domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Simetría CP y otros aspectos de la Física

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los quarks al otro lado del espejo. Científicos del Laboratorio Nacional Jefferson Lab (EEUU) han verificado la rotura de la simetría de paridad (también llamada simetría del espejo) en los quarksmediante el bombardeo de núcleos de deuterio con electrones de alta energía. Los núcleos de deuterioestán formados por un protón y un neutrón, es decir, por tres quarks arriba y tres quarks abajo. La dispersión inelástica entre un electrón y un quark, es decir, su colisión, está mediada por la interacción electrodébil, tanto por la fuerza electromagnética como por la fuerza débil. Esta última es la única interacción fundamental que viola la simetría de paridad.

Tenemos que saber cómo la violación de la simetría CP (el proceso que originó la materia) aparece, y, lo que es más importante, hemos de introducir un nuevo fenómeno, al que llamamos campo de Higgs, para preservar la coherencia matemática del modelo estándar.  La idea de Higgs, y su partícula asociada, el bosón de Higgs, cuenta en todos los problemas que he mencionado antes.  Parece, con tantos parámetros imprecisos (19) que, el modelo estándar se mueve bajo nuestros pies.

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “supergravedad”, “súpersimetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

La Física nos lleva de vez en cuando a realizar viajes alucinantes. Se ha conseguido relacionar y vibrar a dos diamantes en el proceso conocido como entrelazamiento cuántico. El misterioso proceso, al que el propio Eisntein no supo darle comprensión completa, supone el mayor avance la fecha y abre las puertas de la computación cuántica. que nos hagamos una idea del hallazgo, en 1935 Einsteinlo llegó a denominar la “acción fantasmal a distancia”. Un efecto extraño en donde se conecta un objeto con otro de manera que incluso si están separados por grandes distancias, una acción realizada en uno de los objetos afecta al otro.

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?).  Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal.  Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado! Pero se sigue hablando de partículas supersimétricas.

Resultado de imagen de longitud de Planck

                                   ¿Quién puede ir a la longitud de Planck para verlas?

La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa.  En el Hiperespacio, todo es posible.  Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.

Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intento calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas.  Todo debe ser contestado a partir de una ecuación básica.

¿Dónde radica el problema?

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello,  no la tiene ni la nueva capacidad energético del  acelerador de partículas LHC . Ni sumando todos los aceleradores de partículas de nuestro mundo, podríamos lograr una energía de Planck (1019 GeV), que sería necesaria para poder llegar hasta las cuerdas vibrantes de la Teoría. Ni en las próximas generaciones seremos capaces de poder utilizar tal energía.

La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías. Sabemos sobre las partíoculas elementales que conforman la materia bariónica, es decir, los átomos que se juntan para formar moléculas, sustancias y cuerpos… ¡La materia! Pero, no sabemos si, pudiera haber algo más elemental aún más allá de los Quarks y, ese algo, pudieran ser esas cuerdas vibrantes que no tenemos capacidad de alcanzar.

¡Necesitamos algo más avanzado!

Se ha dicho que la función de la partícula de Higgs es la de dar masa a las Cuando su autor lanzó la idea al mundo, resultó además de nueva muy extraña.  El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo.  El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.

Resultado de imagen de Con 7 TeV ha sido suficiente para encontrar la famosa partícula de Higgs pero…

                  Con 7 TeV fue suficiente para “encontrar” la famosa partícula de Higgs pero…

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs.  Las partículas influidas por este campo, toman masa.  Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético.  Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.

Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo.  Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein.  La masa, m, tiene en realidad dos partes.  Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo.  La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos.  Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

Peor la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo.  Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.

Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo.  El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta ahora no tenemos ni idea de que reglas controlan los incrementos de masa generados por el Higgs(de ahí la expectación creada por las nuevas energías del acelerador de partículas LHC). Pero el problema es irritante: ¿por qué sólo esas masas -Las masas de los W+, W, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV.  Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-Salam).  Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles.  En la unidad hay cuatro partículas mensajeras sin masa -los W+, W, Zº fotón que llevan la fuerza electrodébil.  Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébilse fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa.  La simetría se rompe espontáneamente, dicen los teóricos.  Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

Resultado de imagen de Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una vez potente y segura nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmariana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la matería?

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea una tributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron del “renormalizándolo”, ese truco matemático que emplean cuando no saben hacerlo bien.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrinseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrinseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espin de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espin cero.  El espín supone una direccionalidad en el espacio, pero el campo de Higgs de masa a los objetos dondequiera que estén y sin direccionalidad.  Al Higgs se le llama a veces “bosónescalar” [sin dirección] por esa razón.

                                                     Basta con cambiar un quark tipo u a uno tipo d.

Pues justamente esto es lo que ocurre en la naturaleza cuando entra en acció la fuerzxa nuclear débil.  Un quark tipo u cambia a uno tipo d por medio de la interacción débil así

Las otras dos partículas que salen son un anti-electrón y un neutrino. Este mismo proceso es el responsable del decaimiento radiactivo de algunos núcleos atómicos. Cuando un neutrón se convierte en un protón en el decaimiento radiactivo de un núcleo, aparece un electrón y un neutrino. Este es el origen de la radiación beta (electrónes).

La interacción débil, recordareis, fue inventada por E.Fermin para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV.  Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.

Hay que responder montones de preguntas.  ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? ¿Y, cómo podemos saber más al respecto? Como s su partícula, nos cabe esperar que la veamos ahora después de gastar más de 50.000 millones de euros en los elementos necesarios para ello.

También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.

El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10′5grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas.  Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electrodébil unificada.

El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe.

Resultado de imagen de Interacción electrodébil

Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

De todas las maneras, era tanta la ignorancia que teniamos sobre el origen de la masa que, nos agarrabamos como a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que, algunos, llegaron a llamar, de manera un poco exagerada:

¡La partícula “Divina”!

¡Ya veremos en que termina todo esto! Y que explicación se nos va ofreciendo desde el CERN en cuanto al auténtico escenario que según ellos, existe en el Universo para que sea posible que las partículas tomen su masa de ese oceáno de Higgs, en el que, según nuestro amigo Ramón Márquez, las partículas se frenan al interaccionar con el mismo y toman su masa, el lo llama el “efecto frenado”.

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas.  La utilizaron los teóricos Steven Weinberg y Abdus Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, W– y Z0 de masa grande.  Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft.  También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta.  Además, ¿Cuántos teóricos hacen falta para encender una bombilla?

La verdad es que, casi siempre, han hecho falta muchos.  Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todos, exponer su teoría relativista. (Mach, Maxwell, Lorentz… y otros).

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, decía que era una alfombra bajo la que barríamos nuestra ignorancia.  Glasgow era menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales.  La objeción principal: que no teníamos la menor prueba experimental parece que se esfumó en 2012 cuando “encontraron” la dichosa partícula.

Ahora, por fin la tenemos con el LHC, y ésta pega, se la traspasamos directamente a la teoría de supercuerdas y a la materia oscura que, de momento, están en la sombra y no brillan con luz propia, toda vez que ninguna de ellas ha podido ser verificada, es decir, no sabemos si el Universo atiende a lo que en ellas se predice.

El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Resultado de imagen de El campo de Higgs y la materia oscura

Después de todo esto, llego a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo pudo surgir  el Universo dependen de que se encuentre (no sólo) el bosón de Higgs, sino los demás parámetros aleatorios y metidos con calzador en el Modelo Estándar. Y se averigúe si realmente existe la materia oscura, Sepamos llegar al fondo de la Teoría de Cuerdas y confirmarla, Poder crear esa Teoría cuántica de la Gravedad…Y, en fín, seguir descubriendo los muchos misterios que no nos ejan saber lo que el Universo es.  Ahora, por fin, tenemos grandes aceleradores y Telescopisos con la energía necesaria y las condiciones tecnológicas suficientes para que nos muestre todo eso que queremos saber y nos digan dónde reside esa verdad que incansables perseguimos.

