domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Habeis pensado por qué hay vida en el Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  
     Los astrofísicos se devanan los sesos queriendo saber si hay vida fuera de la Tierra
Nadie ha sabido responder a la pregunta de si las constantes de la naturaleza son realmente constantes o llegará un momento en que comience su transformación. Hay que tener en cuenta que para nosotros, la escala del tiempo que podríamos considerar muy grande, en la escala de tiempo del universo podría ser ínfima. El universo, por lo que sabemos, tiene 13.700 millones de años. Antes que nosotros, el reinado sobre el planeta correspondía a los dinosaurios, amos y señores durante 150 millones de años, hace ahora de ello 65 millones de años.  Mucho después, hace apenas 2 millones de años, aparecieron nuestros antepasados directos que, después de una serie de cambios evolutivos desembocó en lo que somos hoy. En cualquier sitio que mirémos podremos leer:
Resultado de imagen de La vida es química
                    Sin la química de las estrellas, en nuestro universo, la vida no estaría presente

“Toda vida en la Tierra requiere de elementos químicos, hidrógenooxígenonitrógenoazufrefósforo, así como de otros muchos en menores cantidades, como ciertos minerales; requiere además de agua como solvente en el cual las reacciones tienen lugar. Cantidad suficiente de carbono y demás elementos constituyentes de la vida, junto con el agua, harían posible la formación de organismos vivientes en otros planetas con una química, presión y temperatura similares a la Tierra. Como la Tierra y otros planetas están hechos de “polvo estelar”, es muy probable que otros planetas se hayan formado con semejante composición de elementos químicos que los terrestres. La combinación de carbono y agua en la forma de carbohidratos, como el azúcar, puede ser una fuente de energía química de la que depende la vida, mientras que a la vez provee elementos de estructura y codificación genética[cita requerida]. El agua pura es útil, pues tiene un pH neutro debido a la continuada disociación entre sus iones de hidronio e hidróxido. Como resultado, puede disolver ambos tipos de iones, positivos (metálicos) y negativos (no metálicos) con igual habilidad.”

 

 

 

               ¿Quién puede decir lo que habrá en otros mundos, en otros ecosistemas?

“Debido a su relativa abundancia y utilidad en el sostenimiento de la vida, muchos han conjeturado que todas las formas de vida, donde quiera que se produzcan, se valdrían también de estos materiales básicos. Aun así, otros elementos y solventes pueden proveer una cierta base de vida. Se ha señalado al silicio como una alternativa posible al carbono; basadas en este elemento, se han propuesto formas de vida con una morfología cristalina, teóricamente capaces de existir en condiciones de alta temperatura, como en planetas que orbiten muy cercanos a su estrella.

También se han sugerido formas de vida basadas en el otros solventes, pues existen compuestos químicos capaces de mantener su estado líquido en diferentes rangos de temperatura, ampliando así las zonas habitables consideradas viables. Así por ejemplo, se estudia el amoníaco como solvente alternativo al agua. La vida en un océano de amoníaco podría aparecer en un planeta mucho más lejano a su estrella.

Técnicamente, la vida es básicamente una reacción que se replica a sí misma, por lo que bajo esta simple premisa podría surgir la vida bajo una amplia gama de condiciones e ingredientes diferentes, si bien la vía carbono-oxígeno parece la más óptima y conductiva. Existen incluso teorías sobre reacciones autorreplicantes que podrían ocurrir en el plasma de una estrella, aunque éste sería un tipo de vida altamente extremo y nada convencional.”

 

 

 

 

Mucho tiempo ha pasado que esta imagen era el presente, y, sin embargo, para el Universo supone una ínfima fracción marcada por el Tic Tac cósmico de las estrellas y galaxias que conforman la materia de la que provenimos. Es un gran misterio para nosotros que sean las estrellas las que fabrican los materiales que, más tarde, llegan a conformar a seres vivos que, en algunos caso, tienen consciencia. Planck decía:

“La ciencia no puede resolver el misterio final de la Naturaleza.  Y esto se debe a que, en el último análisis, nosotros somos parte del misterio que estamos tratando de resolver”.

 

 

 

Nos queda mucho por decubrir y aún no tenemos ni los medios ni los conocimientos para hacerlo

“La creciente distancia entre la imagen del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.” Nos decía Planck. Su intuición le llevaba a comprender que, con el paso del tiempo, nosotros estaríamos adquiriendo por medio de pequeñas mutaciones, más amplitud en nuestros sentidos, de manera tal que, sin que nos diéramos cuenta nos estábamos acercando más y más al mundo real.”

