Jul
30
¡La Vida! ¿Sabremos alguna vez cómo surgió en el Universo?
por Emilio Silvera ~ Clasificado en El Universo y la Vida ~ Comments (4)
¿Cuántas esporas portadoras de la vida podrían estar ahí camufladas esperando el momento idóneo para situarse en el planeta que las permita surgir a la vida?
Galaxias, estrellas, mundos y… ¡Vida! Sabemos que los elementos materiales la vida fueron creados en las estrellas. A partir del sencillo Hidrógeno, las estrellas, en sus hornos nucleares, fusionaron el helio para fabricar Carbono, Oxígeno, Nitrógeno y todos los demás materiales necesarios para la vida. Más tarde, depositados en un mundo adecuado… Se conformó aquella sustancia, ¡protoplasma vivo! del que surgió aquella primera célula replicante que comenzó la increíble aventura de la vida.
La vida, seguramente, fue el resultado de los mismos procesos químicos y físicos que formaron los océanos y la corteza continental de nuestro planeta. Sin embargo, la vida es distinta porque puede experimentar evolución darwiniana. La selección natural ha desempeñado un pepel fundamental en la evolución de plantas y animales durante los primeros tiempos de la historia de nuestro planeta, pero también dirigió la evolución química que hizo posible la propia vida. A grandes rasgos entendemos cómo pueden haber evolucionado las moléculas a partir de precursores simples presentes en la Tierra joven. Sin embargo, sigue siendo un misterio cómo las proteínas, los ácidos nucleicos y las membranas llegaron a interaccionar de tan compleja.
Según todos los indicios, en los primeros años del planeta, los continentes que hoy conocemos estaban todos unidos formando la denominada Pangea. El movimiento de las placas tectónicas terrestres logró que estos se separaran y, con el transcurso de millones de años, llegaron a adquirir la moderna forma que hoy conocemos. En todo ese transcurrir y, mientras tanto, una serie de nuevas aparecieron para hacer posible el surgir de la vida.
Y la materia evolucionó alcanzar la Conciencia
En la Ciencia, todas las respuestas sugieren nuevas preguntas, así que no es de extrañar que al resolver dos de los grandes enigmas de la biología, Darwin y Pasteur pusieran al descubierto un misterio un misterio aún más profundo. Quizá la vida haya surgido siempre de la vida durante los últimos cuatro mil millones de años, pero en elgún , en algún sitio, en aquellos primeros tiempos de nuestro planeta, nuestros primeros antepasados tuvieron que surgir de alguna otra cosa.
Durante el proterozoico se produjo la expansión de cianobacterias los estromatolitos alcanzaron su mayor abundancia y variedad. Una vez que se produjo la acumulación de oxigeno libre se originaron las células eucariotas y pluricelulares. Durante este tiempo se produjo la simbiosis los proto-eucariotas y mitocondrias (eucariotas) y cloroplastos (plantas y algunos protistas).
Los estromatolitos son estructuras estratificadas en diversas formas, formadas por la fijacion de particulas carbonatadas de las cianobaceria, en aguas de poca profundidad que en la fotosintesis liberan oxigeno y retiran de la atmosfera grandes cantidades de dioxido de carbono. Su espesor no es mas que algunos milimetros y su es plana a hemisferica y columnar, presenta poros. Las mas antiguas encontrados es el de Australia (Warrawoona), que datan 3500 millones de años. Abajo se contempla una muestra.
Son celulas que se agrupan en colonias formando rocas sedimentarias. Estas rocas se encuentran en mares calidos y son el resultado de la union de seres uni- celulares, cianobacterias. Las rocas se forman muy lentamente, capa sobre capa y una capa se muere se deposita el carbonato de calcio de sus paredes sobre la capa anterior.
Las cianobacterias, también conocidas algas verdes-azules, son un grupo de bacterias muy especiales que, hace 3.600 millones de años, inventaron la fotosíntesis y cambiaron drásticamente la evolución de la vida. Generaron y mantienen toda la existencia actual del planeta.