¡La confianza en nosotros mismos, no tiene límites! Pero, no siempre ha estado justificada.

emilio silvera

La Física relativista, la cuántica y… ¡El futuro!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

 

File:Spacetime curvature.png

Esta es una analogía bidimensional de la distorsión del espacio-tiempo debido a un objeto de gran masa

            Hay que entender que el espacio-tiempo es la única descripción en cuatro dimensiones del Universo en la que la posición de un objeto se especifica por tres coordenadas en el espacio y una en el tiempo. De acuerdo con la relatividad especial, no existe un tiempo absoluto que pueda ser medido con independencia del observador, de manera que sucesos simultáneos para un observador ocurren en instantes diferentes vistos desde otro lugar.

          El tiempo puede ser medido, por tanto, de manera relativa, como los son las posiciones en el espacio tridimensional, y esto puede conseguirse mediante el concepto de espacio-tiempo. La trayectoria de un objeto en el espacio-tiempo se denomina por el nombre de línea de Universo. La relatividad general, nos explica lo que es un espacio-tiempo curvo con las posiciones y movimientos de las partículas de materia.

   Presencia de materia y curvatura

 

La densidad de energía-momentum en la teoría de la relatividad se representa por cuadritensor energía-impulso. Las componentes de dicho tensor representan entre otras la densidad de energía y la densidad de momentum y dichas componentes están relacionadas localmente con las componentes del curvatura. La relación entre la presencia de materia y la curvatura debida a dicha materia viene dada por la ecuación de campo de Einstein:

 

 

 

Es una fuerza atractiva que en la comunidad científica actual es concebida como la pensó Einstein: como un efecto de la curvatura del espacio-tiempo en presencia de de objetos masivos y, cuanto más masa tenga el objeto más se curvará el espacio a su alrededor.

 

 

R_{\mu\nu} - {1\over 2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}

donde:

 

R_{\mu\nu}\,, es el tensor de curvatura de Ricci
R\, es el escalar de curvatura de Ricci
T_{\mu\nu}\,, es el tensor de energía-impulso

Ejemplos

 

Una representación del paraboloide de Flamm, cuya curvatura geométrica coincide con la del plano de la eclíptica de una estrella esféricamente simétrica. El campo gravitatorio solar viene dado de manera aproximada por la métrica de Schwarzschild, que a distancias muy grandes se aproxima a geometría plana del espacio de Minkowski. La figura de la derecha muestra aproximadamente el plano de la eclíptica del Sistema solar modelizado mediante la métrica de Schwarzschild, una órbita planetaria es una curva cuasi-elíptica alrededor del centro de dicha eclíptica.

          Así, la curvatura del espacio tiempo es la propiedad del espacio-tiempo en la que las leyes familiares de la geometría no son aplicables en regiones donde los campos gravitatorios son intensos. La relatividad general de Einstein, nos explica y demuestra que el espacio-tiempo está íntimamente relacionado con la distribución de materia en el Universo y, nos dice que, el espacio se curva en presencia de masas considerables como planetas, estrellas o Galaxias…

        En realidad, es la presencia de la materia la que determina la geometría del espacio-tiempo

En un espacio de sólo dos dimensiones, como una lámina de goma plana, la geometría de Euclides se aplica de manera que la suma de los ángulos internos de un triángulo en la lámina es de 180º. Si colocamos un objeto masivo sobre la lámina de goma, la lámina se distorsionará y los caminos de los objetos que se muevan sobre ella se curvaran. Esto es en esencia, lo que ocurre en relatividad general.