Veámos otros temas.

Aquí cada día, elegimos una cuestión distinta que se relaciona, de alguna manera, con la ciencia que está repartida en niveles del saber denominados: Matemáticas, Física, Química,Astronomía, Astrofísica, Biología, Cosmología… y, de vez en cuando, nos preguntamos por el misterio de la vida, el poder de nuestras mentes evolucionadas y hasta dónde podremos llegar en nuestro camino, y, repasamos hechos del pretérito que nos trajeron hasta aquí.

 Resultado de imagen de Robert Henry Dicke

Robert Henry Dicke (6 de mayo de 1916 – 4 de marzo de 1997) fue un físico experimental estadounidense, que hizo importantes contribuciones en astrofísica, física atómica, cosmología y gravitación. Hombre inquieto, muy activo y, sobre todo, curioso por saber todo aquello que tuviera alguna señal de misterio.

Me referiré ahora aquí al extraño personaje que arriba podeis ver. Se sentía igualmente cómodo como matemático, como físico experimental, como destilador de toda clase de ideas que le llevara a descubrir los misterios de la Naturaleza.

  

Paul Adrien Maurice Dirac (8 de agosto de 1902 – 20 de octubre de 1984) fue un físico teórico británico que contribuyó de forma fundamental al desarrollo de la mecánica cuántica y la electrodinámica cuántica. Sus trabajos sobre el electrón, en nada tiene que envidiar a los de Einstein.

Dirac, que predijo la existencia del positrón, le dedicó un estudio a la Gravedad al hilo de una serie de números y teorías propuestas por Eddintong en aquellos tiempos y decidió abandonar la constancia de la constante de gravitación de Newton, G. Sugirió que estaba decreciendo en proporción directa a la edad del universo en escalas de tiempo cósmicas. Es decir, la Gravedad en el pasado era mucho más potente y se debilitaba con el paso del tiempo.

Así pues, en el pasado G era mayor y en el futuro será menor que lo que mide hoy. Veremos que  la enorme magnitud de los tres grandes números (1040, 1080 y 10120) es una consecuencia de la gran edad del universo: todas aumentan con el paso del tiempo.

La propuesta de Dirac provocó un revuelo un grupo de científicos vociferantes que inundaron las páginas de las revistas especializadas de cartas y artículos a favor y en contra. Dirac, mientras tanto, mantenía su calma y sus tranquilas costumbres, escribió sobre su creencia en los grandes números cuya importancia encerraba la comprensión del universo con palabras que podrían haber sido de Eddington, pues reflejan muy estrechamente la filosofía de la fracasada “teoría fundamental”.

       Siempre hemos estado obsesionados con algunos números en los que creímos ver significados ocultos

“¿No cabría la posibilidad de que todos los grandes sucesos presentes correspondan a propiedades del Gran 1040 y, generalizando aún más, que la historia entera del universo corresponda a propiedades de la serie entera de los números naturales…? Hay así una posibilidad de que el viejo sueño de los filósofos de conectar la naturaleza con las propiedades de los números enteros se realice algún día”.

 

La propuesta de Dirac levantó controversias entre los físicos, y Edward Teller en 1.948, demostró que si en el pasado la gravedad hubiera sido como dice Dirac, la emisión de la energía del Sol habría cambiado y la Tierra habría mucho más caliente en el pasado de lo que se suponía normalmente, los océanos habrían estado hirviendo en la era precámbrica, hace doscientos o trescientos millones de años, y la vida tal como la conocemos no habría sobrevivido, pese a que la evidencia geológica entonces disponible demostraba que la vida había existido hace al menos quinientos millones de años.

               Las constantes de la Naturaleza han sido medida de mil maneras

Dicke, ya podéis imaginar que fue uno de los que de inmediato se puso manos a la obra para dilucidar si la Naturaleza encerraba el secreto de una G variable como decía Dirac.

A lo largo del Siglo XX se observó que algunas de las cifras que se dan en la naturaleza coinciden de manera sorprendente, y más extraño aún resultó el hecho de que se refieren a ámbitos físicos aparentemente independientes. Otro elemento insólito consistía en que todas ellas giraban alrededor de unos números (1040, 1080 y 10120).

“El problema del gran tamaño de estos números es ahora fácil de explicar…  Hay un único número adimensional grande que tiene su origen estático.  Este es el número de partículas del Universo.  La edad del Universo “ahora” no es aleatoria sino que está condicionada por factores biológicos… [porque cambio en los valores de grandes números] impedirían la existencia del hombre para considerar el problema”.

 

 

                       La Alquimia estelar está presente en “infinitos” lugares del universo

La evolución del Universo, sus transiciones de fases, la construcción natural de elementos pesados y más complejos en el seno de las estrellas y en las explosiones supernovas, todo ello, nos llevó a que la materia pudiera adquirir la capacidad químico biológica necesaria para la vida.

Dicke, cuatro años más tarde desarrolló esta importante intuición con más detalle, con especial referencia a las coincidencias de los Grandes Números de Dirac, en una breve carta que se publicó en la revista Nature.  Dicke argumentaba que formas de vidas bioquímicas como nosotros mismos deben su propia base química a elementos tales como el carbono,  nitrógeno, el oxígeno y el fósforo que son sintetizados tras miles de millones de años de evolución estelar en la secuencia principal.  (El argumento se aplica con la misma fuerza o cualquier forma de vida basada en cualesquiera elementos atómicos más pesados que el helio.)  Cuando las estrellas mueren, las explosiones que constituyen las supernovas dispersan estos elementos biológicos “pesados” por todo el espacio,  de donde son incorporados en granos, planetesimales, planetas, moléculas “inteligentes” auto replicantes como ADN y, finalmente, en nosotros mismos que, en realidad, estamos hechos de polvo de estrellas.

Resultado de imagen de El polvo de estrellas que guarda el secreto de la vida

                El polvo de las estrellas, ahí se guarda el secreto de la vida y de la energía del Universo

Esta escala temporal está controlada por el hecho de que las constantes fundamentales de la Naturaleza sean:

t(estrellas) ≈ (Gmpr 2/ћc)-1 ћ/mprc≈ 1040 ×10-23 segundos≈ 10.000 millones de años (se necesita ese tiempo de evolución en las estrellas para que, la vida, pueda aparecer en el Universo). No esperaríamos estar observando el Universo en tiempos significativamente mayores que t (estrellas), puesto que todas las estrellas estables se habrían expandido, enfriado y muerto.  Tampoco seríamos capaces de ver el Universo en tiempos muchas menores que t (estrellas) porque no podríamos existir. No había estrellas ni elementos pesados como el carbono.  Parece que estamos amarrados por los hechos de la vida biológica para mirar el Universo y desarrollar teorías cosmológicas una vez que haya transcurrido un tiempo t (estrellas) desde el Big Bang.

                   Creo que las constantes de la Naturaleza permiten la presencia de la Vida en el Universo

  

                                                                  Cadenas de ADN en el Universo

Como antes se explicaba, todos los procesos de la Naturaleza, requieren su tiempo. Desde un ambarazo a la evolución de las estrellast(estrellas) ≈ (Gmp2 / hc)-1 h/mpc2 ≈ 1040 ×10-23 segundos ≈ 10.000 millones de No esperaríamos estar observando el universo en tiempos significativamente mayores que t(estrellas), puesto que todas las estrellas estables se habrían expandido, enfriado y muerto. Tampoco seríamos capaces de ver el universo en tiempos mucho menores que t(estrellas) porque no podríamos existir; no había estrellas ni elementos pesados como el carbono. Parece que estamos amarrados por los hechos de la vida biológica para mirar el universo y desarrollar teorías cosmológicas una vez que haya transcurrido un tiempo t(estrellas) Big Bang.

Resultado de imagen de Una estrella moribunda

La escena de una estrella moribunda fue necesaria para que los materiales biológicos que nos conformaron a los seres vivos, pudieran estar presentes en el Universo. Sin que llegara a producirse tal acontecimiento, no existirían en el universo los elementos necesarios para la vida. Así no pocas veces hemos oido decir que estamos hechos de polvo de estrellas y, aunque no literal, si es una buena metáfora de lo que somos. Es fácil suponer que la vida pulula por todo el Universo. Pero, siempre se nos viene una pregunta a la mente: ¿Por qué no hemos contactado ya con otros seres inteligentes de otros planetas?

¿Somos nosotros dentro de 3.000.000 de años?