CARACTERíSTICAS DE LAS CIANOBACTÉRIAS (CIANOFITAS O ALGAS VERDE-AZULES)
- Son procariotas (sin núcleo verdadero)
- Viven medios húmedos (tierra) o acuáticos (agua dulce o salada), muy adaptables. Son planctónicas.
- Origen: más de 3000 millones de .
- Soportan altas temperaturas.
- Se desarrollan en eutróficas formando grandes masas llamadas flores de agua.
- Producen sustancia antibióticas y poseen pigmentos como la clorofila.
- El 50% de los florecimientos producen toxinas.
- Se clasifican en varios tipos.
Existen bastantes antecedentes de intoxicaciones en humanos, tanto por consumo de agua, como por el hecho de estar en con ella (bañarse). Son los invasores invisibles. Las cianobacterias son comunes actualmente en aquellos medios costeros en los que la elevada salinidad del agua u otras condiciones ambientales especialmente duras restringen la colonización por animales.
, sigamos con nuestra historia. Los estromatolitos son estructuras organo-sedimentarias laminadas (CaCO3), que crecen adheridas al sustrato y emergen verticalmente del mismo, produciendo estructuras de gran variedad morfológica, volumen y biogeográfica. Su inicial formación y desarrollo a lo largo del tiempo, se debe a la actividad de la población microbianas, dominadas por cianobacterias que facilitan la precipitación de carbonatos.
La microflora se presenta de muchas maneras
Ademas de las cianobacterias, la microflora puede incluir algas (verdes y diatomeas), hongos, crustáceos, insectos, esporas, polen, rodofitas, fragmentos y sedimentos de todo tipo. La variedad biológica de cada comunidad estromatolítica dependerá de ambientales e hidrológicas: hipersalino, dulce acuícola, intermareales, submareales, fuertes corrientes, moderadas nulas, cálidos, templado, altitud (afecta a la exposición de la luz uv). En la superficie, es rugosa, porosa y cubierta por mucilago, filamentos, etc. Las partículas de carbonato van quedándose atrapadas, hasta que la cementación por crecimiento de cristales, forma una capa mas, de esta forma la estructura aumenta de tamaño.
Microfósiles de sedimentos marinos. “Microfósil” es un término descriptivo que se aplica al hablar de plantas o animales fosilizados cuyo tamaño es menor de aquel que llegar a ser analizado por el ojo humano. Normalmente se utilizan dos rasgos diagnósticos para diferenciar microfósiles de eucariotas y procariotas.
A partir de todos los fragmentos que la ciencia ha podido ir acumulando, ¿qué de planeta podemos recomponer y qué procesos tuvieron que darse para que, la vida, tal como la conocemos pudiera surgir? Sin temor a equivocarnos podemos afirmar que, cuando se formó el mar de Warrawoona la Tierra ya era un planeta biológico. Además, las mediciones de isótopos de carbono indican que ya podía haber comenzado la gran liberación ecológica de la fotosíntesis. No podemos tener la certeza si entre los microorganismos de aquel entonces había cianobacterias reproductoras de oxígeno, pero la presencia de cualquier tipo de organismo fotosintético en el océano de Warrawoona es de por sí muy informativa, pues nos permite colocar un punto de calibración en el árbol de la vida.
El estudio que se lleva a cabo en múltiples Laboratorios repartidos por todo el mundo y que están centrados en la evolución molecular, microbiana, la extremofilia e incluso sobre la bioinformática y unidades de secuencia genómica, nos están llevando nuevos conocimientos que confirman la evolución en el pasado.
En la nueva concepción de la evolución microbiana que simboliza el árbol, los organismos fotosintéticos aparecen relativamente tarde y se diversifican mucho después del origen de la vida y de la divergencia de los principales dominios de la biología. Si la materia orgánica de Warrawoona es producto de la fotosíntesis, hay que concluir que entonces la evolución de la vida ya debía llevar en marcha un buen tiempo.
Sin embargo hoy, la actividad humana está causando estragos. De pronto una parcela del mar se queda prácticamente sin vida. Son las llamadas zonas muertas, y en ellas la supervivencia está casi enteramente reservada a algunos arcaicos y privilegiados microorganismos, fósiles vivientes de la Tierra primigenia.
