Abr
14
¿Cuál es el Camino? No hay ningún camino.
por Emilio Silvera ~ Clasificado en General ~ Comments (8)
Cuando emprendemos un camino nuevo, nunca sabemos lo que nos encontraremos
El Camino lo tenemos que hacer nosotros al andar. Lo mismo que se forma la vereda en la Montaña cuando los seres vivos pasan por el mismo sitio una y otra vez, dando lugar a que se forme una línea en la tierra mil veces pisada que nos habla del paso por aquel lugar que los viandantes han creído el más idóneo para transitar hacia algún otro sitio. Lo tuvieron que elegir de manera racional al ser el más indicado y, por ese “camino” se creó el sendero por el que caminar. Antes allí, no había camino.
No pocas veces, el camino se crea a partir de una idea, una intuición, una ganas de saber lo que hay más allá de nuestros dominios, de explorar lo desconocido, de comprobar si la fascinación que presentimos por lo que pensamos que “allí” pueda existir, se debe a una certera intuición, o, por el contrario, es sólo un espejismo. No siempre el explorador encontró aquella civilización perdida que gritaba insistente en su mente llamándolo sin cesar, ni el científico encuentra la anhelada explicación a un secreto de la Naturaleza que, tan claramente veía en sus sueños.
Está claro que el mismo acto de la exploración, modifica la perspectiva del explorador; ni Ulises, Marco Polo o Colón podían ser los mismos cuando, después de sus respectivas aventuras regresaron a sus hogares. Lo mismo ha sucedido con la investigación científica en los extremos de las escalas, desde la grandiosa extensión del espacio cosmológico…
… hasta el mundo minúsculo y enloquecido de las partículas subatómicas.
Estos viajes nos cambiaron y cambiaron muchos de los conceptos ancestrales que, en nuestras mentes, estaban apaciblemente aposentados y, desafiaron muchas de las concepciones científicas y también filosóficas que más valorábamos. Algunas, ante aquella realidad nueva, tuvieron que ser desechadas, como el bagaje que se deja atrás en una larga y pesada travesía un desierto. Otras tuvieron que ser modificadas y reconstituidas hasta quedar casi irreconocibles.
La exploración en el ámbito de las galaxias y cúmulos de galaxias esxtendió el alcanza de la visión humana en un factor de 1026 veces mayor que la propia escala humana, y produjo la revolución que identificamos con la relatividad, la cual reveló que la concepción newtoniana del mundo sólo era un parroquialismo dentro de un universo más vasto donde el esapcio es curvo y el tiempo se hace flexible.
La exploración en el dominio subatómico nos llevó lejos en el ámbito de lo muy pequeño, a unos 10-15 de la escala humana, y también significó una revolución. Esta fue la física cuántica que transformó todo lo que abordó a partir de su nacimiento en 1900, cuando Max Planck, escribió aquel artículo de ocho páginas que fueron las semillas de las que más tarde, germiron “las flores” de la M.C.. Planck, comprendiò que sólo podía explicar lo que se llamaba la Curva del Cuerpo Negro -el espectro de energía que genera un objeto de radiación perfecta- si abandonaba el supuesto clásico de que la emisión de enertgía es continua, y lo reemplazó por la hipótesis sin presecentes de que la energía se emite en unidades discretas. Planck llamó cuantos a estas unidades y quedaron simbolizadas por la letra h.
Planck no era ningún revolucionario -a la edad de 42 años era un viejo, juzgado por los patrones de las ciencias matemáticas y, además, un pilar de la elevada cultura germana del siglo XIX-, pero se percató fácilmente de que el principio cuántico echaría abajo buena parte de la física clásica a la que habñía dedicado buena parte de su vida y de su carrera.
“Cuanto mayores sean sus dificultades -escribió-… tanto más importante será finalmente para la ampliación y profundización del conocimiento de la Física.” Aquellas palabras fueron proféticas: cambiando y desarrollándose constantemente, modificando su coloración de manera tan impredecible como una reflexión en una burbuja de jabón, la física cuántuica pronto se expandió prácticamente a todo el ámbito de la física, y el cuanto de acción de Planck, h, llegó a ser considerado una constante de la naturaleza tan fundamental como la velocidad de la luz, c, de Einstein.
