Jul
6
¡Los pensamientos! Esas ráfagas luminosas
por Emilio Silvera ~ Clasificado en Los Pensamientos ~ Comments (3)
Es curioso cuando mi mente está libre y divagando una gran diversidad de cuestiones que sin ser a propósito, se enlazan o entrecruzan las unas con las otras, y lo mismo estoy tratando de sondear sobre el verdadero significado del número 137 (sí, ese número puro, adimensional, que encierra los secretos del electromagnetismo (e), de la velocidad de la luz (c), o, del cuanto de acción (h) la constante de Planck – se denomina alfa (α) y lo denotamos con una ecuación: 2πe2/hc), o que me sumerjo en las profundidades del número atómico para ver de manera clara y precisa la red de los gluones que retienen a los quarks, conformando protones y neutrones con los que se construye el núcleo. Sin embargo, mi visión mental no se detiene en ese punto, continúa avanzando y se encuentra con una sinfonía de colores que tiene su fuente en miles y miles de cuerdas vibrantes que, en cada vibración o resonancia, producen minúsculas partículas que salen disparadas para formar parte en otro lugar, de algún planeta, estrella, galaxia e incluso del ser de un individuo inteligente.
Me pregunto por el verdadero significado de la materia, y cuanto más profundizo en ello, mayor es la certeza de que allí están encerradas todas las respuestas. ¿Qué somos nosotros? Creo que somos materia evolucionada que ha conseguido la conquista de un nivel evolutivo en el que ya se tiene conciencia de ser, de estar, de comprender para poder generar ideas propias las cosas de la Naturaleza y sus maravillosos mecanismos que, lo mismo hace que una estrella produzca Carbono que, en un planeta como la Tierra, surjan formas de vida tan evolucionadas como la nuestra.
Las dos imágenes representan la materia: Una (que equivocadamente llamamos) Naturaleza “inerte” y, la otra, cuando se hace pensamientos y trasciende más allá de lo material, cuando se hace Mente.
Pienso que toda la materia en el Universo está cumpliendo su función para conformar un todo. En cada momento está configurada de una manera (las piedras del fondo de un río, el agua de una cascada, el frondoso y verde bosque, una Nebulosa, las estrellas que forman galaxias, ráfagas de energía, multitud de criaturas de diferentes formas…), en definitiva, todo está hecho de la misma cosa, que interaccionan y está supeditada a las fuerzas que rigen el universo entero y toda la Naturaleza que, adoptando distintas formas, está presente en cada lugar para cumplir lo que está determinado por unos imparables mecanismos que se desarrollan al margen de cualquier deseo o pensamiento consciente, es lo que no se puede parar, lo inevitable, lo que tiene que ocurrir a medida que inexorablemente transcurre el tiempo. La luz, la gravedad, la carga eléctrica y magnética, las fuerzas nucleares, todo, absolutamente todo, se puede entender a partir del comportamiento de la materia en sus distintos estadios y situaciones, tanto a niveles microscópicos como en nuestro más cotidiano mundo macroscópico, todo son aspectos y escenarios distintos, en los que la materia, se pone distintos ropajes para representar su papel en la más grande función del Teatro del Universo: para que existan estrellas y galaxias, planetas, árboles, desiertos, océanos y multitud de espacies de seres vivos y, algunas que como la nuestra, por ejemplo, ha podido evolucionar hasta alcanzar la Consciencia de Ser.
Todos somos iguales pero… ¡Con pensamientos tan diversos!
Mirando a mi alrededor, de manera clara y precisa, puedo comprobar que el mundo está compuesto por una variedad de personas que, siendo iguales en su origen de especie, son totalmente distintas en sus mentes, en sus costumbres, en sus creencias y en sus conocimientos del mundo que nos rodea localmente y en ese otro que saliendo de nuestras fronteras nos lleva hasta el microscópico mundo del átomo, o, al extremo opuesto, el de las grandes estructuras de las galaxias. Desgraciadamente, no todos conocemos de cuestiones esenciales que conforman el “mundo” y, consecuentemente, también a nosotros que formamos parte de él.
La mayor parte, se aplica en sus vidas cotidianas y sin grandes sobresaltos: al trabajo, la familia y dejar transcurrir el tiempo. Es la mayoría silenciosa. Una parte menor, conforman el grupo de los poderosos; sus afanes están centrados en acumular poder, dirigir las vidas de los demás y de manera consciente o inconsciente, dañan y abusan de aquella mayoría. Son los grandes capitalistas y políticos, que con sus decisiones hacen mejor o peor las vidas del resto. Por último, existe una pequeña parte que está ajena y “aislada” de los dos grupos anteriores; se dedican a pensar y a averiguar el por qué de las cosas. La mayor preocupación de este grupo de “elegidos” es saber, quiero decir ¡SABER!, de todo y todo; nunca están satisfechos y gracias a ellos podemos avanzar y evitar el embrutecimiento de nuestra especie que, a pesar de todo… ¡Se puede salvar!
Bueno, al menos eso espero. Quizá la última esperanza de la Humanidad esté en la Ciencia y los que la practican.
Todo forma parte de la misma cosa y a partir de la materia que puede estar configurada como una galaxia de estrellas, surge la vida y de ella los pensamientos. La complejidad de la mente humana ha llegado a unos niveles que, a partir de ahí, todo podría ser posible y, lo lastimoso del caso es que, esos conocimientos adquiridos no se utilicen para el bien común. Todavía existe esa parte de nosotros que, en forma de instinto animal, nos hace actuar de manera egoista y poco conveniente para el futuro de la Humanidad.
Pensando en el cometido de estos tres grupos a los que antes me referia, la gente común, la familia, los poderosos -el dinero- y los científicos, me doy cuenta de lo atrasados que aún estamos en la evolución de la especie. El grupo mayor, el de la gente corriente, es muy necesario; de él se nutren los otros dos. Sin embargo, el grupo de mayor importancia “real”, el de los pensadores y científicos, está utilizado y manejado por políticos, militares y capitalistas que, en definitiva, aprueban los y las subvenciones de las que se nutren los investigadores. Si el dinero empleado en inútiles ejercitos y armas, se empleara en investigación y desarrollo… ¿Dónde estaríamos ya? El grupo más numeroso es también, el más sacrificado y hacer aquí un estudio profundo de lo mal repartido que está todo en el mundo… ¡No tendría cabida!
La II Guerra Mundial de mal recuerdo. ¿Qué sacamos de ella? ¿Destrucción y muerte? En las dos grandes guerras mundiales (sobre todo en la segunda), tenemos un ejemplo de cómo se utilizaron a los científicos con fines militares. Los que no se a ello, lo pasaron mal y fueron marginados en no pocos casos.
Es una auténtica barbaridad el ínfimo que se destina al fomento científico en cualquiera de los niveles del saber. Cada presupuesto, cada proyecto y cada subvención conseguida es como un camino interminable de inconvenientes y problemas que hay que superar antes de conseguir el visto bueno definitivo, y lastimosamente, no son pocos los magníficos proyectos que se quedan olvidados encima de la mesa del político o burócrata de turno, cuyos intereses particulares y partidistas miran en otra dirección, sin importarles la trascendencia que el proyecto pueda tener para el bien de la Humanidad, con que el suyo propio esté a salvo…
La I+D española no solo sufre los ajustes presupuestarios, sino que además tiene partidas sin utilizar. La ciencia y la tecnología, incluidas actividades civiles y militares, sufrirán el año próximo una reducción de la de un 8,4% respecto a 2010, según el proyecto presupuestario, lo que se acumula al 5,5% de recorte de este año respecto a 2009. “Esto entierra definitivamente la etapa de crecimiento del gasto en I+D+i de la anterior legislatura”, señala un análisis sobre la política de investigación realizado por CC OO a partir de datos oficiales.
España partió de un retraso en este ámbito respecto a los países más desarrollados, “atraso que se corrige muy lentamente y, al ritmo actual, la convergencia con Europa tardará aún muchos años”, advierte el . Igualmente se aleja el ansiado cambio del modelo productivo.
¡Qué lastima! Haber llegado a esta situación tiene un motivo de todos conocido. Sin embargo, muchos son los interesados en que el tiempo pase y no se hable de ello. Los responsables están bien instalados, tienen muy alta e inmerecidas y, mientras tanto, el Pueblo llano, la Ciencia, y la gente de la calle en general, padecen y sufren lo que otros hicieron que, además, no sólo no pagaron su culpa, sino que se encuentran tan ricamente en sus mansiones, sus viajes, sus abultadas cuentas corrientes… ¡Qué canallas y miserables! Es la peor condición humana a la que podemos llegar.