Los científicos llevan observando este fenómeno cerca de un siglo. Pero lo que era un problema esporádico se ha ido convirtiendo en una plaga: desde los años 60, el de zonas muertas crece exponencialmente.
El problema, es su ritmo de crecimiento: un 5% anual, y se espera un empeoramiento con el calentamiento del mar. “Al calentarse el agua, aumenta el consumo de oxígeno de los organismos marinos, baja la solubilidad del oxígeno en el mar y baja el intercambio con la atmósfera”.
“No existe otra variable de tanta importancia ecológica para los ecosistemas marinos costeros que haya cambiado tan drásticamente y en tan poco tiempo como el oxígeno disuelto”. Para estos científicos, la hipoxia en el mar, es decir, la caída de los niveles de oxígeno disuelto, es “uno de los mayores problemas ambientales de hoy”.
problema me lleva apensar que las observaciones geológicas indican que hace tres mil quinientos millones de años la atmósfera de la Tierra contenía nitrógeno, dióxido de carbono y vapor de agua, pero muy poco oxígeno libre. La mayoría de las inferencias acerca de ambientes antiguos se realizan a partir de pistas sutiles que nos proporcionan la geoquímica; la signatura sedimentaria del oxígeno, sin embargo, es muy llamativa: bandas de color rojo vivo en rocas con sílex ricos en hematita (Fe2 O3), un mineral de óxido de hierro.
Esta excavación al aire libre, en las Minas de Rio Tinto (Huelva) nos deja al descubierto los estratos en distintas capas a lo largo de miles de millones de años. El mineral de óxido de hierro está presente formando el llamado hierro en bandas (FHB)no se forman en los acéanos actuales. De hecho, salvo una importante excepción, no se acumulan hace 1.850 millones de años. Durante la primera mitad de la historia de la Tierra, en cambio, las FHB fueron un componente común en los sedimentos marinos..
La razón por la cual las FHB no se forman en la actualidad es que el hierro que llega a los océanos se encuentra de inmediato con el oxígeno y precipita en de óxido de hierro; en consecuencia, la concentración de hierro en el agua de mar de los océanos actuales es extraordinariamente baja. En los mares del eón Arcaico, las FHB de las sucesiones sedimentarias debieron formarse por reacción del hierro con el oxígeno, ayudadas quizá por bacterias. Alternativamente, es posible que el hierro fuese oxidado por la radiación ultravioleta ya que ésta, al no existir un escudo de ozono eficaz, penetraba hasta la superficie del océano. Todo esto nos lleva a saber que, en el pasado, la atmósfera y los océanos contenían mucho menos oxígeno que en la actualidad.
Todavía los expertos de la NASA, se preguntan como pudieron hallar múltiples formas de vida en estas aguas de Río Tinto, cargadas de elementos pesados con un PH imposible para la vida, y, sin embargo, ahí están. Ricamente instalados en un entorno imposible que nada le que envidiar a cualquier paraje de Marte.
En la actualidad, nuestros conocimientos de la vida y ambientes arcaicos son a un tiempo frustrantes y emocionantes: frustrantes por las pocas certezas que tenemos y, sólo muchas hipótesis a partir de los dispersos que se van obteniendo, emocionante porque sabemos algo, por poco que esto pueda ser, es estimulante contar con un punto de partida que nos permita continuar en el estudio y la observación, seguir experimentando para que, algún día, sepamos a ciencia cierta, de donde pudo venir la vida.
Es verdad que las rocas más antiguas que podemos identificar nos indican la presencia de organismos complejos ¿qué clase de células vivían en aquellos tiempos aún más lejanos? En última instancia, ¡cuál será el verdadero origen de la vida?
Cuando se formó el Sistema solar y con él la Tierra, los ingredientes de la vida ya estaban allí presentes. La energía de la Naturaleza llevó a las moléculas simples a combinarse y recombinarse, incrementando así la complejidad química el punto en que surge un sistema eficaz y capaz de replicarse así mismo. La idea es poderosa y atractiva: La vida, aparentemente tan distinta del agua y la piedra, surgió por la acción de los mismos procesos planetarios que conformaron los rasgos físicos de la Tierra…Nos falta demostrarlo.
