin masa. Aunque el resto de partículas también son masivas, y con masas mucho mayores, el carácter especial de los neutrinos de nuevo podría esconder sorpresas. Por ejemplo, su carácter neutro, hace que la línea que distingue partículas de antipartículas, materia de antimateria, se desdibuje para los neutrinos.
Las antipartículas son partículas producidas en laboratorios y de forma natural en la atmósfera terrestre, idénticas en todo a su partícula asociada, excepto en su carga, que es opuesta. Así el positrón, la antipartícula del electrón, es idéntica a éste pero con carga positiva en vez de negativa.
Los neutrinos son más de mil millones de veces más numerosos que todos los átomos del Universo pero, al mismo tiempo, apenas podemos detectar su presencia
Aún es un misterio el por qué nuestro Universo está formado por materia si partículas y antipartículas se producen y destruyen juntas en la mayoría de procesos conocidos. En algún momento se debió crear un exceso de materia sobre antimateria para poder crear galaxias, estrellas, planetas y personas. Pero quizá los neutrinos tengan la respuesta. Al no tener carga, sería posible que, igual que los neutrinos oscilan entre “sabores”, su masa también permitiera a neutrinos oscilar en antineutrinos, rompiendo la barrera entre partículas y antipartículas y plantando la semilla del exceso de materia en el Universo al que, a la postre, debemos nuestra existencia. ¿Quizá un futuro premio Nobel nos de la respuesta?
Enrique Fernández es investigador Ramón y Cajal del departamento de Física Teórica de la UAM y miembro del Instituto de Física Teórica UAM-CSIC.