Lo cierto es que, desde que llegó Einstein con sus versiones de la teoría relativista, muchas fueron las cosas que cambiaron y, nuestros conceptos del mundo…, también. Fenómenos que se crean en la naturaleza y que son la consecuencia de la presencia de masas o de velocidades muy grandes.

¡Los efectos de c -la velocidad de la luz en el espacio vacío-! Recordad la paradoja de los gemelos: Uno de ellos, que es astronauta, hace un viaje a la velocidad de la luz hasta Alfa de Centauri y regresa, cuando baja de la nave espacial, tiene 8,6 años más que cuando partió de la Tierra. Sin embargo, su hermano gemelo que le esperó en el planeta Tierra, era ya un anciano  jubilado. El tiempo transcurrido había pasado más lento para el gemelo viajero. La velocidad ralentiza el transcurrir del tiempo.

El Universo es todo energía que se manifiesta de distintas maneras: bien como masa, o, bien como radiación.

          Otra curiosidad de la relatividad especial es la que expresó Einstein mediante su famosa fórmula de E= mc2 que, nos viene a decir que masa y energía son dos aspectos de una misma cosa. Podríamos considerar que la masa (materia), es energía congelada. Todos sabemos lo que ocurre cuando se desintegra un átomo de materia y la enorme cantidad de energía que tiene concentrada.

          Hay otras implicaciones dentro de esta maravillosa teoría de la relatividad especial, ahí está presente también la contracción de Lorentz. Un objeto que se mueve a velocidad de cercana a c, se achata o contrae en el sentido de la marcha, y, además, a medida que se acerca a la velocidad de la luz (299.752,458 Km/s), su masa va aumentando y su velocidad disminuyendo.

          Así se ha demostrado con muones en los aceleradores de particulas que, lanzados a verlocidades relativista, han alcanzado una masa en 10 veces superior a la suya. Esto quiere decir que la fuerza de inercia que se le está transmitiendo a una nave (por ejemplo), cuando se acerca a la velocidad de la luz, se convierte en masa.

          Así queda demostrado que, masa y energía son dos aspectos de la misma cosa E=mc2. Pero no olvidemos que…

http://4.bp.blogspot.com/_zBAdWxgEeX0/R87vhcBGPII/AAAAAAAACI4/MCE-Wi6d2v0/s320/galatomo.jpg

    Todos hemos llegado a comprender que, todo lo grande está hecho de cosas pequeñas. Sin emnbargo hay cosas que aún no tenemos claras, y, un ejemplo de ello es, ¡El Hiperespacio!

    Esta idea interesante ha sido utilizada en diversas teorías físicas prometedoras que han recurrido formalmente a la introducción de nuevas dimensiones formales para dar cuenta de fenómenos físicos. Así Kaluza y Klein trataron de crear una teoría unificada (clásica) de la gravedad y del electromagnetismo, introduciendo, a las cuatro dimensiones de la teoría relativista, una quinta dimensión adicional. En esta teoría la carga podía relacionarse con la quinta componente de la “pentavelocidad” de la partícula, y otra serie de cuestiones interesantes. El enfoque de varias teorías de supercuerdas es aún más ambicioso y se han empleado esquemas inspirados remotamente en la ideas de Einstein, Kaluza y Klein que llegan a emplear hasta diez y once dimensiones, de las cuales seis o siete estarían compactificadas y no serían detectables más que indirectamente.

Nuestra inemsa imaginación nos ha llevado a buscar teorías que no podemos comprobar de manera experimental y, dentro de esas teorías, están, o, pudieran estar, las claves para viajar a otras regiones del espacio muy distantes de la nuestra por ese medio que intuimos, que pudiera ser accesible para nosotros y que hemos llamado Hiperespacio, que estaría situado en la quinta dimensión.