No parece tan difícil responder a esa pregunta si pensamos en el Tiempo y en la Distancia, es decir, el Espaciotiempo que habría que cubrir para encontrar a otros seres que pudieran existir, como nosotros, pobladores de mundos lejanos. Sin embargo, una duda siempre queda en el aire. Nuestros telescopios alcanzan galaxias situadas a miles de millones de años-lus del Sistema solar, y, cabría preguntarsde, ¿cómo podríamos llegar hasta allí?

 

 

Claro que los procesos de la alquimia estelar necesitan tiempo: miles de millones de años de tiempo. Y debido a que nuestro universo se está expandiendo, tiene que tener un tamaño de miles de millones de años-luz para que durante ese periodo de tiempo necesario pudiera haber fabricado los componentes y elementos complejos para la vida. Un universo que fuera sólo del tamaño de nuestra Vía Láctea, con sus cien mil millones de estrellas resultaría insuficiente, su tamaño sería sólo de un mes de crecimiento-expansión y no habría producido esos elementos básicos para la vida.

Resultado de imagen de El paso del tiempo lo cambia todo

Como todo lo demás, nosotros nos humanos no somos ninguna excepción, y, con el paso del Tiempo cambiamos, como lo hacen las estrellas, los mundos y las galaxias.

  Los precesos siguen, las cosas cambian, el Tiempo inexorable transcurre, si hay vida vendrá la muerte, lo que es hoy mañana no será. De la matería inerte surgirá la vida mediante procesos inevitables que son normales en las reglas que el Universo impone, en su ritmo y en sus constantes que hacen posible, al fin,  la presencia de una bioquímica que permite la diversidad de seres vivos que a lo largo de la historia de la Tierra estuvieron aquí, los que están ahora en el presente y, los que, posiblemente, estarán máñana… ¡En ese futuro que no conocemos! Pero sabemos que…

Resultado de imagen de El Universo visible

El universo visible contiene sólo:

1 átomo por metro cúbico

1 Tierra por (10 años luz)3

1 Estrella por (103 años luz)3

1 Galaxia por (107 años luz)3

1 “Universo” por (1010 años luz)3

El cuadro expresa la densidad de materia del universo de varias maneras diferentes que muestran el alejamiento que cabría esperar entre las galaxias y lo difícil que será que podamos, algún día, conocer a seres de otras galaxias cada vez más lejos de nosotros. Sin embargo, en nuestra Vía Láctea existen miles de millones de mundos y, siendo así (que lo es), no podemos perder la esperanza de que algún día… podamos ir a otros mundos habitados, o, recibir, una inesperada visita.

emilio silvera

¡Las estrellas! ¿Qué haríamos sin ellas?

Autor por Emilio Silvera    ~    Archivo Clasificado en Estrellas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

http://es.globedia.com/imagenes/noticias/2010/12/30/541531_1.jpg

Las estrellas enanas rojas son las más abundantes en el Universo y, desde luego, las que tienen la vida más larga. Algunas son casi tan viejas como el universo mismo, el poco material de fusión que sonsumen las llevan hasta esas edades matusalénicas de miles de millones de años, más de diez mil millones tienen algunas que, nos podrían contar muchas, muchas cosas de las que fueron testigos. Otras como nuestro Sol, estrellas GV2 enana amarilla es también del tipo más abundante. Luego están una pléyade de estrellas de mayor envergadura y grandes masas que van desde las 10 hasta las casi 150 masas solares y su vida es corta por la voracidad de consumir los elementos que van fusionando a una velocidad y cantidades ingentes.

Hace algunos años, en una nebulosa de la Gran Nube de Magallanes, una de nuestras galaxias vecinas, a unos 160.000 años luz de distancia, los astrónomos descubrieron una estrella descomunal que rompía todos los récords. El monstruo llegó a pesar en sus inicios 300 veces la masa del Sol y era 10 millones de veces más luminoso. Si reinara en nuestro Sistema Solar, habría reducido el año en la Tierra a tres semanas y la vida sería imposible por la intensa radiación ultravioleta. Una estrella así es sin discusión extraordinaria, pero no está sola. Resulta que en esa zona del firmamento hay muchas más que pueden ser consideradas unos auténticos pesos pesados. E incluso una o dos más pueden ser similares. A su lado, el Sol es insignificante.

Resultado de imagen de cúmulo central R136 en 30 Doradus

En el corazón de ese criadero de estrellas que es el cúmulo central R136 en 30 Doradus, también conocido como la nebulosa de la Tarántula, un equipo internacional de astrónomos, en el que también han participado investigadores españoles, ha observado casi 1.000 estrellas masivas gracias al Very Large Telescope (VLT) del Observatorio Europeo Austral (ESO). Su presencia resulta fundamental para entender la evolución del Universo, debido a su enorme influencia en su entorno. Pueden explotar en espectaculares supernovas al final de sus vidas, formando algunos de los objetos más exóticos del Universo: estrellas de neutrones y agujeros negros.

“No solo nos ha sorprendido la gran cantidad que hay, sino también las densas muestras de hasta 200 masas solares”, explica Hugues Sana, de la Universidad de Lovaina en Bélgica y coautor del estudio. Hasta hace poco, la existencia de estrellas tan masivas era muy controvertida, pero el estudio muestra que es probable que en su nacimiento alcanzaran un máximo de hasta 300. Porque las estrellas, a diferencia de los seres humanos, nacen pesadas y pierden peso con la edad.

La Gran Nube de Magallanes

                               En la Gran Nube de Magallanes existen estrellas súpergigantes

Las estrellas son motores cósmicos y han producido la mayoría de los elementos químicos más pesados que el helio, desde el oxígeno que respiramos hasta el hierro de nuestra sangre. Durante sus vidas, las estrellas masivas producen cantidades copiosas de radiación ionizante y energía cinética a través de fuertes vientos estelares. La radiación ionizante de las estrellas masivas fue crucial para el reabastecimiento del Universo después de la llamada Edad Oscura, y su retro-alimentación mecánica impulsa la evolución de las galaxias. Y para comprender bien todos esos mecanismos, hace falta saber cuántos “monstruos” nacen.

Comprender la física de la estrellas masivas bajo las diferentes condiciones que encontramos desde la Vía Láctea al Universo primitivo es fundamental para conocer la evolución del Cosmos y cómo lo vemos en la actualidad.

Según se estima, las estrellas cuando tienen unas 120 masas solares han llegado a un límite en el que, su propia radiación las puede destruir. Sin embargo, se han descubierto estrellas que llegan hasta las 150/300 masas solares. ¿Por qué se mantienen “vivas” y no explotan. Bueno, todos los indicios apuntan al hecho de que, para desahogar y esquivar los efectos de la inmensa radiación que produce la fusión nuclear, eyectan de manera periódica, material al espacio interestelar y se tranquilizan. Ahí tenemos el ejemplo de Eta Carinae.

EtaCarinae.jpg

“Eta Carinae (abreviado: η Carinae o η Car) es una estrella del tipo variable luminosa azulhipermasiva, situada en la constelación de la Quilla, a alrededor de 7500 años-luz (2300 parsecs) del sistema solar. Su masa oscila entre 100 y 150 veces la masa solar, lo que la convierte en una de las estrellas más masivas conocidas en nuestra galaxia. Asimismo, posee una altísima luminosidad, de alrededor de cuatro millones de veces la del Sol; debido a la gran cantidad de polvo existente a su alrededor, Eta Carinae irradia el 99 % de su luminosidad en la parte infrarroja del espectro, lo que la convierte en el objeto más brillante del cielo en el intervalo de longitudes de onda entre 10 y 20 µm.”

Resultado de imagen de Estrellas Hipergigantes en la Gran Nube de Magallanes

Existen estrellas hipergigantes que son las que sobrepasan las 30 masas solares, así fueron denominadas cuando se observaron los objetos más brillantes en las Nubes de Magallanes, aunque en realidad, lo que vieron eran cúmulos de estrellas y no estrellas individuales. Sin embargo de estrellas supermasivas existen múltiples ejemplos y, hemos podido comprobar que, la enorme cantidad de material de fusión que consumen las lleva a una vida corta. Las estrellas supermasivas sólo viven unos pocos millones de años, mientras que estrellas como el Sol, llegan a los diez mil millones de años de vida.

Hay muchas clases de estrellas: Estrellas capullos envueltas en una nube de gas y polvo, estrellas de baja o de alta velocidad, con envoltura, con exceso de ultravioleta, de baja luminosidad, de baja masa, de Bario, de manganeso, de Carbono, de Litio, de Bariones, de campo, de Circonio, de estroncio, estrellas de Helio, de la rama gigante asintótica, de manganeso-mercurio, de metales pesados, de neutrones, (¿de Quarks?), estrellas de referencia, de Silicio, de Tecnecio, de tipo tardío, de tipo temprano, estrella del Polo, estrella doble, estrella enana, estrella estándar, evolucionada, estrella Flash, estrella fulgurante, magnética, estrella guía, hipergigante, estrella invitada, múltiple, peculiar, pobre en metales, estrella reloj, simbiótica, rica en metales, supermasiva, fijas, gigantes…, cada una de ellas tiene su propia personalidad, su propio color y temperatura y también, una media de vida que depende de manera dirtecta de su masa.

Los elementos químicos se fraguan dentro de ellas, y, también al final de sus vidas, en las explosiones Supernovas, se crean los materiales más complejos de la Tabla Periódica. Estos materiales, van formar parte de las grandes Nebulosas de las que vuelven a surgir nuevas estrellas y nuevos mundos que estarán hechos de todos esos eslementos creados en las estrellas y, como nosotros mismos provenimos de ahí, es fácil oir la expresión: “Somos polvo de estrellas”.

Las estrellas no son ninguna excepción y como todo en nuestro Universo, con el paso del tiempo evolucionan y, a medida que van consumiendo su combustibles nuclear de fusión, van acortando sus vidas que, en función de la masa, será más corta o más duradera y también, sus finales serán distintos por la misma causa: Estrellas como el Sol = Enanas Blancas. Estrellas de varias masas solres = Estrella de Neutrones. Estrellas masivas y supermasivas = Agujeros Negros.

Resultado de imagen de Enanas blancas, de neutrones y agujeros negros

Esas transmutaciones que se producen durante un largo período de tiempo, conllevan fenómenos que se producen de distintastas maneras en cada una de esas estrellas. En unas, se alcanza la estabilidad al degenerarse los electrones (que son fermiones), que siguen la Ley de Pauli del Principio de esclusión. Ahí aparecen las enanas blancas.  De la misma manera sucede en estrellas más masivas que el Sol pero, al tener más masa, no es suficiente que los electrones se degeneren y, entonces, electrones y protones se fusionan para convertirse en Neutrones que son (al ser fermiones), los que se degeneran y estabiliza a la estrella como de Neutrones. Cuando ya la masa es muy grande, nada puede frenar a mla Gravedad y lo que nos queda es un Agujero Negro.

Decir eso de que los elementos estelares llegaron a la Tierra y pudo surgir la Vida, no es, en realidad, contar gran cosa de lo que pudo pasar para que nosotros ahora, podamos estar aquí contando sobre ello. Los actuales descubrimientos de la Paleontología, la más tradicional de las científicas, se entrelazan con nuevas ideas nacida de la biología molecular y la geoquímica. Los huesos de los dinosaurios son grandes y espectaculares y nos llevan al asombro. Pero, aparte del tamaño de sus habitantes, el Mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutíles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hasta el mundo que conocemos hoy.

   Lo cierto es que, la química de las estrellas está presente en los mundos para que pueda surgir la Vida

Nada surge de manera espontánea, todo se fragua durante un tiempo que tiene marcado por la Naturaleza y, nosotros, hemos tardada (como humanos verdaderos), más de 13.000 millones de años en porde llegar hasta aquí. El tiempo necesario para que las estrellas fabricaran la materia prima y después, el mundo pusiera su granito de arena para que ésta pudiera evolucionar, con la ayuda de la radiaicón del Sol, el agua corriente, una adecuada atmósfera, la presencia de océanos, las placas tectónicas que reciclan periódicamente el planeta… ¡No, no es nada fácil que la vida surja en un Mundo!

Pero en el Universo, son muchas las cosas que pueden pasar, muchos los objetos que están presentes, imnumerables los fenómenos que de una u otra cuestión pueden estar pasando de manera continuada y que no siempre, sabemos comprender.