A pesar de ello, milagrosamente, el avance continúa implacable gracias a personajes que, como Ramón y Cajal -en su momento-, con medios insuficientes pero con sacrificio e inteligencia, triunfan estas adversidades materiales que superan por amor a la ciencia, con trabajo y con ingenio.
Un ejemplo de lo que digo: “Juan Ignacio Cirac Sasturain (11 de octubre de 1965, Manresa, provincia de Barcelona, Cataluña) es un físico español reconocido por sus investigaciones en computación cuántica y óptica cuántica, enmarcadas en la teoría cuántica y en la física teórica. Desde 2001 es director de la División Teórica del Instituto Max-Planck de Óptica Cuántica (Max-Planck-Institut für Quantenoptik) en Garching, Alemania“.
Einstein nos decía algo parecido a:
“el hombre encuentra su verdad detrás de cada puerta que la ciencia logra abrir”.
Ese momento mágico de comprobar que la teoría coincide con la Naturaleza
Ese encuentro maravilloso con la luz suprema del saber es un momento mágico, que reciben y el precio que pagan al científico por sus esfuerzos, y es el incentivo que necesitan para seguir trabajando en la superación de los muchos secretos que la naturaleza pone ante sus ojos para que sean desvelados.
Cuando me pongo a escribir sin un programa previamente establecido, vuelco el papel en blanco todo lo que va fluyendo en mis pensamientos, y a veces me sorprendo a mí mismo al darme cuenta de cómo es posible perder la noción del tiempo inmerso en los universos que la mente puede recrear para hacer trabajar la imaginación sin límites de un ser humano.
¡Nuestra Imaginación! ¿Dónde estará el límite? NO, no hay límites, el único límite está impuesto por el conocimiento de la propia Naturaleza.
Aunque es cierto que nuestras limitaciones son enormes y enorme nuestra ignorancia, también lo es que, son inmensamente enormes las posibilidades que tenemos de poder ir desvelando los secretos del Universo. Las carencias se pueden compensar con la también enorme ilusión de aprender y la inagotable curiosidad y espíritu de sacrificio que tenemos en nuestro interior, que finalmente, van ganando pequeñas batallas en el conocimiento de la naturaleza, y que sumados hacen un respetable bloque de conocimientos que, a estas alturas de comienzos del siglo XXI, parecen suficientes como punto de partida para despegar hacia el interminable viaje que nos espera.
El Tiempo Cronológico y El Tiempo Psicológico: acerca del transcurrir. A veces tengo que sonreir al ver el esfuerzo de mi mujer: Pone delante de mí un que sea consciente del tiempo. Sin embargo, sumergido en las cuestiones que me inquietan, el tiempo transcurre tan lentamente que… ¡No parece transcurrir! Lo que no deja de ser una maravilla si consideramos que, estoy en total reposo y es, únicamente mi mente, la que desbocada, corre mucho más rápido que lo pueda hacer la luz.Cuando embebido en lo que te gusta discurres por fantásticos caminos de paisajes inimaginables, ¿cómo puedes percibir el transcurrir del tiempo?
Es tal la pasión que pongo en estas cuestiones que, literalmente, cuando estoy pensando en el nacimiento y vida de una estrella y en su final como enana blanca, estrella de neutrones o agujero negro (dependiendo de su masa), siento cómo ese gas y ese polvo cósmico estelar se junta y gira en remolinos, cómo se forma un núcleo donde las moléculas, más juntas cada vez, rozan las unas con las otras, se calientan e ionizan y, finalmente, se fusionan para brillar durante miles de millones de años y, cuando agotado el combustible nuclear degeneran en enanas blancas, veo con claridad cómo la degeneración de los electrones impide que la estrella continúe cediendo a la fuerza de gravedad y queda así estabilizada. Lo mismo ocurre en el de las estrellas de neutrones, que se frena y encuentra el equilibrio en la degeneración de los neutrones, que es suficiente para frenar la enorme fuerza gravitatoria. Y, cuando llego a la implosión que dará lugar a una singularidad, ahí quedo perdido, mi mente no puede, como en los casos anteriores, “ver” lo que realmente ocurre en el corazón del agujero negro, ya que, lo que llamamos singularidad, parece como si desapareciera de este mundo.
emilio silvera
Jul
6
El colapso del núcleo de las estrellas
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
El vacío superconducto – La máquina de Higgs-Kibble
El vacío superconductor – La máquina de Higgs-Kibble II
Lo único que no resulta ser lo mismo cuando se mira a través a través del microscópico electrónico (o, en la jerca de la física teórica, cuando se realiza una transformación de escala) es la masa de la partícula. Esto se debe a que el alcance de la fuerza parece mayor a través del microscopìo y, por lo tanto, la masa de la partícula parece ser menor. Nótese que esta situación es la opuesta a la que se presenta en vida corriente donde un grano de arena parece mayor -¿más pesado, por lo tanto?- cuando se observa con un microscopio.
Granos de arena vistos al microscópico electrónico
Una consecuencia de todo esto es que en una teoría de Yang-Mills el termino de masa parece desaparecer se realiza una transformación de escala, lo que implica que a través del microscopio se recupera la invariancia gauge. Esto es lo que causa la dificultad con la que se enfrentó Veltman. ¿Se observar directamente el potencial vector de Yang-Mills? Parece que puede observa4rse en el mundo de las cosas grandes, no en el mundo de lo pequeño. Esto es una contradicción y es una raz´`on por la que ese esquema nunca ha podido funcionar adecuadamente.
En el mundo cuántico se pueden contemplar cosas más extrañas
Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, = 1’62 × 10-33 cm, es la escala de longitud por debajo de la cual es espacio, tal tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler, o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que la longitud de Planck-Wheeler, es decir, 2’61 × 10-66 cm2) juega un papel clave en la entropía de un agujero negro.
Poco tiempo después resultó evidente que existían otras subpartículas en el interior del átomo. Cuando Becquerel descubrió la radiactividad, identificó como emanaciones constituidas por electrones algunas de las radiaciones emitidas por sustancias radiactivas. Pero también quedaron al descubierto otras emisiones. Los Curie en Francia y Ernest Rutherford en Inglaterra detectaron una emisión bastante menos penetrante que el flujo electrónico. Rutherford la llamó rayos alfa, y denominó rayos beta a la emisión de electrones.
Pero el trabajo de hoy se titula: El colapso del núcleo de las estrellas
En la imagen podemos contemplar lo que se clasifica NGC 3603, es un cúmulo abierto de estrellas en una vasta zona estelar, rodeada de una región H II (una enorme nube de gas y plasma en el que constantemente están naciendo estrellas), situado en el brazo espiral Carina de la Vía Láctea, a unos 20.000 años-luz de distancia en la constelación de Carina. Es uno de los jóvenes cúmulos de estrellas más luminosas e impresionante en la Vía Láctea, y la concentración más densa de estrellas muy masivas conocidas en la galaxia. Se estima que se ha formado hace alrededor de un millón de años. Las estrellas azules calientes en el núcleo son responsables de la fuerte radiación ultravioleta y los vientos estelares, tallando una gran cavidad en el gas.
NGC 3603 alberga miles de estrellas de todo tipo: la mayoría tienen masas similares o menores a la de nuestro Sol, pero las más espectaculares son algunas de las estrellas muy masivas que están cerca del final de sus vidas. Ahí están presentes algunas estrellas supergigantes que se agolpan en un volumen de menos de un año luz cúbico, se han localizado en la misma zona a tres llamadas Wolf-Rayet, estrellas muy brillantes y masivas que expulsan grandes cantidades de material antes de convertirse en supernovas.
Una de estas estrellas (NGC 3603-A1), una estrella doble azul que orbita alrededor de la otra una vez cada 3,77 días, es la estrella más masiva conocida hasta en la Vía Láctea. La más masiva de estas dos estrellas tiene una masa estimada de 116 masas solares, mientras que su compañera tiene una masa de 89 masas solares. Hay que decir que la máxima máxima de las estrellas está calculada en 120 masas solares, ya que, a partir de ahí, su propia radiación las destruiría.
En el centro de la imagen podemos contemplar ese “collar de diamantes” que es el resultado evolucionado de aquella tremenda explosión estelar contemplada en 1987, cuando una estrella supermasiva, habiendo agotado todo su combustible nuclear de fusión, se contrae sobre sí misma al quedar sin defensa, en “manos” de la Gravedad que ya no se ve frenada por la inercia explosiva de la fusión que tendía a expandir la estrella.
Las capas exteriores son eyectadas al Espacio Interestelar con violencia para formar una nebulosa, mientras el grueso de la masa de la estrella se contrae más y más para formar una estrella de neutrones o un agujero negro dependiendo de su masa.
Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios. Hace veinte años, los astrónomos fueron testigos de uno de los más brillantes explosiones estelares en más de 400 años. La supernova titánica, llamada SN 1987A, ardió con la fuerza de 100 millones de soles varios meses después de su descubrimiento el 23 de febrero de 1987.
Las observaciones de SN 1987A, hechas en los últimos 20 años por el Telescopio Espacial Hubble de NASA / ESA y muchos otros grandes telescopios terrestres y espaciales, han servido para cambiar la perspectiva que los astrónomos tenían de cómo las estrellas masivas terminan sus vidas.Estudiando estos sucesos sus comienzos se pueden ver los detalles más significativos del acontecimiento, cosa que, estuadinado los remanentes de supernovas muy antiguas no se podían ver.
Las estrellas supermasivas cuando colapsan forman extrañas y, a veces, fantásticas imágenes que podemos captar por nuestros más sofisticados telescopios. Arriba podemos contemplar observaciones realizadas en distintas fechas que nos muestran la evolución de los anillos de SN 1987 A. ¿Qué pudo causar los extraños anillos de esta Supernova. Hace 28 años se observó en la Gran Nube de Magallanes la supernova más brillante de la historia contemporánea.
El clúster abierto NGC 3603 contiene a Sher 25, una super gigante B1a que inevitablemente morirá en un masivo suceso supernova en los próximos 20,000 . ¡Esto emitirá una luz tan potente que competirá en el cielo con el planeta Venus! Un detalle muy emocionante es que Sher 25 presenta anillos similares a los que dejó la supernova SN 1987 A.
Cuando colapsa el núcleo de una estrella, ocurre en la formación de una estrella de neutrones, es preciso que la estrella esté evolucionada hasta el punto de que su núcleo esté compuesto completamente por hierro, que se niega a ser quemado en reacciones nucleares, no se puede producir la fusión y, por tanto, no produce la energía suficiente como soportar la inmensa fuerza de gravedad que propia masa de la estrella genera y que, solamente era frenada por la energía que produce la fusión nuclear que tiende a expandir la estrella, mientras que la gravedad tiende a contraerla.
El núcleo entonces se contrae, liberando energía potencial gravitatoria, se rompen los núcleos de los átomos de hierro en sus protones y sus neutrones constiituyentes. A medida que aumenta la densidad, los protones se combinan con los electrones para formar neutrones. El colapso sólo se detiene (a veces) con la presión de degeneración del gas de neutrones (Principio de exclusión de Pauli) compensa el empuje hacia adentro de la Gravedad. El proceso completo hasta que todo ese ingente material se transmuta en la estrella de neutrones dura muy poco tiempo, es un proceso vertiginoso.
Otra perspectiva del remanente de la supernova por colapso de núcleo SN 1987A.
Han sido muy variados los grupos de astrónomos investigadores que han realizado observaciones durante largos períodos de tiempo llevar a cabo la no fácil tarea de comprender cómo se forman las estrellas de neutrones y púlsares cuando estrellas masivas llegan al final de sus vidas y finalizan el proceso de la fusión nuclear, momento en el que -como explicaba antes- la estrella se contrae, implosiona sobre sí misma, se produce la explosión supernova y queda el remanente formado por material más complejo en forma de gases que han sido expulsados por la estrella en este proceso final en el que, las capas exteriores de la estrella, forman una nebulosa y la estrella en sí misma, al contraerse y hacerse más densa, es decir de 1017 kg/m3.
Se ha podido llegar a saber que las supernovas por colapso de núcleo suelen ocurrir en los brazos de galaxias espirales, así como también en las regiones HII, donde se concentran regiones de formación estelar. Una de las consecuencias de esto es que las estrellas, con masas a partir de 8 veces la masa del Sol, son las estrellas progenitoras de estos estos sucesos cósmicos. También es muy interesante y se está estudiando cómo se forman los inmensos campos magnéticos alreddor de estas estrellas de neutrones y púlsares que se conviertan en magnétares.
Cuando hace unos pocos años se descubrió la estrella de neutrones SGR0418, poco podían pensar los astrónomos que su funcionamiento alteraría todas las teorías existentes ahora acerca del funcionamiento de los magnétares. Sin embargo es así, ya que funciona como uno de éstos y no como sería propio de su condicción. Este hallazgo obliga a la ciencia a replantearse las teorías que se manejaban hasta ahora acerca del origen y evolución de los magnétares.
El “universo” de los procesos que siguen al colapso de los núcleos de las estrellas masivas es fascinante. Así, cuando se un púlsar que es una estrella de neutrones que gira sobre sí misma a una gran velocidad y tambien una fuente de ondas de radio que vibran con periodos regulares, este de estrellas tan extrañas son fruto -como antes decía- de una supernova o por consecuencías de la acreción de materia en estrellas enanas blancas en sistemas binarios. Una enana blanca que también es muy masiva, si tiene una estrella compañera cercana, genera mucha fuerza gravitatoria comienza a tirar del material de la estrella vecina y se lo queda hasta tal punto que, se transforma en una estrella de neutrones en una segunda etapa en la que se producen nuevos procesos de implosión.
La densidad de estas estrellas es increiblemente grande, tanto que un cubo de arena lleno del material de una estrella de neutrones tendría un peso parecido al de la montaña mas grande de la tierra, el monte . Los púlsares fueron descubiertos en 1970 y hasta solo se conece unas 300 estrellas de este tipo. Sin embargo, se calcula que sólo en nuestra Galaxia podrían ser un millón. La rápida rotación de los pùlsares los mantiene fuertemente magnetizados y sus rotaciones vertiginosas generan y son inmensas fuentes de electricidad. Llegan a producir mil millones de millones de voltios. Cuando nustros aparatos los observan y estudian detectan intensos haces de radiación en toda la gama del espectro (radio, luz, rayos X, Gamma).
Imagen de rayos-X en falso color de la región del cielo alrededor de SGR 1627-41 obtenida con XMM-Newton. La emisión indicada en rojo procede de los restos de una estrella masiva que estalló. Cubre una región más extendida de lo que se deducía anteriormente de las observaciones de radio, alrededor del SGR. Esto sugiere que la estrella que estalló fue el progenitor del magnetar. Crédito: ESA/XMM-Newton/EPIC (P. Esposito et al.)
Por ahora se conoce que de cada diez supernovas una se convierte en magnetar, si la supernova posee 6 y 12 masas solares, se convierte en una estrella de neutrones de no más de 10 a 20 km de diámetro. En el caso de las estrellas supermasivas de decenas de masas solares, el resultado es muy diferente y nos encontramos con los agujeros negros, esos monstruos del espacio devoradores de materia.
Cuando una estrella supermasiva muere, las consecuencias energéticas son inmensas. Ahí, en esa explosión se producen transiciones de fase que producen materiales pesados y complejos. En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica de elementos.
Las estrellas mueren cuando dejan la secuenbcia principal, es decir, cuando no tienen material de fusión y quedan a merced de la fuerza de gravedad que hace comprimirse a la estrella más y más, en algunos casos, cuando son supermasivas, llegan a desaparecer de nuestra vista, y, su único destino es convertirse en temibles Agujeros Negros.
La explosión de una estrella gigante y supermasiva hace que brille más que la propia galaxia que la acoge y, en su ese tránsito de estrella a púlsar o agujero negro, se forman elementos que, el oro o el platino, se riegan por el espacio interestelar en las inmensas nebulosas de las que, más tarde, naceran nuevas estrellas y nuevos mundos.
Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas. Porque, en última instancia, debemos ser conscientes de un hecho cierto: En las estrellas se ¡ “fabrican los materiales que darán lugar al surgir de la vida”!.
El remanente estelar después de la explosiòn puede ser muy variado
Es posible que lo que nosotros llamamos materia inerte, no lo sea tanto, y, puede que incluso tenga memoria que transmite por medios que no sabemos reconocer. Esta clase de materia, se alía con el tiempo y, en momento adopta una forma predeterminada y de esa manera sigue evolucionando hasta llegar a su máximo ciclo o nivel en el que, de “materia inerte” llega a la categoría de “materia viva”, y, por el camino, ocupará siempre el lugar que le corresponda. No olvidemos de aquel sabio que nos dijo: “todas las cosas son”. El hombre, con aquellas sencillas palabras, elevó a todas las cosas a la categoría de ¡SER!
¿No os pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?
Claro que, el mundo inorgánico es sólo una del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.
Según expliqué muchas veces, los quarks u y d se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran una subclase de los hadrones. La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).
Bueno, otra vez, como tantas veces me pasa, me desvío del camino que al principio del me propuse seguir y me pierdo en las elucubraciones que imaginan mis pensamientos. Mejor lo dejamos aquí.
emilio silvera
Jul
6
“Pasado” “Presente” “Futuro” ¿Una...
por Emilio Silvera ~ Clasificado en El Tiempo pasa...¿O somos nosotros? ~ Comments (0)
« GAIA
No siempre sabemos ver… lo que el Tiempo es.
Hablamos del pasado y del futuro estando en el presente pero, por lo general, el pasado lejano se nos muestra como si estuviera retratado por la máquina que sostenía una mano temblorosa, todo aparece movido, confuso, sin claridad. Los espacios oscuros en los que nada podemos ver, tendemos a rellenarlos con conjeturas, hipótesis y teorías de lo que fue, de lo que pasó. Otras veces, sin embargo, se alza ante nosotros inmenso, sostenido por un fuerte pedestal y nos habla de su magnificencia mientras nos muestra las hazañas del pasado y el transcurrir de la Naturaleza en aquel tiempo pretérito. También, en ocasiones ocurre que, lo que vemos, nos parece increíble.
Bueno, al menos del pasado podemos buscar vestigios, huellas y señales que nos hablen de lo que pasó. Otra cuestión muy distinta es eso que llamamos futuro y que está más allá del presente, es lo que aún no ha llegado, lo que no tiene historia, lo que tiene que venir. Es en ese plano de lo que podrá ser, donde entra de lleno nuestra imaginación que, haciendo un ejercicio de inventiva, trata, con los datos del pasado y del presente, construir una imagen del futuro, ese algo que no existe y que sabemos que tiene que llegar.
Aunque en la realidad, el Tiempo parezca ser igual para todos… ¡No lo es! y, dependiendo de las circunstancias personales de cada cual, así “sentirá” su transcurrir que, en algunos casos será muy rápido y en otros se le asemajará una eternidad.
Todo lo podemos mirar desde perspectivas distintas
Claro que, somos grandes animales con algo de racionalidad y, nuestra tendencia, es magnificar todo lo nuestro y, en la mayoría de los casos, nuestra perspectiva resulta ser errónea, ya que, el sentido que tenemos de la “realidad”, no siempre concuerda con la realidad de la Naturaleza que no hemos llegado a comprender. La mejor demostración de ello es que, ni sabemos explicar lo que el Tiempo es. ¡El Tiempo!, ahí están encerrados esos conceptos de pasado, presente y futuro que, en realidad, hemos inventado poder ubicar nuestro paso por este mundo.
Algunas veces me sorprendo a mí mismo pensando en esa abstracción quen llamamos Tiempo, en su transcurrir, en lo caro que nos resulta a todos poseerlo, toda vez que, mientras pasa, nosotros estamos consumiendo nuestra estancia aquí que está marcada por un “tiempo” limitado que debemos aprovechar para desarrollar lo que seremos, y, no siempre tenemos “tiempo” de terminar el trabajo que hubiéramos deseado realizar.
Incluso las imágenes que vemos en el Museo nos puede, mentalmente, llevar a ese viaje al pasado
El sentido subjetivo del tiempo hace que tengamos una noción del pasado, del presente y del futuro. Lo utilizamos para entender el curso y la duración de los acontecimientos, situarlos en su momento y generar expectativas sobre ellos. Nos sirve también para cosas como apreciar la velocidad de lo que se mueve, valorar el tamaño de un objeto cuando lo exploramos por el tacto, o ejercer la prosodia, el mensaje emocional que va en la entonación y el curso de las palabras habladas. Nuestra sensibilidad para percibir y responder al tiempo está implicada también en tareas mentales complejas, como atender a lo que pasa, pensar para solucionar problemas o tomar decisiones, planificar el futuro o incluso entender las mentes ajenas. La percepción subjetiva que tenemos del tiempo es influenciada por muchos factores externos e internos a nuestro organismo.
Somos animales eminentemente sociales, tendemos a explicar nuestras ideas y tratamos de que, todo lo nuestro quede, de alguna manera, para la posteridad. Los hechos destacados quedaron grabados, primero en rústicos dibujos en las paredes de las cuevas, más tarde en las piedras y en los muros de las construcciones, en papiros y finalmente en los libros de historia y, más modernamente, en grabaciones filmadas en películas que nos permiten visualizar la historia.
Claro que, del futuro, como aún no ha llegado, sólo podemos imaginar. Tenemos los medios tecnológicos construir los futuros que podrían ser, y, representamos historias inventadas que nos llevan a ese futuro soñado. Unas veces será idílico y perfecto y otras, por el contrario, será un futuro en el que, la misma tecnología que hemos creado, se apodera del mundo y trata de destruirnos.
En ese futuro imaginario, nuestra tendencia es la de representar el escenario que, según creemos, se podría producir dentro de…más o menos tiempo que está por venir. En el espacio están muchas de esas historias futuras, pues pensamos que entonces, seremos los señores, no ya del espacio, sino del hiperespacio mismo, es decir, estaremos en posesión de conocimientos que nos permitirán burlar el muro que hoy tenemos delante, ¡la velocidad de la luz! Infranqueable en este tiempo presente para nosotros.
¿Será científicamente posible superar la velocidad de la Luz? “Los motores de curvatura que impulsaban a la nave Enterprise en sus correrías espaciales pueden convertirse en una realidad y permitirnos superar la velocidad de la luz”. Han declarado unos científicos de los que no recuerdo sus nombres. Sin embargo, si la velocidad de la luz puede ser superada, antes de que dicha proeza la puedan conseguir los hombres, creo que vendrá de la mano de la misma Naturaleza que, teniendo todas las respuestas, nos señalará el camino para lograr esa imposibilidad del presente. De todas las maneras no creo que esa velocidad se pues superar por medios convencionalessino, será otra la manera de hacerlo mediante un sistema que pueda burlarla, es decir, encontrar una forma más rápida de viajar sin tener que hacerlo a más de 300.000 Km/s. ¿Podrían ser los agujeros de susano? ¿Abrir una puerta al Hiperespacio?
Como decía al principio, el pasado no siempre está claro y es diáfana su lectura, y, de lo que hemos podido recuperar y conservar, aprendimos y nos señaló el camino a seguir, aunque no por ello, dejamos de repetir algunos errores y de caer en las mismas trampas. La sabiduría de los antiguos queda al descubierto: “El hombre es el único animal que tropieza dos veces en la misma piedra”. Bueno, en realidad, el tropiezo se reproduce una y otra vez, sólo tenemos que mirar hacia atrás en el tiempo para comprobar las muchas torpezas repetidas.
El transcurso del tiempo, a pesar de todo nuestro empeño, termina por enseñarnos y adquirimos eso que llamamos experiencia y que nos hace más sabio: “Más sabe el diablo por viejo que por diablo”.
Ella camina y, por muy rápida que pueda ir, este movimiento no implica cambio alguno al no ser relativista, es un simple desplazamiento de lugar. Nosotros, en nuestra vida cotidiana no hacemos que el tiempo se ralentice o se agilice, transcurre a la velocidad que el ritmo del Universo ha impuesto nosotros. Una estrella vive diez mil millones de años y, nosotros, de momento no pasamos de los cien.
En el río Odiel, por las cercannías del muelle del Tinto, mis tíos y mi padre salían a pescar la caballa en pequeñas embarcaciones de vela latina. No pocas veces, de pequeño, disfruté de aquellos paseos hasta El Convento de La Rábida, el Convento donde los franciscanos acogieron a Colón y a su hijo antes de que partiera para las Américas. Ese para mí es el pasado.
No pocos piensan que el futuro y el pasado no existen, que son irreales y que estamos en un continuo presente. Claro que, el pasado sí existió, recuerdo pasajes de mi infancia junto a mi padre que fueron muy reales. Del futuro, no puedo recordar nada por mucho que me quiera esforzar, sólo puedo representar pasajes que mi imaginación dibuja en mi mente y que, al contrario de aquellos otros del pasado que son inamovibles, éstos, pueden ser cambiados a voluntad. Claro aquellos del pasado fueron y estos del futuro, nunca tuvieron una realidad.
El Tiempo se deshace entre las manos y no lo podemos agarrar
El futuro será el presente de nuestros hijos con los que, compartimos el presente que, para entonces, para ellos será el pasado, cuando nosotros no estemos y formemos parte de la historia. Claro que, lo llamamos futuro y, en realidad, cuando eso se produce y se hace realidad, ninguno de nosotros estaremos, todos estamos confinados en un presente sin futuro, el futuro, nuestro futuro que no podremos conocer, será el tiempo de otros y, para ellos, también se llamará presente.
El futuro, a pesar de que no ha llegado aún, es “leído” por algunos que dicen tener ese don, “pueden ver lo que no ha ocurrido” y, con ello, llevan al convencimiento a los crédulos de que, “su futuro” será de ésta o aquella manera. ¡Cómo somos! En todos los tiempos y lugares, siempre existieron espabilados que se aprovecharon de esa abstracción que llamamos tiempo, para, de una u otra manera, obtener beneficios y posiciones privilegiadas haciendo creer a otros que ellos conocían lo que nadie puede conocer.
Parece mentira que alguien pueda creer en estos…
Desde que nacemos, comienza “nuestro tiempo” que, como regla universal y para nuestro bien, es algo secreto, nadie conoce la duración de su tiempo que, por otra parte, no pocas veces está en manos del azar. Si todo transcurre con normalidad y no somos atacados por ninguna enfermedad, accidente, ataque , etc., nuestro tiempo será el de la vida media de una persona sana que, hoy en día, está en los 80 años. Conocer la duración de nuestro tiempo sería, en muchos casos, motivo más que suficiente para vivir angustiados y, en algunos casos, nadie sabe qué reacciones o comportamientos podríamos tener en según qué casos concretos.
Su tiempo transcurre lleno de felicidad
El Tiempo, es algo tan subjetivo que, siendo el mismo para todos, en la realidad, no lo es. Cómo puede transcurrir el tiempo igual y de la misma manera para el que todo lo tiene, que goza de una inmejorable salud, que ama y es amado, que vive en la tranquilidad y certidumbre de que ningún problema podrá venir a perturbar su paz, con aquel otro que, viviendo en la más grande de las pobrezas, carece de todo, la vida le ha negado cualquier alegría, vive debajo de un puente, enfermizo y en la más completa incertidumbre del mañana. Para él, la vida es de una dureza tal que, no pocas veces pensó en acabar con ella. El primero puede “ver” y sentir como el tiempo transcurre con normalidad, todo se desarrolla a su alrededor al ritmo que marca el tic tac del reloj de oro que lleva bien abrazado a su muñeca. El otro, puede sentir en lo más profundo de sus pensamientos como el “tiempo” transcurre lento, como un martirio que nunca acaba, como algo que se ensaña y se regodea de su sufrimiento.
¡Es tan injusta la vida!
¿Qué tiempo es el suyo?
No todos podemos sentir, el transcurso del tiempo de la misma manera. Todos tenemos “nuestro propio tiempo”.
Yo, por ejemplo, tengo muchas clases de tiempo, ese que no deja sentir su transcurrir cuando estoy leyendo o escribiendo sobre temas que me apasionan, y, aquel otro, que se me hace eterno, cuando tengo que cumplir con algún compromiso social. En aquel tiempo primero de cuyo transcurrir ni me entero, mi “espíritu” está gozando al bucear en los misterios de la Naturaleza que nunca dejarán de producirme asombro y, al mismo tiempo encuentro explicación del por qué de las cosas. En el “otro tiempo”, el que transcurre lentamente y no acaba nunca de pasar, las horas se hacen interminables, escuchar a la señora que te cuenta lo listo que su nieto es, oír al joven que lo sabe todo, al jubilado que se queja de todo, o, simplemente escuchar banalidades de esta o aquella “famosa”…hace que, el transcurso del tiempo me resulte interminable.
Otro tiempo, diferente del nuestro cotidiano es aquel que, podríamos vivir si tuviéramos la suerte de ser pasajero de una nave cuya velocidad se acercara o fuese próxima a la de la luz. Nuestro tiempo, se ralentizaría y su transcurrir, sería mucho más lento que el tiempo de nuestros familiares y amigos que se quedaron en la Tierra. Claro que, también eso sería antinatural y, dependiendo de a dónde fuésemos, se podría dar el caso de que, a nuestro regreso, no estarían aquí ninguno de nuestros seres queridos. Así que, renuncio a ese tiempo y, prefiero el mío propio en el que, salvo sorpresas inesperadas, todo transcurrirá según lo previsto.
Dan un poco de miedo, tan fríos y faltos de sentimientos
Algunos pintan el porvenir (es decir, el futuro) de manera tal que, lo que hemos construido nos sobrepasará, se harán los dueños del mundo y de los mundos a los que nosotros, pobres humanos, nunca podremos llegar. El futuro tiene muchos nombres. Para los débiles es lo inalcanzable.
De todas las maneras, el Tiempo siempre ha estado ahí, desde que surgió cuando nació el Universo. Avanza siempre hacia adelante y, a su paso, todo cambia, nada permanece, mientras que él, inamovible sigue su camino hacia esa Eternidad que ninguno podremos conocer.
Sobre esto del “tiempo” hemos construido muchas frases:
– “Vive el presente de manera tal que, en el futuro, tengas un bonito pasado”.
– “El futuro estará siempre, construido por tu presente”.
– “El presente está cargado del pasado y, el futuro, será lo que determine el presente”.
– “Todo lo que será, causa en lo que es”.
“El futuro tiene muchos nombres. Para los débiles es lo inalcanzable. Para los temerosos, lo desconocido. Para los valientes es la oportunidad” . Según Víctor Hugo.
Woody Allen, lo mira otra perspectiva: “Me interesa el futuro porque es el sitio donde voy a pasar el resto de mi vida”.
En realidad, quiso construir una frase inteligente y se queda en perogrullada, ya que, el resto de su vida siempre será presente, el resto al que se refiere…estará muerto y, tendría que haber dicho: No me interesa el futuro porque no se en que lugar podrán estar mis restos y, sobre todo, mi consciencia. Y, a todo esto, ¿qué piensas tú sobre lo que el Tiempo es, cómo ves el pasado, el presente y el futuro? ¿Será todo una misma cosa dividida por tramos todos, de una u otra manera conexos? ¿Será que, para los seres vivientes sólo existe el eterno presente y que, el pasado sólo pertenece a los muertos y el futuro a los que nop han llegado a vicvir todavía? ¿Cómo clasificarías tú el Tiempo?
Tres simple palabras: “Perdón” “Por favor” “Gracias”
Y, como por nosotros ha pasado ya un buen período de Tiempo, alguna que otra cosa hemos podido aprender, y, si seguimos los consejos positivos, la vida, nos irá mucho mejor. No olvidemos que además de “nosotros” existen otras personas que también, dentro de nuestro Tiempo, tienen sus derechos, ¡respetémoslo!
emilio silvera
Jul
5
Seguimos con Einstein
por Emilio Silvera ~ Clasificado en Supergravedad ~ Comments (0)
CIENCIA-ABC
La investigación se ha llevado a cabo en un sistema estelar triple situado a miles de años luz – NRAO/AUI/NSF; S. Dagnello
La Relatividad de Einstein supera la prueba más extrema hecha hasta el momento
Un estudio ha confirmado que un púlsar y una enana blanca «caen» con la misma aceleración en un mismo campo gravitatorio, lo que concuerda con los postulados del genio alemán. Es la prueba más exigente del Principio de Equivalencia
Si no hubiera aire ni rozamiento, y dejáramos caer desde un mismo punto de un alto edificio una pluma y un gran yunque de hierro, veríamos algo curioso: los dos llegarían al suelo exactamente en el mismo momento. Este concepto, incorporado en las leyes de la gravedad desde hace siglos, en la Teoría de la Relatividad General de Einstein se traduce en el llamadoPrincipio de Equivalencia: según este, todos los cuerpos situados en un mismo campo gravitatorio «caen» con la misma aceleración, con independencia de su masa y de su composición.
Un pulsar rapido (periodo de milisegundo) a la izquierda, alrededor del cual orbita una estrella enana blanca caliente (en el centro), y una más fría (en el fondo). Crédito de la imágen: Bill Saxton; NRAO/AUI/NSF
This image shows the pulsar PSR J0337+1715. Image credit: Ransom SM et
Esta teoría ha pasado varias pruebas en la Tierra, pero este miércoles, un estudio publicado en Nature ha llevado a cabo la prueba más exigente de este principio hasta la fecha, y esta vez lejos de nuestro planeta. Un equipo internacional de astrónomos ha confirmado a validez de la Teoría General de la Relatividad en una estrella triple, llamada PSR J0337+1715, y situada a 4.200 años luz. Los científicos han confirmado que la aceleración de los tres miembros de este sistema, dos estrellas enanas blancas y un púlsar, es idéntica, al menos de acuerdo con la sensibilidad de los instrumentos usados.
«La mayoría de las teorías de gravedad alternativas a la Relatividad General predicen que el púlsar debería caer de forma diferente», ha explicado a ABC Anne Archibald, investigadora en la Universidad de Ámsterdam (Holanda) y autora principal del estudio. «Pero nosotros hemos confirmado que no es así».
La idea del Principio de Equivalencia y de la misma aceleración de todos los cuerpos situados en un campo gravitatorio, con independencia de su composición y masa, fue explorada por Galileo y asentada con las leyes de Newton. Con la Relatividad, los científicos consiguieron el aparato matemático necesario para expresar este fenómeno.
¿Y qué pasa cuando la gravedad es extrema?
Aunque hasta ahora las pruebas hechas han confirmado estos principios, existen teorías alternativas de gravedad que, desde luego, no afectarían a un yunque o a una pluma. Sin embargo, sí que afectarían a las gravedades extremas, como las originadas por un objeto tan compacto y masivo como un púlsar: una estrella de neutrones extraordinariamente comprimida que gira a gran velocidad y emite potentes chorros de energía. Según estas teorías, la energía gravitatoria que mantiene cohesionada la materia que forma algo tan «pesado» como un púlsar debería influir en su aceleración en un campo gravitatorio. Por eso, su aceleración y su caída no sería idéntica a la de objetos menos masivos.
¿Qué supondría esto en el sistema triple de terrible nombre PSR J0337+1715? Dicho sistema está compuesto por una pareja, constituida por una estrella de neutrones en una órbita de 1,6 días de duración en torno a una estrella enana blanca, y una tercera en discordia: otra estrella enana blanca situada en la distancia y que completa una vuelta completa en torno al dúo en 327 días.
En rojo, efecto de desplazamiento de la órbita del púlsar hacia la enana blanca externa y que no se ha observado en este caso, validando el Principio de Equivalencia de la Relatividad – Cortesía de Anne Archibald
«Según las teorías alternativas, la órbita del púlsar debería estar ligeramente desplazada del centro, y desviada hacia la compañera del exterior, siguiendo su trayectoria», ha explicado Archibald. Pero no es así.
Observando al púlsar
En 2011, el Telescopio de Green Bank (situado en Estados Unidos) descubrió este sistema estelar y comenzó a investigarlo de forma continuada. Gracias a este y otros potentes radiotelescopios, como el de Arecibo (Puerto Rico) o el Radio Telescopio Westerbork Synthesis (Holanda), los astrónomos han recopilado cientos de horas de observación con los movimientos de cada uno de los objetos de esta estrella triple.
Todo gracias a que la estrella de neutrones gira sobre sí misma unas 366 veces cada segundo y que hace llegar pulsos a la Tierra de una forma periódica. «Hemos podido contar cada pulso de la estrella de neutrones desde que comenzamos la investigación», ha dicho Archibald. El resultado es que los astrónomos han logrado alcanzar una precisión de cientos de metros a la hora de estimar la posición de un objeto de unas dos decenas de kilómetros de diámetro y situado a 4.200 años luz de distancia.
Radio Telescopio Westerbork Synthesis (Holanda) – ASTRON
«Me hubiera sorprendido que la teoría de la Relatividad de Einstein hubiera fallado esta prueba», ha reconocido Anne Archibald. «Pero podría haber ocurrido: nuestra prueba es más sensible que cualquiera otra hecha hasta ahora, así que nadie había comprobado que la teoría de Einstein funcionaba hasta este límite antes».
El mundo de la masa enormemente compactada
Los astrónomos no han detectado ninguna diferencia entre la aceleración del púlsar y la enana blanca externa, pero sus medidas no son perfectas. Sin embargo, la mayor discordancia posible entre ambas aceleraciones, a la luz de la precisión de los instrumentos, sería como máximo de 2,6 partes por millón, diez veces inferior a la que podrían haber pasado por alto exámenes anteriores.
Tal como ha explicado a ABC Clifford Will, autor de un comentario publicado en Nature sobre la investigación de Archibald y científico en la Universidad de Florida (EE.UU.), hasta ahora la prueba más precisa era una que había medido «la igualdad de la aceleración de la Tierra y la Luna hacia el Sol, por medio de un láser». Ahora, los astrónomos se han fijado en un sistema mucho más distante pero mucho más masivo, lo que permite poner a prueba la Relatividad en el mundo de las masas enormemente compactadas.
Esto es importante, tal como explica Will, porque las teorías alternativas de la gravedad, que sugieren que la aceleración de objetos muy masivos no es la misma que la de cuerpos menos masivos, se basa en un curioso fenómeno que depende de la energía gravitacional que mantiene cohesionados estos objetos.
Según ha explicado este investigador, lo que ocurre, según teorías como la Relatividad, es que no solo la masa de un cuerpo interacciona con la gravedad, sino que su propia gravedad interacciona con ella misma. «¿Se relaciona la gravedad de cuerpos como la Tierra o una estrella de neutrones con la gravedad de un cuerpo externo, igual que con sus propios átomos? La Relatividad dice que sí, pero otras teorías dicen que no. Por eso es tan importante hacer estas pruebas», ha argumentado el investigador.
En la Tierra este efecto de supuesta desviación sería pequeño, pero en una estrella de neutrones, tan extremadamente compactada, sería mucho más importante.
Los autores del estudio ya han comentado que seguirán buscando lugares donde poner a prueba la Relatividad General de Einstein, y en concreto el Principio de Equivalencia. Tal como han explicado, la búsqueda para aprender sobre las últimas fronteras del Universo continuará. Parece que queda mucha tarea por delante, porque la astrofísica y la cosmología están todavía marcadas por los enormes misterios de la materia y la energía oscuras.
Jul
5
¿Las Estrellas? Mucho más que puntitos brillantes en el cielo
por Emilio Silvera ~ Clasificado en las estrellas y la Vida ~ Comments (3)
“¿Está el Corazón y el Alma de nuestra Galaxia localizadas en Casiopeia? Posiblemente no, pero ahí es donde dos brillantes nebulosa de emisión apodadas Corazón y Alma descansan. La Nebulosa del Corazón, oficialmente catalogada como IC 1805 y visible en la parte superior derecha, tiene una forma en luz visible que nos recuerda a un clásico símbolo de un corazón. La imagen de arriba, sin embargo , fue realizada en luz infrarroja por el recientemente lanzado telescopio WISE. La luz infrarroja penetra bien dentro de las enormes y complejas burbujas creadas por la formación estelar en el interior de estas dos regiones de formación de estrellas.
Los estudios de estrellas y polvo como éstos encontrados en las Nebulosas Corazón y Alma se han focalizado en cómo se forman las estrellas masivas y cómo les afecta su entorno. La luz tarda unos 6.000 años en llegarnos desde estas nebulosas, que juntas abarcan unos 300 años luz.” (APOD)
Ubicadas en el brazo de Perseo de nuestra galaxia, la nebulosa Corazon (derecha) y la nebulosa Alma (izquierda) son muy brillantes (a pesar de eso es necesario un telescopio para verlas) en una region de la galaxia donde muchas estrellas se estan formando. IC 1805 (la nebulosa Corazon) es a menudo llamada tambien como la nebulosa del Perro Corriendo, debido obviamente a la apariencia de la nebulosa vista desde un telescopio.
Es curioso que, mirando en la oscura noche como brillan las estrellas del cielo, nos atrae su titilar engañoso (es la atmósfera terrestre la que hace que lo parezca) y su brillo, Sin embargo, pocos llegan a pensar en lo que verdaderamente está allí ocurriendo. Las transformaciones de fase por fusión no cesan. Esta transformación de materia en energía es consecuencia de la equivalencia materia-energía, enunciada por Albert Einstein en su famosa fórmula E=mc2; donde E es la energía resultante, m es la masa transformada en energía, y c es la velocidad de la luz (300 000 kilómetros por segundo). La cantidad de energía que se libera en los procesos de fusión termonuclear es fabulosa. Un gramo de materia transformado íntegramente en energía bastaría para satisfacer los requerimientos energéticos de una familia mediana durante miles de años.
Imagen de Sirio A (estrella grande) y Sirio B (estrella pequeña abajo a la izquierda) tomadas por el Telescopio Hubble (Créd. NASA). Sirio es la quinta estrella más cercana y tiene una edad de 300, millones de años. Es una estrella blanca de la secuencia principal de tipo espectral A1V con temperatura superficial de 10 000 K y situada a 8,6 años luz de la Tierra. Es una estrella binaria y, de ella, podríamos contar muchas historias. La estrella fue importante en las vidas de Civilizaciones pasadas como, por ejemplo, la egipcia.
Lo que conocemos como estrella es una bola de gas luminosa que, durante una etapa de su vida, produce energía por la fusión nuclear del hidrógeno en helio. El término estrella, por tanto, no sólo incluye estrellas como el Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún en formación y no lo suficientemente calientes como para que dicha combustión nuclear haya comenzado, y también varios tipos de objetos más evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.
Seguimos en la Nebulosa del Corazón (otra región)
Las estrellas se forman a partir de enormes nubes de gas y polvo que a veces tienen hasta años-luz de diámetro. Las moléculas de polvo, unidas a las de los gases, se rozan y se ionizan, se calientan y la nube comienza a girar lentamente. El enorme conglomerado, poco a poco se va juntando y la temperatura aumenta. Tal enormidad de materia crea una fuerza gravitatoria que hace contraerse la nube sobre sí misma; su diámetro y su temperatura en el núcleo es tal que se produce la fusión de los protones de hidrógeno que se transforman en un material más complejo, el helio, y ese es el momento en que nace la estrella que, a partir de ahí, puede estar miles de millones de años brillando y produciendo energía termonuclear.
La masa máxima de las estrellas puede rondar las 120 masas solares, es decir, ser 120 veces mayor que nuestro Sol, y por encima de este límite sería destruida por la enorme potencia de su propia radiación. La masa mínima para poder ser una estrella se fija en 0’08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno y se convertirían en enanas marrones. Las luminosidades de las estrellas varían desde alrededor de medio millón de veces la luminosidad del Sol para las más calientes hasta menos de la milésima de la del Sol para las enanas más débiles. Aunque las estrellas más prominentes visibles a simple vista son más luminosas que el Sol, la mayoría de las estrellas son en realidad más débiles que éste y, por tanto, imperceptibles a simple vista.
* La estrella Sirio es la más brillante y tiene el doble de tamaño que nuestro Sol
Eta Carinae (NGC 3372) tiene 400 veces el diámetro del Sol, se encuentra inmersa en esa Nebulosa que la esconde dentro de grandes “montañas” de gas y el polvo.Eta Carinae es una estrella del tipo variable luminosa azul hipermasiva, situada en la constelación de la Quilla. Su masa está en el límite y oscila entre 100 y 150 veces la masa del Sol. lo que la convierte en una de las estrellas más masivas conocidas en nuestra Galaxia. Asimismo, posee una altísima luminosidad, de alrededor de cuatro millones de veces la del Sol. debido a la gran cantidad de polvo existente a su alrededor, Eta Carinae irradia el 99% de su luminosidad en la parte infrarroja del espectro. lo que la convierte en el objeto más brillante del cielo en el intervalo de longitudes de ondas entre 10 y 20 μm (la millonésima parte de un metro).
* Betelgeuse tiene 1.000 veces el díametro de nuestro Sol
Pero la estrella más grande conocida es:
VY Canis Majoris, supergigante roja que es aproximadamente 2.100 veces más grande que nuestro Sol.
El brillo de las estrellas (la luz y el calor) es el resultado de la conversión de masa en energía (E = mc2), por medio de reacciones nucleares, las enormes temperaturas de millones de grados de su núcleo, hace posible que los protones de los átomos del hidrógeno se fusionen y se conviertan en átomos de helio. Por cada kilogramo de hidrógeno quemado de esta manera, se convierten en energía aproximadamente siete gramos de masa. De acuerdo con la famosa ecuación de Einstein (arriba reseñada), los siete gramos equivalen a una energía de 6’3 × 1014 julios. Las reacciones nucleares no sólo aportan la luz y el calor de las estrellas, sino que también producen elementos pesados, más complejos que el hidrógeno y el helio que, posteriormente, son distribuidos por el universo, cuando al final de la estrella, esta explota en supernova, lanzando sus capas exteriores al espacio que de esta forma, deja “sembrado” de estos materiales el “vacio” estelar.
Las estrellas pueden clasificarse de muchas maneras. Una manera es mediante su etapa evolutiva: en presecuencia principal, secuencia principal, gigante, supergigante, enana blanca, estrella de neutrones y agujeros negros. Estas últimas son la consecuencia del final de sus vidas como tales estrellas, convirtiéndose en objetos estelares de una u otra clase en función de sus masas originales. Estrellas como nuestro Sol, al agotar el combustible nuclear se transforman en gigantes rojas, explotan en novas y finalmente quedan como enanas blancas. Si la masa es mayor serán estrellas de neutrones, y si aún son mayores, su final está en agujeros negros.
Nuestro Sol, nos parece un objeto enorme, grandioso que, es capaz, con su actividad de enviar a la Tierra luz y calor (radiación) para que podamos vivir los seres que la pueblan. Sin embargo, a pesar de su “grandeza”, la comparamos con otros objetos celestes y, desde luego, nos podemos quedar asombrados de que puedan existir cosas tan grandes como VY Canis Majoris. Podéis observar en ellas su tamaño en comparación con nuestro Sol.
El Color de las estrellas indican de qué materiales están conformadas y, así se comprueba mediante el estudio de sus espectros.
- Color azul, como la estrella I Cephei
- Color blanco-azul, como la estrella Spica
- Color blanco, como la estrella Vega
- Color blanco-amarillo, como la estrella Proción
- Color amarillo, como el Sol
- Color naranja, como Arcturus
- Color rojo, como la estrella Betelgeuse.
Otra clasificación es a partir de sus espectros, que indican su temperatura superficial. También por el color. Otra manera es en poblaciones I, II y III, que engloban estrellas con abundancias progresivamente menores de elementos pesados, indicando paulatinamente una mayor edad. También evolución estelar y magnitudes aparentes y absolutas y el tipo espectral con la distancia en a. L., es otra de las clasificaciones.
Después de estas clasificaciones genéricas tenemos otras mas particulares y definidas referidas a estrellas binarias, estrellas capullo, con baja velocidad, con envoltura, con exceso de ultravioleta, de alta velocidad, de baja luminosidad, de baja masa, de bario, de bariones, de campo, de carbono, de circonio, de estroncio, de helio, estrella de la población I extrema, de la población intermedia, de la rama gigante asintótica, estrella de litio, de manganeso, de manganeso-mercurio y, viceversa, estrella de metales pesados, de neutrones, estrellas de quarks (hipotética con densidad intermedia entre la estrella de neutrones y el agujero negro), estrella de referencia, de silicio, de tecnecio, de tiempo intermedio, de tipo tardío, de tipo temprano, estrella del polo, estrella doble, estrella enana, estándar, evolucionada, etc.
La luz proveniente de la superficie caliente del Sol pasa a través de la atmósfera solar más fría, es absorbida en parte, por eso llega a nosotros presentando las características líneas oscuras en su espectro. Las líneas oscuras del espectro del sol coinciden con líneas de los espectros de algunos elementos y revelan la presencia de estos elementos en la superficie solar. Las longitudes de onda de las radiaciones se indican en nanometros (nm).
El Sol
De qué está hecho el Sol
La posición e intensidad de las líneas oscuras del espectro solar han permitido establecer que casi las tres cuartas partes de la masa del Sol son hidrógeno, el elemento más simple. Casi todo el resto es helio, el segundo elemento más simple. En suma, entre hidrógeno y helio suman alrededor del 98 por ciento de la masa solar. El 2% restante está compuesto, aproximadamente, por la siguiente proporción de elementos: 0,8% de oxígeno, 0,6% de carbono, 0,2% de neón, 0,15% de nitrógeno, 0,05% de magnesio, y, en menor porcentaje aún, hierro, sodio y silicio.
La composición química de una estrella varía según la generación a la que pertenezca. Cuánto más antigua sea, más baja será su metalicidad. Al inicio de su vida una estrella similar al Sol contiene aproximadamente 75% de hidrógeno y 23% de helio. El 2% restante lo forman elementos más pesados, aportados por estrellas que finalizaron su ciclo antes que ella. Estos porcentajes son en masa; en volumen, la relación es 90% de hidrógeno y 10% de helio.
En la Vía Láctea las estrellas se clasifican según su riqueza en metales en dos grandes grupos. Las que tienen una cierta abundancia se denominan de la población I, mientras que las estrellas pobres en metales forman parte de la población II. Normalmente la metalicidad está directamente relacionada con la edad de la estrella. A más elementos pesados, más joven es la estrella.
Un equipo japones de astrónomos han descubierto una fuerte correlación entre la metalicidad del disco de polvo protoplanetario y su longevidad. A partir de éste hallazgo proponen que las estrellas de baja metalicidad son menos propensas a tener planetas, incluyendo gigantes gaseosos, debido a la corta vida de los discos protoplanetarios.
La composición de una estrella evoluciona a lo largo de su ciclo, aumentando su contenido en elementos pesados en detrimento del hidrógeno, sobre todo. Sin embargo, las estrellas sólo queman un 10% de su masa inicial, por lo que globalmente su metalicidad no aumenta mucho. Además, las reacciones nucleares sólo se dan en las regiones centrales de la estrella. Este es el motivo por el que cuando se analiza el espectro de una estrella lo que se observa es, en la mayoría de los casos, la composición que tenía cuando se formó. En algunas estrellas poco masivas los movimientos de convección penetran mucho en el interior, llegando a mezclar material procesado con el original. Entonces se puede observar incluso en la superficie parte de ese material procesado. La estrella presenta, en esos casos, una composición superficial con más metales.
La variedad de estrellas es grande y para los estudiosos fascinantes. Tal diversidad es debida a la evolución que desde su formación tiene cada tipo de estrella en función de su masa y de los gases y polvo cósmico que la forman y los que se crean en su núcleo (horno solar) a miles de millones de grados de temperatura capaces de transformar materiales simples como el hidrógeno hacia una gama más compleja y pesada que, finalmente, mediante la explosión de supernova (más temperatura), arroja al espacio materiales que, a su vez, forman nuevas estrellas de 2ª y 3ª generación con materiales complejos. La vida en nuestro planeta pudo surgir gracias a que en la Tierra había abundancia de estos materiales creados en las estrellas. Podemos decir, sin temor a equivocarnos que nosotros mismos estamos hechos del material creado en las estrellas lejanas que posiblemente, hace miles de millones de años explotó en supernova a millones de años luz de nuestro Sistema Solar.
Pero el Universo se rige por lo que llamamos las Fuerzas y Constantes Fundamentales de la Naturaleza, tenemos que decir que, precisamente, estas constantes son las que tienen el mérito de que las estrellas brillen en las galaxias y de que nosotros estemos aquí para mirar a los cielos y contemplar su belleza.
Las constantes fundamentales (constantes universales) están referidas a los parámetros que no cambian a lo largo del universo. La carga de un electrón, la velocidad de la luz en el espacio vacío, la constante de Planck, la constante gravitacional, la constante eléctrica y magnética se piensa que son todos ejemplos de constantes fundamentales.
Las fuerzas de la naturaleza que gobiernan la electricidad, el magnetismo, la radiactividad y las reacciones nucleares están confinadas a un “mundobrana” tridimensional, mientras que la gravedad actúa en todas las dimensiones y es consecuentemente más débil.
Las fuerzas fundamentales
Tipo de Fuerza |
Alcance en m |
Fuerza relativa |
Función |
Nuclear fuerte |
<3×10-15 |
1041 |
Une Protones y Neutrones en el núcleo atómico por medio de Gluones. |
Nuclear débil |
< 10-15 |
1028 |
Es responsable de la energía radiactiva producida de manera natural. Portadoras W y Z– |
Electromagnetismo |
Infinito |
1039 |
Une los átomos para formar moléculas; propaga la luz y las ondas de radio y otras formas de energías eléctricas y magnéticas por medio de los fotones. |
Gravitación |
Infinito |
1 |
Mantiene unidos los planetas del Sistema Solar, las estrellas en las galaxias y, nuestros pies pegados a la superficie de la Tierra. La Gravedad está mediada por el Bosón (hipotético) llamado gravitón. |
Las constantes fundamentales
Constante |
Símbolo |
Valor en unidades del SI |
Aceleración en caída libre |
g |
9,80665 m s-2 |
Carga del electrón |
e |
1,60217733(49) × 10-19 C |
Constante de Avogadro |
NA |
6,0221367 (36) × 1023 mol-1 |
Constante de Boltzmann |
K=R/NA |
1,380658 (12) × 10-23 J K-1 |
Constante de Faraday |
F |
9,6485309 (29) × 104 C mol-1 |
Constante de los gases |
R |
8,314510 (70) × J K-1 mol-1 |
Constante de Loschmidt |
NL |
2,686763 (23) × 1025 mol-3 |
Constante de Planck |
h |
6,6260755 (40) × 10-34 J s |
Constante de Stefan-Boltzmann |
σ |
5,67051 (19) × 10-8 Wm-2 K-4 |
Constante eléctrica |
ε0 |
8,854187817 × 10-12 F m-1 |
Constante gravitacional |
G |
6,67259 (85) × 10-11 m3 Kg-1 s-2 |
Constante magnética |
μ0 |
4π × 10-7 Hm-1 |
Masa en reposo del electrón |
me |
9,1093897 (54) × 10-31 Kg |
Masa en reposo del neutrón |
mn |
1,6749286 (10) × 10-27 Kg |
Masa en reposo del protón |
mp |
1,6726231 (10) × 10-27 Kg |
Velocidad de la luz |
c |
2,99792458× 108 m s-1 |
Constante de estructura fina |
α |
2 π e2/h c |
Unas pueden ser más constantes naturales que otras, pero lo cierto es que, de momento, han servido como herramientas eficaces.
La última lección importante que aprendemos de la manera en que números puros como α (alfa) definen el mundo, es el verdadero significado de que los mundos sean diferentes. El número puro que llamamos constante de estructura fina, e indicamos con α, es como hemos dicho antes, una combinación de e, c y h (el electrón, la velocidad de la luz y la constante de Planck). Inicialmente, podríamos estar tentados a pensar que un mundo en el que la velocidad de la luz fuera más lenta sería un mundo diferente. Pero sería un error. Si e, h y c cambian de modo que los valores que tienen en unidades métricas (o cualesquiera otras) fueran diferentes cuando las buscamos en nuestras tablas de constantes físicas, pero el valor de α permaneciera igual; este nuevo mundo sería observacionalmente indistinguible de nuestro mundo. Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza.
Si pudiéramos coger una Gran Nave superlumínica y recorriéramos el espacio interestelar paseando por las distintas regiones del Universo, veríamos que, todo es igual en todas partes: Cúmulos y supercúmulos de Galaxias, Galaxias cuajadas de estrellas en cúmulos y sueltas con sus sistemas planetarios, púlsares de giros alucinantes, magnéteres creando inmensos capos electromagnéticos, agujeros negros que se tragan todo lo que traspasa el Horizonte de suscesos, Hermosas y brillantes Nebulosas de las que surgen las nuevas estrellas.
Está claro que pensar siquiera en que en nuestro universo, dependiendo de la región en la que nos encontremos, habrá distintos leyes físicas, sería pensar en un universo chapuza. Lo sensato es pensar como Einstein y creer que en cualquier parte del universo rigen las mismas leyes físicas, hasta que no se encuentre pruebas reales a favor de lo contrario, los científicos suponen con prudencia que, sea cual fueren las causas responsables de las pautas que llamamos “Leyes de la Naturaleza”, es mucho más inteligente adoptar la creencia de la igualdad física en cualquier parte de nuestro universo por muy remota que se encuentre; los elementos primordiales que lo formaron fueron siempre los mismos,
Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas.
Sí, el Universo podría ser considerado como la mayor Obra de Arte que, a su vez, es capaz de generar otras Obras de Artes que, en alguna ocasión, dan mucho que pensar, ya que, el surgir de la vida partiendo del simple hidrógeno que evoluciona en las estrellas del cielo…es ¡Increíble! pero, sin embargo, nada más cierto hay.
Así entró en escena Arthur Stanley Eddington: un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También hizo importantes contribuciones a nuestra comprensión de las galaxias, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de la expedición que durante un eclipse de Sol, pudo confirmar con certeza la predicción de la relatividad general que debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segundos de arco cuando pasaba cerca de la superficie solar, cuyo espacio estaría curvado debido a la gravedad generada por la masa del Sol. En aquella expedición, el equipo de Eddington hizo una exitosa medición del fenómeno desde la isla Príncipe, que confirmó que Einstein tenía razón y que su teoría predecía de manera exacta la medida de curvatura del espacio en función de la masa del objeto estelar que genera la gravitación distorsionando el espaciotiempo a su alrededor.
En un Universo caliente y opaco se liberaron los fotones y se hizo la luz<
Claro que estamos en el Año Internacional de Luz, y, no debemos perder de vista que la luz tiene tanto importancia para vida como el agua. Sin luz tendríamos un planeta oscuro con un asola nochr eterno, frío de tenebroso, sin esos bellos rincones que se pueden conformar cuando la luz, encide en una montaña, en el bosque, en el horiozonte del Océano, o, simplemente sew refleja en la blanca nieve, en las olas del Mar o en una atronadora catarata.
La luz Natural es un don que nos dio la Naturaleza y hace posible que esa luz y ese calor que el Sol nos envía, haga posible la vida en el planeta, se produzca la tan necesaria fotosíntesis, y muchos más beneficiosos fenómenos que, no siempre sabemos valorar en su justa medida.
emilio silvera