Resultado de imagen de Mecánica cuántica relativista

Mecánica cuántica, relatividad, átomos, el genóma, agujeros negros, la constante cosmológica, la constante de Planck racionalizada… Sabemos representar muchas otras cosas y estamos a la búsqueda de otras que intuimos como la “materia oscura”, o, ¿por qué no? la quinta dimensióny el hiperespacio. No cejamos en el desarrollo de la “imposible” teoría de cuerdas y también, buscamos bosones dadores de masa en un espacio profundo, de cuyo contenido sabemos poco.

Con los conocimientos de la mecánica cuántica que tenemos, hemos conseguido teletransportar  las propiedades de la materia. Las películas de ciencia ficción -desde Star Trek hasta La Mosca- nos han mostrado un futuro donde las personas pueden teletransportarse sin problemas. Y aunque los científicos aún no logran transferir materia… Creo que, ¡todo se andará!

Resultado de imagen de Teleportación cuántica

La teleportación cuántica no consiste en transportar instantáneamente objetos, sino de transferir el “estado” de una o varias partículas, los constituyentes íntimos de la materia, de un lugar a otro y sin necesidad de enviar físicamente la partícula a través del espacio.  Este sorprendente logro es posible gracias al “entrelazamiento cuántico”, una extraña y aún poco comprendida propiedad de las partículas subatómicas que permite que dos -o más-,  partículas unan sus destinos de tal forma que cualquier cambio de estado que se produzca en una de ellas se refleje de forma instantánea también en la otra, sin importar la distancia que las separe.No sabemos de qué manera, esas partículas permanecen “unidas” y la física clásica no puede darnos una explicación. Sin embargo, siendo conocedores de tal fenómeno, los científicos llevan veinte años intentando sacar rendimiento a esa realidad extraordinaria que nos envía la promesa de que, con ella, podemos traer una nueva revolución al campo de las comunicaciones por satélite, la informática y… ¿quién sabe qué más?

Sí, es cierto que, tanto la teletransportación de personas, como el viaje por el Hiperespacio es -todavía- cosa de la ciencia ficción pero… Acordáos de cuando Arthur Clarke nos hablaba de satélites que orbitaban la Tierra para recoger y enviarnos datos de alto interés en los diversos campos de la actividad humana. Aquello, parecía una fantasía y, sin embargo ahora, es lo cotidiano.

http://3.bp.blogspot.com/_eqb8qL2GKZc/SwWlUSrOYKI/AAAAAAAACTk/EZ68cuxIaAw/s1600/warsp.jpg

¿Quién puede decir ahora qué mundo futuro nos espera? Conforme a los conocimientos que actualmente tenemos, podemos intuir el devenir tecnologíco que los avances de la ciencia nos pueden proporcionar y, entre los muchos que están ahí, en ese horizonte futuro, están todos estos de los que hablamos y, seguramente, muchos más que ni podemos imaginar. Seguramente, como tambioén ahora mismo está pasando, no todos los aspectos de la tecnología futura nos gustarán.

universos paralelos2.gif

La mejor manera de no equivocarse es tener la mente abierta a todo. Negar la existencia de universos paralelos, o, la certeza de la teoría de cuerdas…, ¿A dónde nos lleva? ¡A ninguna parte! Así pues, mantengamos la confianza en nosotros mismos, en lo que nuestras mentes llegan a intuir, y, dejémos, que nuestra “infinita” imaginación siga haciendo su trabajo y dibujando en nuestras mentes esos escenarios de mundos que podrían ser… ¡Una realidad futura!

emilio silvera

Afirmaciones sorprendentes

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Recreación artística de cómo nacieron las primeras estrellas.

Así nacieron las primeras estrellas: sólo 180 millones de años después del Big Bang

 

Investigadores estadounidenses registran una señal muy precoz de Universo que sugiere una colisión de la materia oscura y la normal.

 

Resultado de imagen de Las primeras estrellas
 

Por primera vez, un equipo de astrónomos ha detectado una señal de estrellas emergentes en el universo más precoz. Usando una antena de radio no mucho más grande que un refrigerador, los investigadores descubrieron que las antiguas estrellas estaban activas sólo 180 millones de años después del Big Bang.

Los astrónomos, de la Universidad Estatal de Arizona (ASU) y el Instituto de Tecnología de Massachusetts (MIT), hicieron el descubrimiento dentro de su experimento Global Signature Epo (Epoch of Reionization) Signature (EDGES), financiado por la National Science Foundation (NSF).

 Imagen relacionada

                                                        El nacimiento de las primeras estrellas

 

Los resultados se han publicado en la edición de marzo de Nature. “Encontrar esta señal minúscula ha abierto una nueva ventana hacia el universo temprano”, dice el astrónomo Judd Bowman de la Universidad de Arizona, el investigador principal del proyecto. “Los telescopios no pueden ver lo suficiente como para obtener imágenes directas de estrellas antiguas, pero hemos visto cuando se activaron en ondas de radio que llegaban del espacio“.

Los modelos del universo más antiguo dan a entender que tales estrellas eran masivas, azules y de corta duración. Sin embargo, debido a que los telescopios no pueden verlos, los astrónomos han estado buscando evidencia indirecta, como un cambio revelador en la radiación electromagnética de fondo que impregna el universo, llamada fondo de microondas cósmico (CMB).

Una línea del tiempo actualizada con los nuevos hallazgos.

 

 

Una línea del tiempo actualizada con los nuevos hallazgos. N.R.Fuller,National Science Foundation

Una pequeña caída en la intensidad, por ejemplo, debería notarse en las señales de radio CMB, pero el ambiente atestado de ondas de radio de la Tierra ha obstaculizado la búsqueda de los astrónomos.
Tales caídas ocurren en longitudes de onda entre 65 y 95 MHz, superponiéndose con algunas de las frecuencias más ampliamente utilizadas en el dial de radio FM, así como con ondas de radio que emanan naturalmente de la galaxia de la Vía Láctea. “Hay un gran desafío técnico para hacer esta detección”, dice Peter Kurczynski, director del programa NSF que supervisó los fondos para EDGES. “Las fuentes de ruido pueden ser 10.000 veces más brillantes que la señal, es como estar en medio de un huracán y tratando de escuchar el aleteo del ala de un colibrí “.
A pesar de los obstáculos, los astrónomos confiaban en que sería posible encontrar tal señal, gracias a investigaciones previas que indicaban que las primeras estrellas liberaron enormes cantidades de luz ultravioleta (UV). Esa luz interactuó con los átomos de hidrógeno flotantes, que comenzaron a absorber los fotones CMB circundantes.
“Uno empieza a ver el gas de hidrógeno en elcontorno de frecuencias de radio particulares“, dice el coautor Alan Rogers del Haystack Observatory del MIT. “Esta es la primera señal real de que las estrellas comienzan a formarse y comienzan a afectar al medio que las rodea“.
El espectómetro EDGES, situado en Australia.

 

El espectómetro EDGES, situado en Australia. CSIRO Australia

En su artículo, el equipo de EDGES informó de que había visto una señal clara en los datos de ondas de radio, detectando una caída en la intensidad de CMB cuando comenzó ese proceso. A medida que la fusión estelar continuó, la luz UV resultante comenzó a desgarrar los átomos de hidrógeno flotando libremente, eliminando sus electrones en un proceso llamado ionización. Cuando las primeras estrellas murieron, los agujeros negros, las supernovas y otros objetos que dejaron continuaron el proceso de ionización y calentaron el hidrógeno libre restante con rayos X, que con el tiempo extinguieron la señal. Los datos EDGES revelan que el hito ocurrió aproximadamente 250 millones de años después del Big Bang.
Un segundo estudio publicado en el mismo número de la revista sugiere que el gas se enfrió por la interacción del hidrógeno con algo aún más frío: la materia oscura. Según la señal observada, los autores argumentan que las partículas de materia oscura no es más pesada que varias masas de protones.