Imagen relacionada

 

¡NO! No es el gran Ojo que todo lo ve y nos mira desde las alturas. Fomalhaut ( alpha Piscis Austrini ) es la estrella más brillante en la constelación Zuidervis ( Piscis Austrinus )

Simplemente se trata del fenómeno que conocemos como “Halo atmosférico”, un anilo o arco de luz que parece rodear al Sol (también a la Luna), resultado de la refracción y la reflexión de la luz solar o lunar por los cristales de hielo de los cirros. Los halos solares y lunares más comunes un diámetro angular de 46º. Por lo general, el borde del halo muestra un efecto prismático, estandio la luz azul refractada hacia el borde exterior y la rpoja al interior. Como resultado de la refracción preferencial de la luz hacia el borde del halo , la zona del cielo interior a un halo es más oscura que la interior. Los halos lunares solo pueden ser vistos claramente cuando la Luna es brillante, típicamente en un intervalo de cinco días en torno a la Luna llena.

Resultado de imagen de El Halo Galáctico

El Halo Galáctico está referido a cualquier material situado en una distribución aproximadamente esférica de una galaxia, y que se extiende hasta más allá de las regiones visibles. Puede referirse a la población de estrellas viejas (Población II), incluyendo a los cúmulos globulares, con poca o ninguna rotación alrededor del centro galáctico; o gas tenue, altamente ionizado y de alta temperatura que envelve a toda la galaxia, incluso, muchas veces el halo galáctico está referido a una especie de neblina inconcreta que circunda toda la galaxia sin que termine de hacerse presente pero, ahí está.

File:Ngc604 hst.jpg

Alguna vez podemos contemplar una que nos parece más o menos atractiva pero, no sabemos discernir sobre lo que en realidad estamos contemplando. Por ejempo, arriba tenemos la conocida como NGC 604,  una región H II gigante en la galaxia del Triángulo. Una región H II es una de gas y plasma brillante que puede alcanzar un tamaño de cientos de años-luz y en la cual se forman estrellas masivas. Dichas estrellas emiten copiosas cantidades de luz ultravioleta extrema (con longitudes de onda inferiores a 912 Ångstroms) que ionizan la Nebulosa a su alrededor.

File:Ssc2005-02a.jpg

                                                           Las regiones H II son muy abundantes en Galaxia

Cada de hidrógeno ionizado contribuye con dos partículas al gas, es decir, con un protón y un electrón. Las Regiones H II son calientes con temperaturas típicas de 10 000 K, y son entre 10 y 100 000 veces más densas que las regiones H I. Se encuentran normalmente alrededor de las estrellas O y B jóvenes y masivas, siendo el gas ionizado por su intensa luz ultraviloleta, haciendo que éste brille. La Nebulosa de orión es una famosa Región H II. Las Regiones H II pueden ser detectadas en la Galaxia por sus intensas emisiones en e infrarrojo. La radioemisión es debidaal bremsstrahlung del gas ionizado, y la radiación infrarroja a la emisión térmica del polvo.

http://bitacoradegalileo.files.wordpress.com/2010/12/m42_hallasnr.jpg

Las Regiones H II aquí muy presentes y dada su gran extensión. La nebulosa de Orión es uno de los objetos astronómicos más fotografiados, examinados, e investigados. De ella se ha obtenido información determinante acerca de la de estrellas y planetas y a partir de nubes de polvo y gas en colisión. Los astrónomos han observado en sus entrañas discos protoplanetarios, enananas marrones, fuertes turbulencias en el movimiento de partículas de gas y efectos fotoionizantes cerca de estrellas muy masivas próximas a la nebulosa.

Una región H I es una nube formada por hidrógeno atómico frío, poco denso y no ionizado con temperaturas de alrededor de 100 K. Las regiones HI no emiten radiación en el rango visual, sólo en la región de radio. La notación H I se refiere al hecho de que los átomos de Hidrógeno no están ionizados como lo están en los que están presentes en la regiones H II (arriba). Cada átomo de Hidrógeno neutro contribuye al gas justo con una partícula. la Densidad de las regiones H I es demasiado como para que se formen moléculas de hidrógeno, y la luz estelar disociará cualquier molécula formada, de manera que el gas permanece en forma de átomo. El Hidrógeno neutro contribuye aproximadamente a la mitad de toda la materia interestelar en masa y en volumen,  con una densidad media de 1 Átomo/ cm3. Las regiones H I son frías.

Del asomnbroso universo son miuchas las cosas que desconocemos, y, poco a poco, vamos pudiendo descubrir muchos de sus misterios que nos acercan cada vez más, a saber dónde estamos y lo que podemos o no podemos esperar de lo que hay en nuestro entorno.

 
El Sol de desplaza por el de una tenue nube de gas interestelar conocida como Local Fluff.

El fluir de esta nube afecta a la Heliosfera (o Astrosfera) de las estrellas vecinas tal como lo hace en la nuestra.

Resultado de imagen de La Voyager I sale de la Influencia del viento solar

Confirmado: La Voyager 1 ya está fuera del Sistema Solar

La de que la Voyager 1 había dejado atrás la zona bajo influencia directa del viento solar y se encontraba ya surcando el medio interplantario se convirtió rápidamente en una de las grandes noticias astronómicas del año, en especial por toda la carga simbólica que representa que, por primera vez, un construido por la Humanidad había traspasado por primera vez esa frontera invisible que nos separa y aisla del océano estelar. Pero para los científicos de la misión la llegada a este nuevo reino con una sonda aún operativa y capaz de seguir enviado al menos hasta 2020 es un regalo del que esperan grandes resultados. Y es que más allá del límite solar se extiende una región tan amplia como desconocida, y mucho más compleja de lo que podamos imaginar.

El movimiento de esta estrella binaria fue un misterio durante más de 30años, e incluso se presentó como un posible fracaso de la Relatividad General de Einstein. Ahora un encabezado por el Instituto de Astrofísica de Andalucía (IAA-CSIC) ha resuleto el misterio. Se observan hechos que no siempre podemos explicar y, persistimos en la búsqueda de las respuestas hasta que las podemos encontrar.

En el efecto periastro se puede contemplar el brillo de una estrella binaria que tiene una órbita altamente excéntrica. Cuando la separación entre las componentes es mínima. Es de hecho, un aumento del efecto de reflexión en el instante del periastro, y surge por la misma causa: la irradiación de una estrrella por la otra.

Hemos llegado a saber de nuevas estrellas, vientos estelares, radiación, energías, estrellas de neutrones o púlsares, agujeros negros, enanas rojas y blancas, ¿estrellas de Quarks? ¿materia oscura? mundos…¿Civilizaciones? ¡El Universo! Lo que todo lo contiene, ahí están presentes todas las cosas que existen y las que tienen que existir… El espaciotiempo, las fuerzas fundamentales de la Naturaleza…¡La Vida!

Cuando pensamos en la edad y el tamaño del Universo lo hacemos generalmente utilizando medidas de tiempo y como años, kilómetros o años-luz. Como y a hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del Universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿porqué medir su densidad en términos de átomos por metro cúbico? Las a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

Nombre Dimensión Expresión Equivalencia aproximada en el Sistema Internacional
Longitud de Planck Longitud (L)  l_P = c \ t_P = \sqrt{\frac{\hbar G}{c^3}} 1.616 252(81) × 10−35 m [1 ]
Masa de Planck Masa (M) m_P = \sqrt{\frac{\hbar c}{G}} 2.176 44(11) × 10−8 kg [2 ]
Tiempo de Planck Tiempo (T) t_P = \sqrt{\frac{\hbar G}{c^5}} 5.391 24(27) × 10−44 s [3 ]
Carga de Planck Carga eléctrica (Q) q_P = \sqrt{\hbar c 4 \pi \epsilon_0} 1.875 545 870(47) × 10−18 C
Temperatura de Planck Temperatura (ML2T-2/k) T_P = \frac{m_P c^2} {k} = \sqrt{\frac{\hbar c^5} {G k^2}} 1.4

Ésta es una situación en la que resulta especialmente apropiado utilizar las unidades “naturales” la , longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.

Es caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros , lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

Lo cierto es que, desde el comienzo del Tiempo, allá por los confines impenetrables de la lejanía del Big Bang (si es que fue así realmente como nació el Universo), se tuvieron que esperar algunos cientos de millones de años para que suregieran las primeras estrellas, pasar por las Eras de la Radiación, la Era Leptónica, la de la Materia, que se produjera la descongelación de los fotones para que el Universo se hiciera de luz… Después de miles de millones de años, el Universo tenía los elementos necesarios para que, la Vida, pudiera surgir en los mundos adecuados y… ¡Aquí estamos!

Aquí estamos tratando de saber lo mismo que quisieron saber nuestros ancestros filósofos: ¿De dónde venimos? ¿Qué hacemos aquí? ?Hacia Dónde vamos? ¿Tendremos algún destino predeterminado…

Y seguiremos, dentro de nuestra inmensa ignorancia, haciendo preguntas mientras estémos por aquí.

emilio silvera