domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Por qué es difícil Viajar a Marte? I (Apuntes de la NASA)

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

¿Por qué es difícil ir a Marte?

 

 

                        Fotograma de la película ‘The martian’. AIDAN MONAGHAN

El estreno de la película ‘Marte’ (The Martian) ha despertado cierta curiosidad acerca de posibles futuros viajes humanos al planeta rojo. Después de haber ido a la Luna en varias ocasiones hace ya casi cinco décadas, y estando acostumbrados a ver astronautas viajar al espacio casi de forma rutinaria, es tentador pensar que enviar seres humanos a Marte pueda ser algo perfectamente plausible a día de hoy, o tal vez un tanto más complicado que lo hecho hasta ahora. Sin embargo, la realidad es que enviar seres humanos a Marte constituye un desafío de una dificultad y complejidad absolutamente descomunales que se aleja mucho de todo lo que se ha hecho hasta ahora en la historia de la exploración humana del espacio.

En esta y en la siguiente entrada hablaré de las razones por las que esta empresa constituye un desafío inmenso y sobre cómo se plantea en la actualidad una misión tripulada a Marte. Con objeto de ofrecer una perspectiva inicial para entender la dimensión del problema de una forma intuitiva, en esta entrada trataré de la razón principal que hace extremadamente difícil una misión a Marte, la razón de la que prácticamente se derivan casi todas las demás: la distancia.

               Matt Damon in “The Martian.” Credit Aidan Monaghan/Twentieth Century Fox

Vemos astronautas viajar con frecuencia al espacio, a la Estación Espacial Internacional (ISS), antes a la estación Mir, a bordo de naves Soyuz, o antes a bordo del Transbordador Espacial, etc., y se suele tener la impresión de que el lugar al que se viaja en estas misiones es muy lejano; sin embargo, las altitudes típicas a las que estas estaciones y vehículos espaciales orbitan alrededor de la Tierra son de unos pocos cientos de kilómetros. La ISS, por ejemplo, orbita alrededor de la Tierra a una altitud que es equivalente a la distancia que hay en línea recta entre Madrid y Almería: unos 400 km. Esta región espacial a la que viajan los humanos de forma rutinaria está dentro de la conocida como ‘región de las órbitas bajas de la Tierra’, y técnicamente la llamamos LEO (del inglés Low Earth Orbit).

Comparativa entre orbitas bajas de la Tierra (arriba) y la distancia a escala entre la Tierra y la Luna (abajo).

Los viajes tripulados lunares implicaron viajar más allá de las órbitas LEO ya que la Luna orbita nuestro planeta a una distancia media de unos 380.000 km, lo que viene a ser unas 1.000 veces más lejos que las altitudes de estas órbitas bajas. Una tripulación y su nave se ponen en órbita alrededor de la Tierra poco después de su lanzamiento, mientras que la distancia a la Luna se cubría en las misiones Apolo en prácticamente 3 días.

En el caso de Marte la situación es muy diferente. Ir a Marte implica pasar de una misión geocéntrica a una centrada en el Sol, o heliocéntrica, lo que supone un salto enorme en las distancias involucradas. Aunque las distancias máxima y mínima entre la Tierra y Marte varían dentro de un cierto rango, la mínima distancia posible es de unos 55 millones de km y la máxima posible es de unos 400 millones de km.

Estas son distancias enormes en comparación a todo lo que se ha volado en misiones tripuladas al espacio hasta ahora. La distancia máxima a Marte viene a ser 1.000 veces mayor que la que hay entre la Tierra y la Luna, lo que viene a ser 1.000.000 de veces mayor que la distancia que separa la superficie terrestre de las órbitas LEO a las que se viaja normalmente.

Distancias aproximadas mínima y máxima posibles entre la Tierra y Marte. Como referencia, la distancia media de la Tierra a la Luna es de 380.000 km.

Sin necesidad de conocer nada más, los datos acerca de la distancia a Marte ya constituyen una buena pista para empezarnos a asomar a la magnitud del problema. Para apreciarlo mejor, y sin entrar en detalles relativos a métodos de propulsión o dinámica orbital, vamos a comparar en números redondos dos misiones tripuladas, una orbital alrededor de la Tierra para un solo tripulante y otra lunar de tres tripulantes, para hacernos una idea de la progresión en la masa necesaria de los cohetes involucrados para llevar a cabo estas misiones y entender el contexto de lo que supondrá una misión a Marte.

Empezamos con la primera misión orbital del Programa Mercury de principios de los ’60: la Mercury 6 de John Glenn. Aquí se precisó de un cohete Atlas de 120 toneladas y 29 metros de altura para poner en una órbita de 200 km de altitud media alrededor de la Tierra una masa útil de 1,2 toneladas formada por una cápsula Mercury con su único tripulante, el cual permaneció en el espacio 5 horas.

Veamos ahora lo que cambia la situación al tener a la Luna como destino unas 1.000 veces más lejos. En el caso del Apolo 17 -la última misión de exploración lunar-, su módulo de mando y servicio más su módulo lunar, sumando todo cerca de 50 toneladas, hubieron de ser lanzados a la Luna por el poderoso cohete Saturno V de unas 3.000 toneladas y de 110 metros de altura para una misión de una duración total de unos 12 días y medio en la que 2 de sus tripulantes permanecieron sobre la superficie lunar algo más de 3 días.

Cohete lunar Saturno V junto al cohete Atlas del Programa Mercury para un tripulante (Transbordador Espacial incluido como referencia). Fuente: http://historicspacecraft.com/.