En una batalla entre los principios estrellas de la historia cuántica, sólo puede haber un ganador. O no puede? . En el invierno de 1926-1927, Werner Heisenberg el brillante joven alemán estaba trabajando como jefe asistente de Niels Bohr , alojado en un desván en la parte superior del instituto del gran danés de Copenhague. Después de un día de trabajo, Bohr se acercaba al encuentro con Heisenberg para hablar de física cuántica. A menudo se sentaban hasta altas horas de la noche, en un intenso debate sobre el significado de la teoría cuántica revolucionaria, entonces en su infancia.
Un rompecabezas que se ponderó eran los rastros de las gotitas que dejan los electrones al pasar a través de las cámara de niebla un aparato utilizado para rastrear los movimientos de partículas cargadas. Cuando Heisenberg trató de cálcular estas aparentemente precisas trayectorias usando las ecuaciones de la mecánica cuántica, no lo consiguió.
Una noche de mediados de febrero, Bohr había dejado la ciudad en un viaje de esquí, y Heisenberg se había deslizado a tomar un poco de aire de la noche en las amplias avenidas de Fælled Parque, detrás del instituto. Mientras caminaba, se le ocurrió. El rastro de los electrones no era preciso en lo absoluto: si uno lo mira de cerca, consiste en una serie de puntos difusos. Eso reveló algo fundamental sobre la teoría cuántica. De vuelta en su ático, Heisenberg escribió con entusiasmo su idea en una carta a su colega el físico Wolfgang Pauli. Lo esencial de esto apareció en un documento unas pocas semanas más tarde: “Mientras más precisa la posición es determinada, menor precisión, en el momento se conoce en este instante, y viceversa.”
Fórmula y gráfico que escenifican el Principio de Incertidumbre o Indeterminación
Así el notorio principio de incertidumbre de Heisenberg había nacido. Una declaración de la incognoscibilidad fundamental del mundo cuántico, que se ha mantenido firme durante la mayor parte del siglo. Pero ¿por cuánto tiempo? Corren rumores de que un segundo principio cuántico – el entrelazamiento- puede sonar el tañido de muerte para la incertidumbre.
Sólo podemos obtener respuestas parciales, cuya narturaleza está determinada en cierta medida por las cuestiones que optamos por infagar. Cuando Hesinberg calculó la cantidad mínima ineludible de incertidumbre que limita nuestra comprensión de los sucesos de pequeña escala, halló que está definida que nada menos que por h, el cuanto de acción de Planck.
La indeterminación cuántica no depende del aparato experimental que podamos emplear para la investigación del mundo subatómico. Se trata, en la medida de nuestro conocimiento, de una limitación absoluta, que los más destacados sabios de una civilización extraterrestre avanzada conpartirían con los más humildes físicos de la Tierra. En la física atómioca clásica se suponía que se podía, en proncipio, medir las situaciones y trayectorias precisas de miles de millones de partículas -digamos, protones– y a partir de los datos resultantes hacer predicciones exactas de donde estarían los protones en determinado tiempo futuro.
Heisenberg demostró que tal supuesto era falso, que nunca podremos saberlo todo sobre la conducta de siquiera una sóla partícula, mucho menos de una gran cantidad de ellas, y, por lo tanto, nunca podremos hacer predicciones sobre el futuro que sean completamente exactas en todos los detalles. Esto marcó un cambio fundamental en la visión del mundo de la física. Revelaba que no sólo la materia y la energía sino también el conocimiento están cuántizados.
El principio de incertidumbre es aplicado a modelos del espacio 3D ordinario, donde el espacio tiempo es continuo. En los sistema cuantizados con retículos diminutos que conforman a los superejes, la información de las partículas pasa de un retículo a otro o a una zona cuántica distinta del mismo retículo. Dado que en el modelo de los eventos, los objetos no pertenecen a los eventos, simplemente evolucionan generando más información de nuevos eventos, la incertidumbre asociada a estos puede estar relacionada con radio del bucle de los retículos diminutos, y para el traslado de la información de un retículo a otro debe existir un nivel incertidumbre en cuanto a cual retículo pertenece el evento durante la transferencia de dicha información, o ¿a qué conjunto de valores cuánticos del mismo pertenece?
La mecánica cuántica (el salto cuantico del electrón) nos desvelará el secreto de cómo el electrón puede, al recibir un fotón, desaparecer del nivel nuclear que ocupa para de manera instantánea, y sin necesidad de recorrer la distancia que los separa, aparecer como por arte de magia en un nivel superior. Copiaremos el salto cuántico para viajar. Nos introduciremos en un cabina, marcaremos las coordenadas, pulsaremos un botón y desapareceremos en Madrid y de manera instantánea, apareceremos de la nada en otra cabina igual situada en Nueva York a 6.000 Km de distancia.
No puede quitarme de la cabeza que, el Salto Cuántico, nos dará la idea para viajar de manera que podamos burlar, la velocidad de la luz. Sin embargo, ese “futuro” no podré verlo. Resulta que un electrón situado alrededor del núcleo de un átomo, es impacto por un fotón energético y, de inmediato, el electrón desaparece del lugar que ocupa en la órbita atómica y, de manera instantánea, aparece en otro lugar más cercano al núcleo. Lo asombroso del caso es que, no se sabe qué camino pudo coger para desplazarse de un lugar a otro. Simplemente desapareció de uno y apareció en el otro. Ese es, amigos míos, el Salto cuántico. Si somos capaces de copiarlo, viajaremos a las estrellas sin que nos importe cuántos años-luz nos puedan separar de ellas.
¿Quién sabe lo que podemos extraer del salto cuántico? El efecto túnel nos podría dar la fórmula para viajar a lugares lejanos. Creo que todos nuestros sueños se podrían realizar si, en el momento adecuado, observando la Naturaleza, sabemos elegirt el camino que tenemos que andar para llegar a ese destino soñado,o, imaginado.
Nuestras Mentes buscarán las formas de solucionar todos esos problemas complejos que ahora inquietan a la Humanidad.
La Física cuántica nos obliga a tomarnos en serio lo que antes eran puramentes consideraciones filosóficas: que no vemos las cosas en sí mismas, sino sólo aspectos de las cosas. Lo que vemos en la trayectoria de un electrón en la cámara de niebla no es un electrón, y lo que vemos en el cielo no son estrellas, como una grabación de la voz de Pavoroti no es Pavoroti. Al revelar que el observador desempeña un papel en la observación, la física cuántica hizo por la física lo que Darwin ha hecho por las ciencias de la vida: Echó abajo las paredes, reunificando la Mente con el Universo más vasto.
emilio silvera
Abr
14
De como llegamos hasta los Quarks
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Ahora todos hablamos del LHC. Sin embargo, la historia de los aceleradores no comenzó con éste moderno y complejo conglomerado de sofisticadas estructuras que hacen posible que visitemos lugares muy lejanos en el corazón de la materia. Tendríamos que recordar al acelerador lineal también llamado LINAC (linear accelerator) es un tipo de acelerador que le proporciona a la partícula subatómica cargada pequeños incrementos de energía cuando pasa a través de una secuencia de campos eléctricos alternos.
Generador de Van de Graaff. El rodillo y peine superior.
Mientras que el generador de Van de Graaff proporciona energía a la partícula en una sola etapa, el acelerador lineal y el ciclotrón proporcionan energía a la partícula en pequeñas cantidades que se van sumando. El acelerador lineal, fue propuesto en 1924 por el físico sueco Gustaf Ising. El ingeniero noruego Rolf Wideröe construyó la primera máquina de esta clase, que aceleraba iones de potasio hasta una energía de 50.000 eV.
Durante la Segunda Guerra Mundial se construyeron potentes osciladores de radio frecuencia, necesarios para los radares de la época. Después se usaron para crear aceleradores lineales para protones que trabajaban a una frecuencia de 200 MHz, mientras que los aceleradores de electrones trabajan a una frecuencia de 3000 MHz.
El acelerador lineal de protones diseñado por el físico Luis Alvarez en 1946, tenía 875 m de largo y aceleraba protones hasta alcanzar una energía de 800 MeV (800 millones). El acelerador lineal de la universidad de Stanford es el más largo entre los aceleradores de electrones, mide 3.2 km de longitud y proporciona una energía de 50 GeV. En la industria y en la medicina se usan pequeños aceleradores lineales, bien sea de protones o de electrones.
El SLAC, ubicado al sur de San Francisco, acelera electrones y positrones a lo largo de algo más de tres kilómetros hacia varios blancos, anillos y detectores ubicados en su finalización. Este acelerador hace colisionar electrones y positrones, estudiando las partículas resultantes de estas colisiones. Construido originalmente en 1962, se ha ido ampliando y mejorando para seguir siendo uno de los centros de investigación de física de partículas mas avanzados del mundo. El centro ha ganado el premio nobel en tres ocasiones. Y, una vez recordada de manera breve la historia, pasaremos directamente al tema que en realidad nos ha tríado aquí: ¡El descubrimiento de los Quarks!
Ahora los medios con los que cuentan los físicos del LHC son inmensamente más eficaces y están más adelantados que aquellos viejos aceleradores que, sin embargo, fueron los pioneros y los que hicieron posible adquirir conocimientos que nos han traído hasta el moderno LHC.
En 1967 se emprendió una serie de experimentos de dispersión mediante los nuevos haces de electrones del SLAC. El objetivo era estudiar más incisivamente la estructura del protón. Entra el electrón de gran energía, golpea un protón en un blanco de hidrógeno y sale un electrón de energía mucho menor, pero en una dirección que forma un ángulo grande con respecto a su camino original. La estructura puntual dentro del protón actúa, en cierto sentido, como el núcleo con las partículas alfa de Rutherford. Pero el problema era aquí más sutíl.
Richard Edward Taylor
Richard Edward Taylor fue uno de los veintidós científicos que trabajó intensamente en el acelerador lineal de Stanford (SLAC), en una serie de pruebas experimentales que vinieron a demostrar que los protones y los neutrones son poseedores de una estructura interna, lo que a su vez confirma las predicciones teóricas del neoyorquino Murray Gell-Mann (1929- ), acerca de la existencia de los denominados quarks.
Junto con sus colegas de Stanford junto con Jerome I. Friedman y Henry W. Kendall -con los que luego habría de compartir el Nobel-, Taylor investigó sobre la estructura interna de la materia, en su mínima expresión, para lo que partió del modelo teórico de los quarks, postulado por Gell-Mann y -de forma independiente- G. Zweig. Tras sus descubrimientos experimentales en el acelerado lineal de Stanford, Taylor perfeccionó dicho modelo añadiéndole la existencia de unas subpartículas desconocidas hasta entonces, que luego fueron denominadas leptones; además, introdujo en el modelo teórico de Gell-Mann otras partículas no estructurales, sino de intercambio de fuerza, a las que en Stanford comenzaron a llamar bosones.
James Bjorken.
Richard Feynman
Los dos últimos párrafos los he tomado prestados de www.mcnbiografias.com., que es lo que se explica de este tema en casi todas partes. Sin embargo, pocos cuentan que, el equipo de Stanford, dirigido por el físico del SLAC por Richard Taylor y los otros dos físicos del MIT, Jerome Friedman y Henry Kendall, tuvieron la gran suerte de que, Richard Feynman y James Bjorken, metieran sus narices en el proyecto llevados por la curiosidad y como habían prestado su energía y su imaginación a las interacciones fuertes y se preguntaban: ¿que habrá dentro del protón?
Amnos, Feynman y Bjorken visitaban con frecuencia Stanford desde su base en el Cal Tech, en Pasadena. Bjorken, teórico de Stanford, estaba muy interesado en el proyecto experimental y en las reglas que regían unos datos aparentemente incompletos. Estas reglas, razonaba Bjorken, serían indicadoras de las leyes básicas (dentro de la “caja negra”) que controlaba la estructura de los hadrones.
No estaría mal echar una mirada hacia atrás en el tiempo y recordar, en este momento, a Demócrito que, con sus postulados, de alguna manera venía a echar un poco de luz sobre el asunto, dado que él decía que para determinar si algo era un á-tomo habría que ver si era indivisible. En el modelo de los quarks, el protón, en realidad, un conglomerado pegajoso de tres quarks que se mueven rápidamente. Pero como esos quarks están siempre ineludiblemente encadenados los unos a los otros, experimentalmente el protón aparece indivisible.
Acordémonos aquí de que Boscovich decía que, una partícula elemental, o un “á-tomo”, tiene que ser puntual. Y, desde luego, esa prueba, no la pasaba el protón. El equipo del MIT y el SLAC, con la asesoría de Feynman y Bjorken, cayó en la cuenta de que en este caso el criterio operativo era el de los “puntos” y no el de la indivisibilidad. La traducción de sus datos a un modelo de constituyentes puntuales requería una sutileza mucho mayor que el experimento de Rutherford.
Precisamente por eso era tan conveniente fue tan conveniente para Richard Edward Taylor y su equipo, tener a dos de los mejores teóricos del mundo en el equipo aportando su ingenio, agudeza e intuición en todas las fases del proceso experimental. El resultado fue que los datos indicaron, efectivamente, la presencia de objetos puntuales en movimiento dentro del protón.
En 1990 Taylor, Friedman y Kendall recogieron su premio Nobel por haber establecido la realidad de los quarks. Sin embargo, a mí lo que siempre me ha llamado más la atención es el hecho cierto de que, este descubrimiento como otros muchos (el caso del positrón de Dirac, por ejemplo), han sido posible gracias al ingenio de los teóricos que han sabido vislumbrar cómo era en realidad la Naturaleza.
A todo esto, una buena pregunta sería: ¿cómo pudieron ver este tipo de partículas de tamaño infinitesimal, si los quarks no están libres y están confinados -en este caso- dentro del protón? Hoy, la respuesta tiene poco misterio sabiendo lo que sabemos y hasta donde hemos llegado con el LHC que, con sus inmensas energías “desmenuza” un protón hasta dejar desnudos sus más íntimos secretos.
Este es, el resultado ahora de la colisión de protones en el LHC
Lo cierto es que, en su momento, la teoría de los Quarks hizo muchos conversos, especialmente a medida que los teóricos que escrutaban los datos fueron imbuyendo a los quarks una realidad creciente, conociendo mejor sus propiedades y convirtiendo la incapacidad de ver quarks libres en una virtud. La palabra de moda en aquellos momentos era “confinamiento”. Los Quarks están confinados permanentemente porque la energía requerida para separarlos aumenta a medida que la distancia entre ellos crece. Esa es, la fuerza nuclear fuerte que está presente dentro del átomo y que se encarga de transmitir los ocho Gluones que mantienen confinados a los Quarks.
Así, cuando el intento de separar a los Quarks es demasiado intenso, la energía se vuelve lo bastante grande para crear un par de quark-anti-quark, y ya tenemos cuatro quarks, o dos mesones. Es como intentar conseguir un cabo de cuerda. Se corta y… ¡ya tenemos dos!
¿Cuerdas? Me parece que estoy confundiendo el principal objetivo de este trabajo y, me quiero situar en el tiempo futuro que va, desde los quarks de Gell-Mann hasta las cuerdas de Veneziano y John Schwarz y más tarde Witten. Esto de la Física, a veces te juega malas pasadas y sus complejos caminos te llevan a confundir conceptos y momentos que, en realidad, y de manera individualizada, todos han tenido su propio tiempo y lugar.
¿Cuántas veces no habré pensado, en la posibilidad de tomar el elixir de la sabiduría para poder comprenderlo todo? Sin embargo, esa pósima mágica no existe y, si queremos saber, el único camino que tenemos a nuestro alcance es la observación, el estudio, el experimento… ¡La Ciencia!, que en definitiva, es la única que nos dirá como es, y como se comporta la Naturaleza y, si de camino podemos llegar a saber, por qué lo hace así…¡mucho mejor!
emilio silvera
Abr
14
¿Hacia dónde vamos? ¿Camino del futuro o de la destrucción?
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Cuando se lee un buen libro, se saborean sus pasajes más interesantes y, al final, sientes un poco de pena porque aquello se termine tan pronto. Sientes que quieres más, te quedas algo insatisfecho de no haber podido llegar más lejos, de profundizar más en aquello que tanto llamó tu atención y despertó tu curiosidad. Saber sobre lo que te preocupa es tan vital para la mente que, cuando no puedes desarrollar ciertos pensamientos por falta de conocimientos, te sientes frustrado y, de alguna manera, sufres por no saber.
Habiendo finalizado la lectura de Las sombras de la Mente, de Roger Penrose, en la que nos habla de la posibilidad de comprender de forma científica lo que la conciencia es y, extrapola dicha conciencia, hasta ese otro mundo de la I.A., en el que, si nada lo remedia, estamos inmersos hasta tal punto que, en el futuro más o menos lejano, será lo que predomine tanto aquí en la la Tierra, como en los mundos y lunas que nos acompañan en el Sistema solar, e, incluso, mucho más allá. Ellos serán, los Robots, los que surquen los cielos y el espacio interestelar en busca de las estrellas.
Es posible que podamos llegar a los límites de la realidad pero… ¿No crearemos una nueva raza para que, sin nosotros saberlo nos suplante en el futuro?
La computación y el Pensamiento consciente
En los últimos tiempos, mucho es lo que se habla de la I.A., y, algunos, nos preguntamos: ¿Será posible que en un futuro más o menos lejano, eso que llamamos Inteligencia Artificial, nos pueda superar?
Hay corrientes en ese sentido que nos llevan a pensar y, ¿por qué no? A preocuparnos profundamente. Si hacemos caso de esas afirmaciones (quizá algo extremas pero, con visos de verdad) de los que defienden a capa y espada el futuro de la I.A., diciendo que, con el tiempo, los ordenadores y los robots superarán a los humanos en inteligencia al llegar a tener todas y cada una de las capacidades humanas y otras que, los humanos nunca podrán tener. Entonces, estos ingenios serían capaces de hacer muchísimo más que ayudar simplemente a nuestras tareas inteligentes.
De hecho, tendrían sus propias y enormes inteligencias. Podríamos entonces dirigirnos a estas inteligencias superiores en busca de consejo y autoridad en todas las cuestiones complejas y de interés que, por nosotros mismos, no pudiéramos solucionar; ¡y finalmente podrían resolver los problemas del mundo que fueron generados por la Humanidad!
Alan Turing estaba convencido de que algún día, las máquinas serían tan inteligentes como los humanos. Y para demostrarlo, inventó el Test de Turing, en 1950. El Test de Turing se basa en la idea de que si no puedes distinguir las respuestas de un programa frente a las de un humano, entonces es porque la inteligencia artificial es tan inteligente como nosotros.
Así se empieza pero… ¿Cómo acaba?
La Nasa ha fabricado un robot que pesa 150 kilogramos, tiene aspecto humanoide y se llama Robonaut-2(R-2 para los amigos). Este androide será lanzando al espacio y pronto será el nuevo compañero de los tripulantes de la Estación Espacial Internacional. Por algo se comienza y, nunca se sabe como todo terminará.
El Robot que construyó la NASA
Pero, si todo eso fuera así (que podría llegar a serlo), podríamos extraer otras consecuencias lógicas de estos desarrollos potenciales de la I.A. que muy bien podría generar una cierta alarma muy justificada ante una situación tan atípica, en la que, unos “organismos” artificiales creados por nosotros mismos, nos superen y puedan llegar más lejos de lo que nosotros, podríamos ser capaces de llegar nunca. ¿No harían estos ordenadores y Robots, a la larga, que los Humanos fueran superfluos para ellos?
Si los Robots guiados por ordenadores insertados en sus cerebros positrónicos o espintrónicos, o, guiados por un enorme y potente Ordenador Central, resultaran ser muy superiores a nosotros en todos los aspectos, entonces, ¿no descubrirían que pueden dirigir el mundo sin necesidad alguna de nosotros? La propia Humanidad se habría quedado obsoleta. Quizá, si tenemos suerte, ellos podrían conservarnos como animales de compañía (como alguien dijo en cierta ocasión); o, si somos inteligentes, podríamos ser capaces de transferir las “estructuras de información” que somos “nosotros mismos” a una forma de robot (como han pensado algunos otros), o quizá no tengamos esa suerte y no lleguemos a ser tan inteligentes…
Algunos podrían ser muy, muy peligrosos
Investigadores de la Universidad de Bremen en Alemania dio a conocer el simio robot – un aparatito de cuatro extremidades que se tambalea a lo largo de su frente “nudillos” y patas traseras. El robot de 40 libras, que tuvo más de tres años en desarrollarse, puede moverse hacia adelante, hacia atrás y hacia los lados – todo ello sin un cable de control. Cuenta con sensores de presión en sus patas traseras, y puede incluso dar vuelta en torno a sí mismo.
Colonizar el espacio con robots es un antiguo argumento de obras de ciencia-ficción, algo que podrían hacer realidad en Japón en no demasiado tiempo. La imagen de arriba, a no tardar mucho, podría ser una realidad. De momento hemos enviado sondas y naves espaciales de todo tipo y rovers-laboratorios andarines pero, en el futuro cercano, la cosa irá en aumento de cantidad y calidad.
Por otra parte, quiero pensar que, lo que hace y es capaz de realizar nuestro cerebro creador de pensamientos, nunca será del dominio de la I.A. que, nunca podrán describir o realizar funciones que de manera natural realizan nuestras mentes. ¿Llegarán a tener mentes de verdad los Robots del futuro? ¿Será posible que lleguen a tener sentimientos, a sentir miedo, a poder llorar? ¿Tiene algún sentido que hablemos de semejantes cosas en términos científicos? También podríamos pensar que, la Ciencia, no está capacitada para abordar ciertas cuestiones relacionadas con la complejidad de la Conciencia Humana.
Claro que, por otra parte, no podemos dejar de pensar en el hecho cierto de que, la propia materia parece tener una existencia meramente transitoria puesto que puede transformarse de una forma en otra, de una cosa en otra, e, incluso, puede llegar esa transformación ser tan compleja como para cambiar desde la materia “inerte” hasta el ser consciente.
Incluso la masa de un cuerpo material, que proporciona una medida física precisa de la cantidad de materia que contiene el cuerpo, puede transformarse en circunstancias apropiadas en pura energía (E = mc2) de modo que, incluso la sustancia material parece ser capaz de transformarse en algo con una actualidad meramente matemática y teórica. Dejemos en este caso, la cuántica y otras teorías a un lado para centrarnos en el tema que tratamos de la I.A. y sus posibles consecuencias.
¿Permite la Física actual la posibilidad de una acción que, en principio, sea imposible de simular en un ordenador? Hoy esa respuesta no está disponible y, cuando eso vaya a ser posible, tendríamos que estar en posesión de una nueva Física mucho más avanzada que la actual.
No debemos apartarnos de un hecho cierto: Nuestra Mente, aunque está apoyada por un ente físico que llamamos cerebro y recibe la información del exterior a través de los sentidos, también es verdad que, de alguna manera, sale de nosotros, está fuera de nuestros cuerpos y, viaja en el tiempo y en el espacio, aprende y conoce nuevos lugares, nuevas gente, nuevos conocimientos de su entorno y de entornos lejanos y, a todos ellos, sin excepción, se puede trasladar de manera incorpórea con un simple pensamiento que, de manera instantánea, nos sitúa en este o aquel lugar, sin importar las distancias que nos puedan separar.
Así La parte física y la parte mental, aunque juntas, están separadas de una manera muy real y, desde luego, existe una clara divisoria entre lo físico y lo mental que ocupan distintos dominios de alcance también distintos y, hasta donde pueda llegar el dominio mental ¡No se conoce!
Circuitos y conexiones de infinita potencia. Ahí están encerrados otros mundos de inimaginable belleza, agujeros negros gigantes, púlsares y quásares, estrellas de neutrones y fantásticas nebulosas de increíbles figuras de las que surgen sin cesar nuevas estrellas y nuevos mundos. También ahí residen pensamientos y recuerdos y, hasta es posible rememorizar imágenes nunca vistas de universos paralelos… ¿Cómo son posible todas esas maravillas? Y, ante esa poderosa “herramienta”, me pregunto, podrá alguna vez, la Inteligencia Artificial hacer algo parecido.
El futuro es incierto
Quisiera pensar que, el humano, siempre prevalecerá sobre el “ser Artificial”, sin embargo, tal optimismo, si pensamos en hacerlo real, nunca podrá estar a nuestro alcance. La evolución de la Ciencia, las necesidades de nuestra especie, las exigencias de una Sociedad creciente que llena el planeta hasta límites insoportables…Todo eso, nos llevará a seguir procurando ayuda de ese “universo artificial” que, al fin y a la postre, es la única salida que tenemos para poder llegar a otros mundos en los que poder alojarnos para que, el planeta Tierra, no se vea literalmente asfixiado por la superpoblación. Así que, siendo las cosas así (que lo son), estamos irremisiblemente abocados a ese futuro dominado por la I.A. que, si tenemos suerte, nos dejará convivir con ella y, si no la tenemos… Muy cruda.
Así que, el día que los Robots sean equiparables a los Humanos, ese día, habrá comenzado el principio del fin de la especie que, tan tonta fue, que creó a su propio destructor.
Hay pensamientos que producen miedo
Claro que, para que todo esto llegue a pasar, podrían transcurrir siglos. No parece que sea muy factible que una simulación realizada por un Robot avanzado pueda ser semejante a lo que un Humano puede hacer hoy. Sin embargo, cuando los ordenadores y Robots hayan alcanzando la inteligencia de pensamiento y discurrir del cerebro Humano, ese día, amigos míos, no creo que sea un día para celebrar.
Claro que, la idea de poner unir nuestras mentes a esos “Seres”, podría ser una salida, una solución híbrida para paliar nuestras carencias de salir al espacio exterior por nosotros mismos y dentro de la frágil coraza humana que contiene a nuestras Mentes pensantes que, dentro de tan ligera y débil estructura, no tienen la seguridad suficiente para realizar ciertas tareas.
…Si llegan a controlar el átomo y la luz…
No quiero ser pesimista ni llevar a vuestro ánimo ideas intranquilizadoras. Sin embargo, si la cosa sigue adelante por el camino emprendido, el futuro que nos espera será ese: Convivir con los Robots, emitir leyes para su control, tratar de que hagan sólo aquellos trabajos y tareas encomendadas pero, ¿cómo podremos evitar que, algún día, más evolucionados al exigirle cada vez más complejidad en las ayudas que nos tendrán que prestar, comiencen a pensar por sí mismos?
Así que, como estamos dando a esos Robots el “Conocimiento”, la “Comprensión”, la “Consciencia” y, la “Inteligencia”, lo estamos haciendo partícipes y están tomando posesión, de los bienes más valiosos que podemos poseer y, tal dislate…¡Podríamos pagarlo muy caro!
La escena no me gusta nada y, sin embargo, podría ser un escenario cotidiano del futuro
- “Un Robot no puede hacer daño a un ser humano o, mediante la inacción que un ser humano sufra daños”
- “Un Robot debe de obedecer las ordenes dadas por los seres humanos, salvo que esto provoque un conflicto con la primera ley”
- “Un Robot debe proteger su propia existencia, a no ser que provoque un conflicto con las dos primeras”
Estas leyes fueros enunciadas por Isaac Asimos con el objetivo de intentar que la finalidad inicial para la que se originó la robótica no fuera modificada y eso ocasionara problemas a la humanidad. Sin embargo…
Nuestros sueños e conquistar el Espacio exterior y de poblar otros mundos, hace más de 50 años que se puso en marcha. Desde entonces, hemos enviado aparatos más o menos sofisticados lejos de la Tierra y, nos han enviado información de Mercurio, de Venus y Marte, de Saturno y Júpiter, de las Lunas que, como Io, Titán, Encelado, Ganímedes Europa y otras pueden tener algún interés científico para el futuro de la Humanidad. Estos “artilugios” guiados desde nuestro planeta, nos envían imágenes de lugares que nunca pudimos imaginar.
Así, las máquinas pueden hacer lo que nosotros no podemos y “ellas” no duermen ni comen y, cuando no puedan obtener energía del propio Sol, lo harán de pilas atómicas que durarán cientos de años. La radiación del espacio no les afecta y la falta de gravedad tampoco. Ellos tendrán todos los atributos que nos faltan para conquistar el espscio, y… ¿De nosotros que será?
La pregunta queda en el aire, toda vez que, en este momento, nadie la sabe contestar.
emilio silvera