La Tierra es el tercer planeta del Sistema Solar. Esta situación orbital y sus características de masa la convierten en un planeta privilegiado, con una temperatura media de unos 15º C, agua en forma líquida y una atmósfera densa con oxígeno, imprescindibles para el desarrollo de la vida.
Hace unos 4.600 millones de años la corteza de la Tierra comenzó a consolidarse y las erupciones de los volcanes empezaron a formar la atmósfera, el vapor de agua y los océanos. El progresivo enfriamiento del agua y de la atmósfera permitió el nacimiento de la vida, iniciada en el mar en de bacterias y algas, de las que derivamos todos los seres vivos que habitamos hoy nuestro planeta tras un largo proceso de evolución biólógica.
Volvamos al tema principal: ¡La Vida!
Aun los organismos más simples son máquinas moleculares extraordinariamente sofisticadas. Las primeras formas de vida tenían que ser muchísimo más sencillas. Necesitamos encontrar una familia de moléculas lo bastante simples como para formarse por procesos químicos y lo bastante complejas como para servir de cimiento a la evolución de las células vivas. Una molécula capaz de contener información yb estructura suficientes como para replicarse a sí mismas y, al cabo, param dirigir la síntesis de otros componentes que puedan canalizar la replicación con una eficiencia vez mayor.
ESTRUCTURA DE LA CELULA BACTERIANA
Unas moléculas, en fin, que pudieran una trayectoria evolutiva que permitiera a la vida emanciparse de los procesos físicos que le dieron nacimiento, sintetizando las moléculas necesarias para el crecimiento en lugar de incorporarlas de su entorno y captando energía química o solar para alimentar el funcionamiento de la célula.
El descubrimiento de las enzimas de ARN, o ribosomas, realizado de forma independiente y aproximadamente al mismo tiempo por el bioquímico de Yale Sidney Altman, tuvo un efecto catalítico sobre el pensamiento acerca del origen de la vida.
Los enzimas de ARN (llamadas “ribozimas”) son moléculas de ARN capaces de autorreplicarse a temperatura constante en ausencia de proteínas. Utilizan la llamada replicación cruzada, en la que dos enzimas se catalizan el uno al otro de mutua. Este proceso permite entender cómo surgió la vida, pero los biotecnólogos las usan para algo mucho más prosaico. Estos enzimas de ARN pueden ser utilizados para detectar una gran variedad de compuestos, incluyendo muchos relevantes en diagnóstico médico. El compuesto orgánico se liga al aptazima, que se replica exponencialmente, amplificando exponencialmente la concentración del compuesto hasta permitir que sea fácilmente detectado.
En palabras del filósofo de la biología Iris Fry, extraordinaria molécula se alzó como “el huevo y la gallina al mismo tiempo” en el rompecabezas del origen de la vida.
Sabemos que, en ciertas prebióticas, los aminoácidos se forman fácilmente, así quedó demostrado por Stanley Miller en su famoso experimento. Como los ácidos nucléicos, pueden unirse para formar péptidos, las cadenas de aminoácidos que se pliegan para formar proteínas funcionales.
“Una de las mentes más originales del mundo”.
The Times.
¿Quién es rebelde extraordinario? Se llama Freeman Dyson
Hay teorías todos los gustos, y, el afamado Freeman Dyson, un renombrado físico que ha pensado profundamente sobre el origen de la vida, sugiere que en realidad la vida comenzó en dos ocasiones, una por la vía del ARN y otra vez por vía de las proteínas. Las células con proteínas y ácidos nucleicos interactivos habrían surgido más tarde en función proto-biológica. Y, está claro que, la innovación por alianzas es uno de los principales temas de la evolución.
En el árbol de la vida, nosotros (tan importantes), sólo somos una pequeña ramita.