Vemos así el salto cuantitativo necesario cuando queremos ir a otro mundo que está 1.000 veces más allá de las órbitas bajas de la Tierra tanto en la masa útil a lanzar (de 1,2 a 50 toneladas) como en el tamaño del cohete lanzador requerido (de 120 a 3.000 toneladas). Comparemos todo esto con una misión a Marte. Aquí la tripulación constará de 6 astronautas y su duración, tomando como ejemplo la oportunidad en 2037, sería de 174 días para la ida y 201 días para la vuelta, con una estancia de 539 días en Marte. Una estancia tan larga en Marte sería necesaria a la espera de que la posición relativa entre este planeta y la Tierra fuera óptima para el regreso con un mínimo gasto de combustible, lo que ahorra el envío de centenares de toneladas de combustible. Todo esto supone un total de 914 días, o 2 años y medio.

Como vemos, el salto entre la Luna y Marte es descomunal, ya que doblar la tripulación y extender la duración a cerca de 73 veces la de la misión lunar más larga, supone la necesidad de proveer y transportar cerca de 150 veces más suministros. Por otra parte, una mayor duración de viaje interplanetario supone la necesidad de proveer a la tripulación de mayor protección contra las radiaciones, lo que se consigue en parte añadiendo aún más masa, aunque este problema no está aún resuelto.

Otro problema de la larga duración es que las cosas se rompen a lo largo de tanto tiempo. O bien se tendrá que mejorar sustancialmente la durabilidad de los equipos o estos habrán de poder ser repuestos por recambios que también habrá que transportar, lo que implica una mayor masa. Las naves de carga que visitan la ISS pueden abastecerla de repuestos cuando algo se estropea a bordo pero esta opción no será posible en una misión a Marte.

Una vez dicho todo esto, al igual que cuesta más acelerar y frenar un camión que un turismo por tener el primero más masa, tengamos en cuenta que enviar más masa a Marte implica transportar también más combustible para acelerar toda esa carga hacia Marte, para frenarla a la llegada a ese planeta, y para volver a la Tierra desde allí; y pensemos que todo ese combustible (centenares de toneladas) también hay que lanzarlo al espacio inicialmente.

En total, para una misión a Marte se requerirá lanzar al espacio entre 850 y 1.250 toneladas. Esta es una cantidad enorme si tenemos en cuenta que la Ia ISS tiene una masa de unas 420 toneladas y que una nave con la que estamos familiarizados como el Transbordador Espacial solo podía enviar al espacio entre 15 y 25 toneladas aproximadamente, dependiendo de la altitud de la órbita final. El Ariane 5 es capaz de poner unas 20 toneladas en órbita baja alrededor de la Tierra, al igual que el cohete ruso Protón, por ejemplo.

Así pues, a partir de todo esto, y sin saber mucho más, ya podemos anticipar de forma intuitiva que no se podrá utilizar un único cohete para ir a Marte, sino que se precisarán varios lanzamientos de cohetes -tanto o más poderosos que el Saturno V de los años ’60- para ensamblar en el espacio distintos elementos de propulsión, módulos de combustible, hábitats y naves, que habrán de enviarse a Marte por separado y por anticipado, además de la nave con la tripulación, que sería enviada en último lugar. Entraremos en estos detalles en la siguiente entrada.

Aunque depende de diversos factores, se requerirán, de hecho, del orden de 10 lanzamientos de cohetes con la capacidad del Saturno V o similar; pero recordemos que el número total de cohetes Saturno V que se enviaron a la Luna en todo el Programa Apolo fue de 9. El Saturno V fue retirado de servicio después del Porgrama Apolo pero ostenta el récord, aún a día de hoy, como el cohete operativo más poderoso que haya habido nunca, capaz de poner algo más de 120 toneladas en órbita baja alrededor de la Tierra y de enviar 50 toneladas a la Luna. Tuvo que ser específicamente diseñado y construido en su día para poder alcanzar la Luna, y no existe un lanzador de tanta capacidad en la actualidad. El cohete que se encargaría de la mayor parte de los lanzamientos en una futura misión a Marte se está desarrollando en la actualidad y se llama SLS (Space Launch System), el cual tendrá prestaciones parecidas o acaso un tanto mayores que el Saturno V.

Por otra parte, un tiempo de 174 días de ida en condición de ingravidez afecta profundamente a la fisiología humana, algo especialmente preocupante al llegar a un planeta donde no hay nadie para asistirte. Las naves que se pueden ver en las películas (incluida la película ‘Marte’), con un amplio y confortable habitáculo en forma de donut girando para simular la aceleración de la gravedad, no son realistas en la actualidad.

                     La Tierra vista desde Marte (izda.) y desde la Luna (dcha.). Fuente: NASA.

Dos años y medio es un tiempo muy largo también por razones psicológicas. La Tierra será vista por la tripulación como un punto de luz semejante a una estrella durante la mayor parte del viaje y será apenas imperceptible en la noche marciana cuando fuera visible. La tripulación tendrá que convivir en una condición de confinamiento permanente en un espacio reducido en una situación de gran estrés, y con la imposibilidad de mantener conversaciones fluidas con los seres queridos en la Tierra debido al tiempo de viaje de la señal.

Después de todo esto, y aunque no se han mencionado todas las dificultades técnicas, tecnológicas y operativas, creo que ahora puede apreciarse un poco mejor a lo que nos enfrentamos en una misión a Marte. A partir de aquí, y una vez expuesta esta perspectiva para contextualizar el problema y entrar en materia, en la siguiente entrada explicaré cómo se plantea en la actualidad una misión humana a Marte y cómo se relaciona con lo que se ve en la película ‘Marte’ (The Martian).

sigue en la II parte

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting