domingo, 12 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




!El extraño Universo! ¡El Universo cotidiano!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La célula viva es un sistema dinámico, en cambio constante en el cual las sustancias químicas se tornan ordenados por un tiempo en estructuras microscópicas, tan solo para disolverse nuevamente cuando otras moléculas se juntan para formar los mismos tipos de estructuras nuevamente, o para sustituirlas nuevamente en la misma estructura. Las organelas de las cuales las células están hechas no son más estáticas que la llama de una vela. En cualquier instante, la vela exhibe un patrón dinámico de casamientos y divorcios químicos, de procesos que producen energía y procesos que la consumen, de estructuras formándose y estructuras desapareciendo. La vida es proceso no una cosa.

Un equipo de científicos ha diseñado un test para descubrir si el universo primitivo poseía una sola dimensión espacial. Este concepto alucinante es el núcleo de una teoría que el físico de la Universidad de Buffalo, Dejan Stojkovic y sus colegas proponen y que sugiere que el Universo primitivo tuvo solo una dimensión antes de expandirse e incluir el resto de dimensiones que vemos en el mundo actualmente. De ser válida, la teoría abordaría los problemas importantes de la física de partículas. Han descrito una prueba que puede corroborar o refutar la hipótesis de la “fuga de dimensiones”.

El Objeto de Hanny

¿Que serán, estos extraños cuerpos. Lo llaman Objeto de Hanny es una extraña y brillante nube de gas verde que ha intrigado a los astrónomos desde que se descubrió en 2007. La nube destaca cerca de una galaxia espiral porque un cuásar (un agujero negro supermasivo) en su núcleo la ha iluminado como si fuera un foco. Ahora está siendo estudiada con mucho más detalle gracias a las imágenes tomadas por el telescopio Hubble, que se han presentado en Seattle (EE UU).

Considerado uno de los objetos más extraños de los muchísimos observados en el espacio, en Hanny’s Voorwerp (en holandés), que tiene el tamaño de la Vía Láctea, el Hubble ha descubierto delicados filamentos de gas y un grupo de cúmulos de jóvenes estrellas. El color verde de la nube se debe al oxígeno ionizado.

Su descubridora, Hanny van Arkel, explicó en sublog que está encantada de asistir a la reunión de la Sociedad Americana de Astronomía , donde se han presentado las nueva imágenes, y en general, de haber entrado en contacto con el mundo de la astronomía. Ella es una profesora que descubrió la estructura celeste en 2007 mediante el proyecto Galaxy Zoo, que estimula la participación de no especialistas para que ayuden a clasificar las más de un millón de galaxias catalogadas en el Sloan Digital Sky Survey y las captadas por el propio Hubble en sus imágenes de campo profundo.

Galaxia Andrómeda

                                             Nuestra vecina grande del Grupo Local

Un astrónomo persa, al-Sufi, ha sido reconocido como el primero en describir el débil fragmento de luz en la constelación Andrómeda que sabemos ahora que es una galaxia compañera de la nuestra. En 1780, el astrónomo francés Charles Messier publicó una lista de objetos no estelares que incluía 32 objetos que son, en realidad, galaxias. Estas galaxias se identifican ahora por sus números Messier (M); la galaxia Andrómeda, por ejemplo, se conoce entre los astrónomos como M31.

En la primera parte del siglo XIX, miles de galaxias fueron identificadas y catalogadas por William y Caroline Herschel, y John Herschel. Desde 1900, se han descubierto en exploraciones fotográficas gran cantidad de galaxias. Éstas, a enormes distancias de la Tierra, aparecen tan diminutas en una fotografía que resulta muy difícil distinguirlas de las estrellas. La mayor galaxia conocida tiene aproximadamente trece veces más estrellas que la Vía Láctea.

Plutón fue descubierto a raíz de una búsqueda telescópica iniciada en 1905 por el astrónomo estadounidense Percival Lowell, quien supuso la existencia de un planeta situado más allá de Neptuno como el causante de ligeras perturbaciones en los movimientos de Urano.

El camino que condujo a su descubrimiento se atribuye a Percival Lowell quien fundó el Observatorio Lowell en Flagstaff, Arizona y patrocinó tres búsquedas separadas del “Planeta X”, del que por cierto, aquí hemos hablado en alguna otra ocasión.

En 1912 el astrónomo estadounidense Vesto M. Slipher, trabajando en el Observatorio Lowell de Arizona (EEUU), descubrió que las líneas espectrales de todas las galaxias se habían desplazado hacia la región espectral roja. Su compatriota Edwin Hubble interpretó esto como una evidencia de que todas las galaxias se alejaban unas de otras y llegó a la conclusión de que el Universo se expandía. No se sabe si continuará expandiéndose o si contiene materia suficiente para frenar la expansión de las galaxias, de forma que éstas, finalmente, se junten de nuevo, parece que ésto último no sucederá nunca. La materia del Universo pararece estar aproximadamente en la tasa del la Densidad Crítica.

galaxias

El telescopio espacial Hubble enfocó regiones del espacio aparentemente vacías y negras, y después de muchos días de exposición obtuvo unas bellísimas fotos de galaxias muy lejanas, entre las cuales se distinguen unas cuantas pequeñas galaxias rojas, color que deben a un corrimiento al rojo tan elevado que se calcula por la ley de Hubble que su luz fue emitida hace unos 13000 millones de años. (foto recortada de foto cortesía de la NASA).

 

La galaxia se está acercando a nosotros a unos 300 kilómetros por segundo, y se cree que estará aquí aproximadamente en 3.000 millones de años cuando podría colisionar con la nuestra y fusionarse ambas formando una galaxia elíptica gigante. Claro que, no se está de acuerdo con la velocidad a la que Andrómeda, se acerca a nosotros. Según ésta nota, podría llegar cuando nuestro Sol, esté en la agonía de su final para convertirse en gigante Roja primero y enana Blanca después.

http://3.bp.blogspot.com/-H3d5nIBnzBI/TvMB8jtquYI/AAAAAAAAG-4/6zHBb8dJt_E/s1600/La-foto-imposible-del-universo_gallery_lightbox.jpg

La semilla desde la que se desarrolló nuestro Universo fue una Bola de fuego de pura energía inmensamente densa e inmensamente caliente. La pregunta es, ¿cómo llegó esta bola de fuego hasta el tipo de materia bariónica que podemos ver alrededor de todos nosotros, mientras el Universo se expandía y se enfriaba? O, si se prefiere ¿de donde salieron los quarks y los leptones? Y, puestos a preguntar, esa materia oscura de la que tanto hablamos, ¿estaba ya allí cuando llegó la bariónica? Si no fuese así, ¿cómo se puedieron formar las Galaxias?

Creemos que conocemos la respuesta, aunque, en realidad, lo que sí tenemos es un modelo de cómo creemos que sucedió, ya que, como a menudo es el caso de las historias, la explicación es más especulativa cuanto más atrás en el tiempo miremos y, en el caso del Universo, esto también corresponde a las energías más altas que se tienen que considerar.

Nos vamos hacia atrás en el tiempo y ponemos señales y nombres como los del límite y tiempo de Planck, era hadrónica (quarks: protones y neutrones, etc.) y era leptónicas (electronesmuones y partícula taucon sus neutrinos asociados). Ahí amigos, está toda la materia que podemos ver. Sin embargo, ¿qué sabemos en realidad de la materia? No olvidemos que de la materia llamada inerte, provenimos nosotros cuyos materiales fueron fabricados en los hornos nucleares de las estrellas.

Científicos de EEUU detectan ondas gravitacionales que serían la primera evidencia directa de la inflación, el momento de la historia del universo en que en menos de un segundo pasó de ser un punto diminuto a convertirse en una inmensidad. Han captado los primeros momentos del Big Bang. De acuerdo con la teoría de la Relatividad de Einstein, aquel cataclismo debió generar ondas gravitacionales, una especie de ondas expansivas cuyos efectos, aunque débiles, aún podrían observarse ahora, 13.800 millones de años después. Los investigadores del experimento BICEP 2, un telescopio de microondas situado en pleno Polo Sur, dicen haber fotografiado esas ondas por primera vez. Estas ondas son “los primeros temblores del Big Bang”,según el CFA.

Esas sombras serían una especie de eco del big bang en las microondas, lo que pone en duda la validez de la popular teoría sobre el origen del Universo. El trabajo se publica en la edición del 1 de septiembre de 2006 del Astrophysical Journal.

WMAP Leaving the Earth or Moon toward L2.jpg

Existen otros estudios llevados a cabo por observaciones realizadas con el observatorio orbital de la NASA WMAP (Wilkinson Microwave Anisotropy Probe – prueba Wilkinson de la anisotropía en microondas), que tiene como objetivo estudiar la radiación cósmica de fondo. Para ello se estudiaron las sombras dejadas en esta radiación cósmica de fondo por 31 cúmulos de galaxias.

El Dr. Lieu, especialista en el tema expresa que “Estas sombras son algo bien conocido que había sido previsto hace años”, y es “el único método directo para determinar la distancia al origen de la radiación cósmica de fondo”, hasta ahora toda la evidencia apuntaba a que era originada por una gran bola de fuego denominada big bang y ha sido circunstancial.

Lieu menciona también que “si usted ve una sombra, indica que la radiación viene más allá del cúmulo de galaxias, y si no las ve, hay un problema, entre los 31 cúmulos estudiados, algunos mostraron el efecto de sombra y otras no”.

En estudios previos, se han reportado la presencia de este tipo de sombras en la radiación cósmica de fondo, estos estudios sin embargo no usaron los datos proporcionados por el WMAP el cual está diseñado y construido específicamente para estudiar esta radiación de fondo.

Si la teoría estándar de la creación del Universo o Big Bang es la correcta y la radiación cósmica de fondo viene a la Tierra desde los confines del Universo, los cúmulos masivos de galaxias que emiten rayos X, cercanos a la Vía Láctea, deberían mostrar todos, la presencia de estas sombras en la radiación cósmica de fondo.

Los científicos aseguran también que basados en todo el conocimiento, hasta ahora, de las fuentes de radiación y halos alrededor de los cúmulos de galaxias, es imposible que estos cúmulos galácticos puedan emitir microondas a una frecuencia e intensidad idénticos a la radiación cósmica de fondo.

La predicción de la radiación cósmica de fondo data del año 1948 y fue descubierta en 1965. La predicción del efecto de sombra fue realizada en 1969, por los científicos rusos Rashid Sunyaev y Yakov Zel’dovich. El efecto se crearía de la siguiente forma: los cúmulos de galaxias emiten luz en rayos X por acción de la gravedad de su centro, que atrapa gas y lo calienta enormemente. Este gas es tan caliente que pierde sus electrones, o sea que se ioniza, produciendo, a su vez, enormes espacios llenos de electrones libres. Estos electrones libres interactúan con los fotones individuales de la radiación cósmica de fondo, originando con esto la desviación de sus trayectorias originales y produciendo el efecto de sombra.

Como vereis, siempre habrán motivos más que sobrados para la polémica y, a medida que se avanza la polémica crece, toda vez que, esos avances, dejan al descubierto muchas de las creencias largamanete asentadas que ahora, con las nuevas tecnologías, podemos descubrir que, en realidad, eran distintas de como se habían imaginado.

                ¿Que hace la Entropía con nosotros?

Si hablamos del Universo no podemos olvidar “El Tiempo” con su hermana “Entropía”,  destructora de todo lo que existe que, a medida que el primero transcurre, la segunda lo transforma todo. Debemos aprovechar ese corto espacio de tiempo que nos otorga el transcurrir entre las tres imágenes de arriba, sin no sabemos aprovecharlos…¿para qué estamos aquí? ¿Acaso será cierto que todo comenzó con la explosión de una singularidad que produjo lo que llamamos big bang?

Sí, es posible que todo comenzara así. Sin embargo, nadie lo puede asegurar. Y, algunos dicen que somos uno de tantos universos que en el Multiverso están y otros que se fueron para que puedan llegar los nuevos universos que aún no existen. Si eso fuese así ¿Habrá otros seres en esos otros universos?

La última frontera del Universo

¿Será ésta la última frontera? No,  creo que no, el Universo que nosotros conocemos, por mucho que corramos tras él, nunca podremos alcanzar el final. Siendo así, hablar de la última frontera, es…, al menos, arriesgado. No conocemos bien ni los objetos que pueblan nuestro propio Sistema solar, esos mundos enormes y gaseosos que, a su vez, están rodeados de otros pequeños mundos en los que, posiblemente, la vida esté presente. Sin embargo, nos permitimos hablar de los confines del Universo situados en lugares inaccesibles para nosotros. Bueno, al menos de momento. Incluso algún grupo de astrónomos han realizado un trabajo queriendo llegar a los confines del Universo y, de manera sorprendente, han declarado que mucho más hallá, han detectado la presencia de un inmenso bloque de materia que, según todos los indicios… ¡Es otro Universo!

tres-rosas-blancas

La fragancia, la dulzura, la pureza y el aroma de las rosas, sólo comparable a tu semblñante, a tu mirada a tu infinita bondad y, sobre todo, amada mía, a ese eternoy tierno aroma que tu persona desprende, algo que ning´çun perfume hecho por el hombre podrá nunca igualar.

Si el poco tiempo que estamos aquí, en este vasto Universo, no sabemos aprovecharlo de segundo en segundo para ofrecer nuestro mejor lado y nuestros mejores sentimientos, a la persona amada, entonces, ¿qué sentido ha tenido todo esto?

El Universo es bello, grandioso y misterioso pero… ¡Sin tí no tendría sentido!

¡Que sentimiento de paz! ¡De simbiosis con la Naturaleza! Cuando contigo estoy.

emilio silvera

Nada Permanece y Toda cambia con el paso del Tiempo

Autor por Emilio Silvera    ~    Archivo Clasificado en Nada muere y todo cambia    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

« 

agujeros negros binarios ¿La oirémos algún día? »

 

 

Estacion Espacial Internacional

 

 

La casualidad quiso que la órbita de la Estación Espacial Internacional pasara por encima de la isla rusa de Matua, en el archipiélago de las Kuriles, instantes después de que el estratovolcán Sarychev entrara en erupción. Las imágenes que fueron tomando  los astronautas desde 350 Km de altura son impresionantes:

 

 

Resultado de imagen de La casualidad quiso que la órbita de la Estación Espacial Internacional pasara por encima de la isla rusa de Matua, en el archipiélago de las Kuriles, instantes después de que el estratovolcán Sarychev entrara en erupción. Las imágenes que fueron tomando  los astronautas desde 350 Km de altura son impresionantes

 

 

El Caos y la destrucción que nos puede dar la variedad de colores, olores y sabores que junto con la belleza destruida o construida cambiará el paisaje del lugar donde puedan ocurrir acontecimientos como este que observan los tripulantes de la Estación Espacial Internacional, como bien se dice, desde su privilegiada atalaya.

Resultado de imagen de Los volcanes

Resultado de imagen de Los volcanes

Resultado de imagen de Los volcanes

Los volcanes han existido desde los inicios de la Tierra hace 4.500 millones de años. Si bien las erupciones volcánicas pueden destruir la flora y la fauna en su entorno, la lava enriquece el suelo con variados minerales. La mayor parte de los volcanes están situados a lo largo de los límites activos de las placas continentales. Los volcanes submarinos se hallan en regiones donde tienen lugar nueva formación de corteza terrestre, como en la dorsal oceánica. Estos volcanes pueden formar islas.

Los volcanes terrestres se encuentran, por lo general, en zonas de subducción, que se hallan especialmente en el Océano Pacifico. Los volcanes situados en las regiones costeras están distribuidos como una “sarta de perlas” y constituyen el anillo de fuego del Pacífico., en el que se encuentran más del 80% de los volcanes actuales. Además, los “puntos calientes” donde la fusión interna de la corteza crea magma, producen volcanes que son independientes de las placas continentales y sus limites. Un ejemplo de de este grupo lo constituyen los volcanes de Hawai.

Los volcanes se alimentan de las cámaras magmáticas, una especie de bolsas de rocas fundidas, a más de 1 km bajo la corteza terrestre. Si la presión en la cámara sobrepasa un determinado nivel (que es que parece que ha ocurrido en el de la imagen), el magma asciende por fisuras y grietas y forma una chimenea volcánica.

En el interior de esas montañas están activos materiales en forma de gases, líquidos y sólidos, todo a altas temperatura y presión. Cuando se producen las explosiones las zonas circundantes son bombardeadas con materiales y enterradas bajo una gruesa capa de ceniza en poco tiempo. Es la erupción denominada piroclástica (como la ocurrida en el año 79 a.C. que sepultó la ciudad de Pompeya bajo una capa de cenizas de 25 cm. de espesor) y los materiales pueden llegar a formar una nube piroplástica de 1.000 Cº de temperatura que puede desplazarse a 1.000 Km/h.

Hay diferentes tipos de explosiones volcánicas y en cada una de ellas se producen diferentes acontecimientos pero, como sólo se trata de dejar una leve y sencilla reseña de lo que estamos viendo en la imagen, creo que con la explicación dada queda bien.

Hasta hace muy poco no podía predecir este tipo de fenómenos naturales y, la gente que vivía en poblaciones situadas cercas de las laderas volcánicas estaban en peligro auque raramente, se producían erupciones espontáneas sin avisos previos como los terremotos, los volcanes y sus actividades son controladas por sismógrafos.

lagos, lagunas, viajes

Los cráteres volcánicos, como parece ser el caso, están frecuentemente llenos de agua de lluvia y freáticas, formando lagos. Suele ocurrir que, tras una erupción volcánica, sean destruidos miles de kilómetros cuadrados de terreno a su alrededor y cambien por completo la orografía de la zona. Parece imposible pensar que la Naturaleza pueda recuperarse tras un acontecimiento de este tipo, sin embargo, las primeras muestras de vida vegetal aparecen a unos escasos tres meses del acontecimiento en los campos cubiertos por las cenizas ricas en minerales. Poco tiempo después, vuelven los animales y la vida, se reanuda, como si allí, nada hubiese pasado.

Así es la Naturaleza, y, como tantas veces se dijo aquí, algo se destruye para que algo surja a la vida. ¿Esperanza después de la muerte?

emilio silvera

Estructuras fundamentales del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Estructuras fundamentales    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

                         Estructuras Fundamentales de la Naturaleza

Hemos llegado a poder discernir la relación directa que vincula el tamaño, la energía de unión y la edad de las estructuras fundamentales de la Naturaleza. Una molécula es mayor y más fácil de desmembrar que un átomo; lo mismo podemos decir de un átomo respecto al núcleo atómico, y de un núcleo con respecto a los quarks que contiene.

La cosmología  sugiere que esta relación resulta del curso de la historia cósmica, que los quarks se unieron primero, en la energía extrema del big bang original, y que a medida que el Universo se expandió, los protones y neutrones compuestos de quarks se unieron para formar núcleos de átomos, los cuales, cargados positivamente, atrajeron a los electrones cargados con electricidad negativa estableciéndose así como átomos completos, que al unirse formaron moléculas y estas, a su vez, juntas en una inmensa proporción, forman los cuerpos que podemos ver a lo largo y lo ancho de todo el universo. Grandes estructuras y cúmulos y supercúmulos de galaxias que están hechos de la materia conocida como bariónica, es decir, de Quarks y Leptones.

Si es así, cuanto más íntimamente examinemos la Naturaleza, tanto más lejos hacia atrás vamos en el tiempo.   Alguna vez he puesto el ejemplo de mirar algo que nos es familiar, el dorso de la mano, por ejemplo, e imaginemos que podemos observarlo con cualquier aumento deseado.

Con un aumento relativamente pequeño, podemos ver las células de la piel, cada una con un aspecto tan grande y  complejo como una ciudad, y con sus límites delineados por la pared celular.  Si elevamos el aumento, veremos dentro de la célula una maraña de ribosomas serpenteando y mitocondrias ondulantes, lisosomas esféricos y centríolos, cuyos alrededores están llenos de complejos órganos dedicados a las funciones respiratorias, sanitarias y de producción de energía que mantienen a la célula.

Ya ahí tenemos pruebas de historia.  Aunque esta célula particular solo tiene unos pocos años de antigüedad, su arquitectura se remonta a más de mil millones de años, a la época en que aparecieron en la Tierra las células eucariota o eucarióticas como la que hemos examinado.

Para determinar dónde obtuvo la célula el esquema que le indicó como formarse, pasemos al núcleo y contemplemos los delgados contornos de las macromoléculas de ADN segregadas dentro de sus genes.  Cada una contiene una rica información genética acumulada en el curso de unos cuatro mil millones de años de evolución.

                                                                                  Sistema nervioso somático

 Incluye grupos de neuronas que llevan información desde los órganos sensoriales (incluyendo toda la piel) hasta el sistema nervioso central (principalmente hasta el cordón espinal). A estos grupos de neuronas se les llama neuronas sensoriales o aferentes.

a) Las neuronas que recogen información directamente de los órganos sensoriales son neuronas especializadas con formas y sensibilidad particular. Por lo regular, estas neuronas tienen abundantes dendritas y axones cortos.

 

 

b) Por su parte, las neuronas que llevan información desde los órganos sensoriales hasta el sistema nervioso central suelen tener menos dendritas y axones largos. Grupos de estos axones forman lo que generalmente conocemos como nervios. Estos muestran un color blanco debido a la abundancia de capas de mielina, característico de los axones. A estos grupos de axones se les conoce como nervios sensoriales o aferentes.

 

 

Almacenado en un alfabeto de nucleótidos de  cuatro “letras”- hecho de moléculas de azúcar y fosfatos, y llenos de signos de puntuación, reiteraciones para precaver contra el error, y cosas superfluas acumuladas en los callejones sin salida de la historia evolutiva-, su mensaje dice exactamente cómo hacer un ser humano, desde la piel y los huesos hasta las células cerebrales.

Si elevamos más el aumento veremos que la molécula de ADN está compuesta de muchos átomos, con sus capas electrónicas externas entrelazadas y festoneadas en una milagrosa variedad de formas, desde relojes de arena hasta espirales ascendentes como largos muelles y elipses grandes como escudos y fibras delgadas como puros.  Algunos de esos electrones son recién llegados, recientemente arrancados átomos vecinos; otros se incorporaron junto a sus núcleos atómicos hace más de cinco mil millones de años, en la nebulosa de la cual se formó la Tierra.

El enlace: Adenina con Timina o Guanina con Citosina, constituyendo dicha secuencia el código genético en el que se organiza el funcionamiento celular.

Si elevamos el aumento cien mil veces, el núcleo de un átomo de carbono se hinchará hasta llenar el campo de visión.   Tales núcleos átomos se formaron dentro de una estrella que estalló mucho antes de que naciera el Sol.  Si podemos aumentar aún más, veremos los tríos de quarks que constituyen protonesneutrones.

Resultado de imagen de Lo que vemos a través del microscopio electr´çonico

El microscopio electrónico nos enseña cosas alucinantes. Arriba una nitocondria

Los quarks han estado unidos desde que el Universo sólo tenía unos pocos segundos de edad.

Al llegar a escalas cada vez menores, también hemos entrado en ámbitos de energías de unión cada vez mayores.  Un átomo puede ser desposeído de su electrón aplicando sólo unos miles de electrón-voltios de energía.  Sin embargo, para dispersar los nucleones que forman el núcleo atómico se requieren varios millones de electrón-voltios, y para liberar los quarks que constituyen cada nucleón se necesitaría cientos de veces más energía aún.

Introduciendo el eje de la historia, esta relación da testimonio del pasado de las partículas: las estructuras más pequeñas, más fundamentales están ligadas por niveles de energía mayores porque las estructuras mismas fueron forjadas en el calor del big bang.

Resultado de imagen de Hemos llegado hasta la conciencia de Ser, y, sabemos en qué lugar del Universo estamos

Hemos llegado hasta la consciencia de Ser, y, sabemos en qué lugar del Universo estamos

Nos cuesta asimilar que la evoluciòn de la materia se pudiera elevar (bajo un sin fin de parámetros y transmutaciones muy complejos), hasta alcanzar la consciencia y llegar a generar pensamientos. Parece como si el Universo hubiera sabido que nosotros (también otros seres similares e inteligentes en otros mundos del inmenso Cosmos), teníamos que venir y, para ello, creó sistemas idóneos para la vida como el planeta Tierra y muchos otros de su clase que ofrecen tal cobijo a criaturas vivas.

Los aceleradores de partículas, como los telescopios, funcionen como máquinas del tiempo.  Un telescopio penetra en el pasado en virtud del tiempo que tarda la luz en desplazarse entre las estrellas; un acelerador recrea, aunque sea fugazmente, las condiciones que prevalecían en el Universo primitivo. En la imagen de arriba podemos ver como el Telescopio Espacial Hubble, poco a poco, ha podido ir avanzando hacia atrtás en el tiempo para enseñarnos las imágenes captadas cuando el Universo era muy joven. ¿Podremos algún día fabricar telescopios tan potentes que puedan captar imágenes del universo vecino?

Universo paralelo

Debajo de esta imagen, se atreven a decir:

“Un investigador ha descubierto la huella lumínica de un universo paralelo al nuestro. Si se confirma, su hallazgo apoyaría la hipótesis de que, tras el Big Bang, se originaron varios universos con propiedades físicas diferentes.”

Hemos llegado a dominar técnicas asombrosas que nos facilitan ver aquello que, prohibido para nuestro físico, sólo lo podemos alcanzar mediante sofisticados aparatos que bien nos introduce en el universo microscópico de los átomos, o, por el contrario nos llevan al Universo profundo y nos enseña galaxias situadas a cientos y miles de millones de años-luz de la Tierra.

Cuando vemos esos objetos cosmológicos lejanos, cuando estudiamos una galaxia situada a 100.000 mil años-luz de nosotros, sabemos que nuestros telescopios la pueden captar gracias a que, la luz de esa galaxia, viajando a 300.000 Km/s llegó a nosotros después de ese tiempo, y, muchas veces, no es extraño que el objeto que estamos viendo ya no exista o si existe, que su conformación sea diferente habiéndose transformado en diferentes transiciones de fase que la evolución en el tiempo ha producido.

                        Las entrañas de un protón

Resultado de imagen de Siempre hemos querido saber lo que hay más allá de lo que el ojo ve

                           Siempre hemos querido saber lo que hay más allá de lo que el ojo ve

En el ámbito de lo muy pequeño, vemos lo que está ahí en ese momento pero, como se explica más arriba, en realidad, también nos lleva al pasado, a los inicios de cómo todo aquello se formó y con qué componentes que, en definitiva, son los mismos de los que están formadas las galaxias, las estrellas y los planetas, una montaña y un árbol y, cualquiera de nosotros que, algo más evolucionado que todo lo demás, podemos contarlo aquí.

Estas y otras muchas maravillas son las que nos permitirán, en un futuro relativamente cercano, que podamos hacer realidad muchos sueños largamente dormidos en nuestras mentes.

emilio silvera

Siempre hemos pensado en la inmortalidad… Imposible.

Autor por Emilio Silvera    ~    Archivo Clasificado en Genética    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Mukherjee:”No creo en la inmortalidad, pero sí seremos capaces de clonarnos”

 

/imag/efe/2017/06/19/20170619-13105118w.jpg

Barcelona, 19 jun (EFE).- Leer “El gen. Una historia íntima” y escuchar al reconocido científico y oncólogo Siddhartha Mukherjee provoca vértigo. Habla de que en unos años será posible contar con una suerte de “cartografía del destino y del genoma humano”, pero se pregunta si “estamos preparados para ello”.

Resultado de imagen de Los genes

En una entrevista con Efe, este ganador del premio Pulitzer de no ficción en 2011 con “El Emperador de todos los males. Una biografía del cáncer”, indica que no cree que el hombre llegue a ser inmortal, pero sí advierte de que será posible “la clonación de uno mismo, contar con un clon genético”.

Didáctico y con ganas de que sus conocimientos lleguen a todos los rincones del mundo, este médico de origen bengalí y con una familia en la que hay varios casos de trastornos mentales, de origen genético, explica que gracias a los diferentes avances científicos de los últimos años algunas personas, especialmente en las sociedades occidentales, ampliarán su esperanza de vida hasta los 100 o los 110 años, lo que supondrá cambios “fundamentales” en las estructuras sociales.

Resultado de imagen de Los genes

Comenta que mientras ayer en Oxford (Inglaterra) veía unos dibujos de Rafael, un hombre que murió con apenas 37 “con todas la grandes obras acabadas y en un momento en el que la esperanza de vida era de unos 45, 50 años”, hoy la esperanza se ha ampliado en unos 30 años, y “en un futuro se ampliará más y veremos a bastante gente centenaria”.

“No creo que consigamos la inmortalidad dura, pero sí la blanda”. “¿Y qué quiere decir blanda?”, se pregunta a sí mismo.

A su juicio, será posible que a través de diarios, fotografías, vídeos “toda la información de nuestras vidas pueda quedar perpetuamente registrada y sin que se deteriore”.

Si a eso se le suma que “seremos capaces de clonarnos a nosotros mismos, de tener un clon genético y registrar toda la información de cada uno de nosotros en una especie de disco duro, si combinamos la clonación genética de cada uno con toda la información, ¿esto puede ser la inmortalidad?, no lo sé”, apostilla.

Resultado de imagen de Los genes

En “El Gen. Una historia íntima” (Debate/La Campana), recorre a lo largo de más de 700 páginas y durante varios siglos las investigaciones llevadas a cabo para descifrar el código principal que conforma y define a los humanos, lo que determina que seamos de una determinada manera, tanto por dentro como por fuera.

Se trata del relato del nacimiento, el desarrollo y el futuro de uno de los conceptos “más poderosos y más peligrosos de la historia de la ciencia”.

Mukherjee ha dejado claro que los genes “afectan vidas, no son algo abstracto, no nos quedan lejos, son algo íntimo y muy personal”.

Es por ello, que como ahora en Barcelona, donde participará en “Les Converses a La Pedrera”, quiere divulgar todas sus investigaciones y alertar sobre la denominada “soberanía genética. ¿La debemos tener todos o solo unos pocos, los que tienen más dinero? Y si eso ocurriera, ¿qué sociedad sería ésta?”, ha vuelto a preguntarse.

“¿Qué ocurriría con algo que afecta al núcleo del ser humano si solo lo controlan los ricos?. Supondría una brecha de lo que significa ser humano”, ha apuntado.

Para el científico indio-americano es necesario que los debates no se queden en los laboratorios y que se extiendan “y que la gente conozca la historia, el vocabulario, qué significa herencia y hasta dónde hemos llegado. Todo debe ser público, porque más allá del campo de la ciencia, el genoma humano es lo más humano que tenemos”.

Resultado de imagen de Los genes

Por otra parte, ha subrayado que “el mundo al que nos enfrentamos es muy extraño”, con una tecnología tan avanzada que permite “elaborar patrones de riesgo, imperceptibles al ojo humano, que escapan al cerebro humano”.

Padre de dos hijas y con una familia en la que hay diversos casos conocidos de esquizofrenia o trastornos bipolares, hoy ha precisado que, sin embargo, nunca ha secuenciado su genoma, ni tampoco quiere conocer el riesgo que tienen sus hijas de sufrir alguna enfermedad mental para que no cambie su relación con ellas.

Siddhartha Mukherjee, que siempre calza zuecos, espera que igual que en 1975 se celebró el Congreso de Asilomar donde se propuso hacer una “moratoria” sobre el uso del ADN recombinando, ahora se organice una suerte de “Asilomar II” para tratar sobre el futuro del genoma humano.

Irene Dalmases

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando pensamos en la edad y el tamaño del universo lo hacemos generalmente utilizando medidas de tiempo y espacio como años, kilómetros o años-luz. Como ya hemos visto, estas medidas son extraordinariamente antropomórficas. ¿Por qué medir la edad del universo con un “reloj” que hace “tic” cada vez que nuestro planeta completa una órbita alrededor de su estrella madre, el Sol? ¿Por qué medir su densidad en términos de átomos por metro cúbico? Las respuestas a estas preguntas son por supuesto la misma: porque es conveniente y siempre lo hemos hecho así.

 A medida que examinamos volúmenes cada vez mayores del Universo, la densidad de material que encontramos sigue disminuyendo hasta que salimos de las dimensiones de los cúmulos de galaxias. Cuando llegamos a dicha escala, la acumulación de materia empieza a desvanecerse y se parece cada vez más a una minúscula perturbación aleatoria de un mar uniforme de materia, con una densidad de aproximadamente un átomo por cada metro cúbico.

cumulos galaxias 05 1280x800 La jerarquía del Universo: a mayor tamaño, menor densidad.

 A medida que buscamos en las mayores dimensiones visibles del Universo, encontramos que las desviaciones de la uniformidad perfecta de la materia y la radiación se quedan en un bajo nivel de sólo una parte en cien mil. Esto nos muestra que el Universo no es lo que se ha llegado a conocerse como un fractal, en donde la acumulación de materia en cada escala parece una imagen ampliada de la escala superior siguiente.

Que el Universo posea una densidad muy baja no es un accidente. La expansión del Universo relaciona su tamaño y su edad con la atracción gravitatoria del material que contiene. Para que el Universo se expanda el tiempo suficiente para permitir que los ladrillos de la vida se formen en los interiores de las estrellas debe tener una edad de miles de millones de años. Esto significa que debe tener una extensión de de miles de millones de años luz y poseer una densidad de materia promedio muy pequeña y una temperatura muy baja.

Imagen relacionada

Siempre hemos tratado de crear una teoría nueva para describir la naturaleza cuántica de la gravedad y por el camino ha emergido un nuevo significado para las unidades naturales de Planck: Masa de Planck, Energía de Planck,  Longitud de Planck, Tiempo de Planck, Temperatura de Planck.

Mp = (hc/G)½ = 5’56 × 10-5 gramos
L= (Gh/c3) ½ = 4’13 × 10-33 centímetros
Tp = (Gh/c5) ½ = 1’38 × 10-43 segundos
Temp.p = K-1 (hc5/G) ½ = 3’5 × 1032 ºKelvin

Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G(constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.

La constante de Planck racionalizada (la más utilizada por los físicos), se representa por ћ que es igual a h/2π que vale del orden de 1’054589×10-34 Julios segundo.

Un estudio reveló que la complejidad de los universos siempre aumenta con el tiempo y que nunca se reduce, independientemente de cómo se desarrollan los modelos. Si consideramos el Universo como un Sistema cerrado, su entropía aumentará y el Caos se irá haciendo el dueño de la situación.

En las unidades de Planck, una vez más, vemos un contraste entre la pequeña, pero no escandalosamente reducida unidad natural de la masa y las unidades naturales fantásticamente extremas del tiempo, longitud y temperatura. Estas cantidades tenían una significación sobrehumana para Planck. Entraban en La Base de la realidad física:

Resultado de imagen de cientificos extraterrestres

“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales cuando sean medidas por las inteligencias más diversas con los métodos más diversos.”

 

 

Ésta es una situación en donde resulta especialmente apropiado utilizar las unidades “naturales”; la masa, longitud y tiempo de Stoney y Planck, las que ellos introdujeron en la ciencia física para ayudarnos a escapar de la camisa de fuerza que suponía la perspectiva centrada e el ser humano.

Es fácil caer en la tentación de mirarnos el ombligo y no hacerlo al entorno que nos rodea. Muchas más cosas habríamos evitado y habríamos descubierto si por una sola vez hubiésemos dejado el ego a un lado y, en lugar de estar pendientes de nosotros mismos, lo hubiéramos hecho con respecto a la naturaleza que, en definitiva, es la que nos enseña el camino a seguir.

http://apod.nasa.gov/apod/image/0310/galaxies_sdss_big.jpg

Después de identificar las galaxias en imágenes bidimensionales como la mostrada arriba a la derecha, se mide la distancia para crear el mapa tridimensional. El SDSS actualmente reporta información en tres dimensiones para más de 200 000 galaxias, rivalizando con el conteo de galaxias en 3D del mapa celeste de Campo en Dos Grados.

C:\Enviar\fondoastro.gif

La edad actual del universo visible ≈ 1060 tiempos de Planck

Tamaño actual del Universo visible ≈ 1060 longitudes de Planck

La masa actual del Universo visible ≈ 1060 masas de Planck

Vemos así que la bajísima densidad de materia en el universo es un reflejo del hecho de que:

Densidad actual del universo visible ≈10-120 de la densidad de Planck

Y la temperatura del espacio, a 3 grados sobre el cero absoluto es, por tanto

Temperatura actual del Universo visible ≈ 10-30 de la Planck

Resultado de imagen de La belleza del ojo humano

En una sencilla y simple mirada, podemos encontrar la Belleza de todo un universo y, adentrarnos en ese brillo sugerente de la pupila que nos adentra hacia el interior de un Cosmos de inusitados misterios y lleno de promesas de cosas maravillosas que, como en el universo, allí podemos encontrar. Se puede dar la paradoja de que, allí, dentro de una simple mirada, podamos encontrar el infinito.

Estos números extraordinariamente grandes y estas fracciones extraordinariamente pequeñas nos muestran inmediatamente que el universo está estructurado en una escala sobrehumana de proporciones asombrosas cuando la sopesamos en los balances de su propia construcción.

Con respecto a sus propios patrones, el universo es viejo. El tiempo de vida natural de un mundo gobernado por la gravedad, la relatividad y la mecánica cuántica es el fugaz breve tiempo de Planck. Parece que es mucho más viejo de lo que debería ser.

Pero, pese a la enorme edad del universo en “tics” de Tiempo de Planck,  hemos aprendido que casi todo este tiempo es necesario para producir estrellas y los elementos químicos que traen la vida.

Resultado de imagen de La vida floreció en la Tierra a partir de la química y la materia

         La vida que surgió en el planeta Tierra a partir de los materiales “fabricados” en las estrellas de los que se formaron los mundos que, situados en el lugar adecuado, con agua líquida, océanos y atmósfera, pudieron darse las condiciones adecuadas para la formación de esa “sopa primordial” o, protoplasma vivo del que surgiría aquella primera célula replicante que dio el primer paso a la aventura de la Vida.

¿Por qué nuestro universo no es mucho más viejo de lo que parece ser? Es fácil entender por qué el universo no es mucho más joven. Las estrellas tardan mucho tiempo en formarse y producir elementos más pesados que son las que requiere la complejidad biológica. Pero los universos viejos también tienen sus problemas. Conforme para el tiempo en el universo el proceso de formación de estrellas se frena. Todo el gas y el polvo cósmico que constituyen las materias primas de las estrellas habrían sido procesados por las estrellas y lanzados al espacio intergaláctico donde no pueden enfriarse y fundirse en nuevas estrellas. Pocas estrellas hacen que, a su vez, también sean pocos los sistemas solares y los planetas. Los planetas que se forman son menos activos que los que se formaron antes, la entropía va debilitando la energía del sistema para realizar trabajo. La producción de elementos radiactivos en las estrellas disminuirá, y los que se formen tendrán semividas más largas. Los nuevos planetas serán menos activos geológicamente y carecerán de muchos de los movimientos internos que impulsan el vulcanismo, la deriva continental y la elevación de las montañas en el planeta. Si esto también hace menos probable la presencia de un campo magnético en un planeta, entonces será muy poco probable que la vida evolucione hasta formas complejas.

                En lugares como este se forman los elementos de la vida

Las estrellas típicas como el Sol, emiten desde su superficie un viento de partículas cargadas eléctricamente que barre las atmósferas de los planetas en órbitas a su alrededor y, a menos que el viento pueda ser desviado por un campo magnético, los posibles habitantes de ese planeta lo podrían tener complicado soportando tal lluvia de radiactividad. En nuestro sistema solar el campo magnético de la Tierra ha protegido su atmósfera del viento solar, pero Marte, que no está protegido por ningún campo magnético, perdió su atmósfera hace tiempo.

Probablemente no es fácil mantener una larga vida en un planeta del Sistema solar. Poco a poco hemos llegado a apreciar cuán precaria es. Dejando a un lado los intentos que siguen realizando los seres vivos de extinguirse a sí mismos, agotar los recursos naturales, propagar infecciones letales y venenos mortales y emponzoñar la atmósfera, también existen serias amenazas exteriores.

Esta marca oscura y estirada es la última cicatriz de impacto de Júpiter, un penacho de restos creado mientras un pequeño asteroide o un cometa se desintegraba tras zambullirse en el interior de la atmósfera del gigante gaseoso.

Los movimientos de cometas y asteroides, a pesar de tener la defensa de Júpiter, son una seria y cierta amenaza para el desarrollo y persistencia de vida inteligente en las primeras etapas. Los impactos no han sido infrecuentes en el pasado lejano de la Tierra, habiendo tenido efectos catastróficos.  Somos afortunados al tener la protección de la Luna y de la enorme masa de Júpiter que atrae hacia sí los cuerpos que llegan desde el exterior desviándolos de su probable trayectoria hacia nuestro planeta. La caída en el planeta de uno de estos enormes pedruscos podría producir extinciones globales y retrasar en millones de años la evolución.

Cuando comento este tema no puedo evitar el recuerdo del meteorito caído en la Tierra que impactó en la península de Yucatán hace 65 millones de años, al final de la Era Mesozoica, cuando según todos los indicios, los dinosaurios se extinguieron. Sin embargo, aquel suceso catastrófico para los grandes lagartos, en realidad supuso que la Tierra fue rescatada de un callejón sin salida evolutivo. Parece que los dinosaurios evolucionaron por una vía que desarrollaba el tamaño físico antes que el tamaño cerebral.

La desaparición de los dinosaurios junto con otras formas de vida sobre la Tierra en aquella época, hizo un hueco para la aparición de los mamíferos. Se desarrolló la diversidad una vez desaparecidos los grandes depredadores. Así que, al menos en este caso concreto, el impacto nos hizo un gran favor, ya que hizo posible que 65 millones de años más tarde pudiéramos llegar nosotros. Los dinosaurios dominaron el planeta durante 150 millones de años; nosotros, en comparación, llevamos tres días y, desde luego, ¡la que hemos formado!

Despues de los Dinosaurios surgieron otras formas de vida que, evolucionadas, llegaron hasta aquí (arriba la muestra).

En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario.  Hay algo inusual en esto. El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el hidrógeno, nitrógeno, oxígeno, carbono, etc.

Parece que la similitud en los “tiempos” no es una simple coincidencia.  El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema solar habitado observado, ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales; el t(bio) – tiempo biológico para la aparición de la vida – algo más extenso.

       La atmósfera actual requirió un largo proceso

Muchos son los parámetros a tener en cuenta para llegar a la formación de nuestra atmósfera planetaria y todo el ecosistema que tenemos y del que podemos disfrutar. Claro que, nadie cae en la cuenta de que, eso lo tenemos y es posible, gracias a unos “seres” infinitesimales,los procariotas que realizan el “milagro”.

La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual.  Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.

Imagen relacionadaResultado de imagen de modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida

Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.

A muchos les cuesta trabajo admitir la presencia de vida en el universo como algo natural y corriente, ellos abogan por la inevitabilidad de un universo grande y frío en el que es difícil la aparición de la vida, y en el supuesto de que ésta aparezca, será muy parecida a la nuestra.

aurora_australis_20050911

                                              Aurora boreal

Formacion de Auroras Boreales y Australes, Cinturones de Van Allen, Ciclo del Agua, Formacion de Nubes, Tipos de Nubes, Cristales de Hielo y Nieve, Niebla, Vientos, Ciclones y Anticlones, Formacion de Tornados, Formacion de Huracanes, Relampagos, Refraccion de la Luz, Corrientes Oceanicas, Capa de Ozono, Patrones de Temperatura, Patrones Precipitacion, Origen de la Atmosfera, Termometro, Termimetro, Barometro, Pluviometro.

Los biólogos, sin embargo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de las estimaciones de la probabilidad de que haya inteligencias extraterrestres en el universo se centran en formas de vida similares a nosotros que habiten en planetas parecidos a la Tierra y que necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el universo.

Resultado de imagen de Bacteriofagos: la forma de vida más común de la Tierra

“Hay más bacteriofagos en la Tierra que cualquier otra forma de vida. Estos pequeños virus no son claramente una forma de vida, ya que no adjuntos a una bacteria están completamente aletargados. Los bacteriofagos atacan y comen bacterias y han estado haciéndolo desde hace más de 3.000 millones de años. Aunque inicialmente se descubrieron a principios del siglo pasado, la tremenda abundancia de fagos se realizó recientemente cuando se encontró que una simple gota de agua de mar contenía de forma media millones de ellos. Extraplotando, los fagos parece que son al menos millones de billones más numerosos que los humanos. La imagen de arriba es una micrografía electrónica de más de una docena de bacteriofagos adjuntados a una sóla bacteria. Los fagos son muy pequeños, haría falta aproximadamente un millón de ellos puestos en fila para ocupar apenas un milímetro. La habilidad de matar bacterias hace de los fagos un potencial aliado en contra de las bacterias que causan enfermedades humanas, aunque no se conoce todavía bien a los bacteriofagos para ser usados en la medicina.”

Múltiples formas de vida, tanto macro como microscópicas, están presentes en nuestro planeta, y, de la misma manera, lo estarán en otros que, estando en la zona habitable de su estrella, tengan condiciones similares o parecidas a las nuestras.

Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía. Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del universo, hay también una aparente coincidencia entre la edad del universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.

Human.svg

Desde la extinción del Homo hace 45 000 años, el Homo sapiens es la única especie conocida del género Homo que aún perdura. La imagren de arriba estaba en una placa llevada a bordo de la Pioneer 11 y Vyager I y II,  representando a un hombre y una mujer con la intención de darnos a conocer a posibles inteligencias que existan en otros mundos fuera de nuestro Sistema solar.

Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo Sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo.  Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el universo, se hablará de miles de millones de años.

Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.

                            Como decía Peter Kolosimo… “Hay otros mundos pero están en este”

A veces, nuestra imaginación dibuja mundos de ilusión y fantasía pero,  en realidad… ¿serán sólo sueños?, o, por el contrario, pudieran estar en alguna parte del Universo todas esas cosas que imaginamos que pudieran estar presentes en otros mundos lejanos que, como el nuestro…posibilito la llegada de la vida.

Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y la vida no sería posible en ellos. Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.

Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina. Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes. Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN pueden verse afectados de manera adversa. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades. Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, no se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.

Las constantes de la naturaleza ¡son intocables!

Un equipo de astrónomos ha conseguido encontrar una vasta reserva de gas intergaláctico situada a unos 400 millones de años luz de la Tierra en la que podría encontrarse la “materia perdida” del Universo que los científicos llevan años buscando.

          Miles de millones de galaxias formadas a lo largo de miles de millones de años

Ahora sabemos que el universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y la gravitación nos dice que la edad del universo esta directamente ligada con otras propiedades como la densidad, temperatura, y el brillo del cielo.

Puesto que el universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos visto, la densidad del universo es hoy de poco más que 1 átomo por mde espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres. Si existen en el universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.

La expansión del universo es precisamente la que ha hecho posible que el alejamiento entre estrellas, con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotros. Diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión permitieron que, con la temperatura ideal y una radiación baja, los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es sólo una mota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el universo.

El ser humano ha hecho un largo recorrido para ahora sentirse insignificante.

Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad de los cielos. Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad, ni en ellas está el poder de ahondar en el porqué de las cosas. Nosotros sí podemos hacer todo eso y más.

La estructura de los átomos y las moléculas está controlada casi por completo por dos números: la razón entre las masas del electrón y el protón, b, que es aproximadamente igual a 1/1.836, y la constante de estructura fina, a, que es aproximadamente 1/137. Supongamos que permitimos que estas dos constantes cambien su valor de forma independiente y supongamos también (para hacerlo sencillo) que ninguna otra constante de la Naturaleza cambie. ¿Qué le sucede al mundo si las leyes de la naturaleza siguen siendo las mismas?

Si deducimos las consecuencias pronto encontramos que no hay muchos espacios para maniobrar. Incrementemos  β demasiado y no puede haber estructuras moleculares ordenadas porque es el pequeño valor de beta el que asegura que los electrones ocupen posiciones bien definidas alrededor de un núcleo atómico y las cargas negativas de los electrones igualan las cargas positivas de los protones haciendo estable el núcleo y el átomo.

Si en lugar de a versión b, jugamos a cambiar la intensidad de la fuerza nuclear fuerte aF, junto con la de a, entonces, a menos que  a> 0,3 a½, los elementos como el carbono no existirían.

átomo de carbono

La molécula de Carbono que hace posible la Vida en nuestro mundo

No podrían existir químicos orgánicos, no podrían mantenerse unidos. Si aumentamos aF en solo un 4 por 100, aparece un desastre potencial porque ahora puede existir un nuevo núcleo de helio, el helio-2, hecho de 2 protones y ningún neutrón, que permite reacciones nucleares directas y más rápidas que de protón + protón →  helio-2.

Las estrellas agotarían rápidamente su combustible y se hundirían en estados degenerados o en agujeros negros. Por el contrario, si aF decreciera en un 10 por 100, el núcleo de deuterio dejaría de estar ligado y se bloquearía el camino a los caminos astrofísicos nucleares hacia los elementos bioquímicos necesarios para la vida.

¡Es todo tan complejo! Sin embargo, una cosa tengo clara: ¡El destino de la materia es evolucionar hacia la Vida!

emilio silvera