Hay muchos procesos que son de una importancia extrema en la vida de nuestro planeta y, dado que los organismos fotosintéticos (o quimiosintéticos) no pueden fraccionar isótopos de carbono en más de unas treinta parte por 1.000, necesitamos invocar la participación de otros metabolismos para poder explicar los resultados de las mediciones que se han realizado. Los candidatos más probables son bacterias que se alimentan de metano en los sedimentos. Estas bacterias obtienen tanto el carbono como la energía del gas natural (CH4) y, al igual que los organismos fotosintéticos, son selectivos con los isótopos. A causa de su preferencia química por el 12CH4 frente al 13CH4, los microbios que se alimentan de metano fraccionan los isótopos de carbono en unas veinte o 25 partes por 1.000 en los ambientes donde el metano es abundante. ¿Habéis pensado en la posibilidad de que esos organismos fotosintéticos estén presentes en Titán? ¡El festín está servido!
La fotosíntesis anoxigénica se da en los organismos que utiliza la energía de la luz del sol, dióxido de carbono (sustrato a reducir) y sulfuro de hidrógeno (en lugar del agua) dador de electrones que se oxida, se fabrican glúcidos y se libera azufre a el medio acuoso donde habitan o se aloja en el interior de la bacteria.
Otra característica es que los organismos que producen fotosíntesis anoxigenicos contienen bacterioclorofila, un tipo de clorofila exclusiva de los foto-organotrofos, usan longitudes de onda de luz que no son absorbidas por las plantas. Estas bacterias contienen también carotenoides, pigmentos encargados de la absorción de la energía de la luz y posterior transmisión a la bacterioclorofila. El color de estos pigmentos dan el a estas bacterias: bacterias púrpuras del azufre y bacterias verdes del azufre. En las cianobacterias los pigmentos captadores de luz son las ficobilinas, por lo tanto se les nombra, bacterias azules.
Cualquiera de estas imágenes de arriba nos cuenta una larga y compleja historia de cómo, se pudieron formar uno de los ahí representados, y, en cualquiera de sus fases, formas y colores, es toda una gran obra de la Ingeniería de la naturaleza.
No pocas veces he dejado aquí constancia de que, el Universo, en todas sus regiones (por muy alejadas que estén), se rige por unas leyes que están presentes en todas , y, así lo confirman mil observaciones y mil proyectos que a tal efecto se han llevado a buen término. Por ejemplo, mediaciones precisas de isótopos de azufre en muestras de Marte traídas a la Tierra por meteoritos demuestran que muy pronto en la historia del planeta vecino el ciclo del azufre estaba dominado por procesos atmosféricos que producían un fraccionamiento independiente de la masa.
Valles en Marte. (ESA) La región de Valles Marineris, que una longitud de 4.000 kilómetrosy una anchura de 600 kilómetros, es el sistema de cañones más grande conocido en el sistema solar, con profundidades que llegan a los diez kilómetros.
Basándose es ente descubrimiento del fraccionamiento independiente de la masa, se dirigió la atención sobre las rocas terrestres más antiguas. sorpresas de muchos geoquímicos, lo que se hayó fue que el yeso y la pirita de las sucesiones sedimentarias más antiguas de la Tierra también en Marte, han dejado constancias del fraccionamiento independiente de la masa de los isótopos de azufre. Al igual que en Marte, en la Tierra primitiva la química del azufre se encontraba al parecer influenciada por procesos fotoquímicos que sólo pueden producirse en una atmósfera pobre en oxígeno. La oxígeno comenzó a acumularse en nuestra atmósfera a comienzos del eón Ptoterozoico. En suma, todos los caminos de la biogeoquímica llevan a Roma.
Dos equipos de investigadores descubren que el oxígeno gaseoso apareció en la atmósfera terrestre unos 100 millones de años del evento de la gran oxidación de hace 2400 millones de años.
El oxígeno es un gas muy reactivo, no existe de manera libre durante un largo período de tiempo, pues óxidos o reacciona con otras sustancias de manera rápida. Si está presente en la atmósfera es porque las plantas lo reponen continuamente. Antes de la invención de la fotosíntesis y durante muchos cientos de millones de años no había oxígeno libre en la Tierra.
En los estratos geológicos se pueden encontrar pruebas de la existencia de un momento en el que se produjo una gran oxidación mineral, prueba de que el oxígeno se encontraba ya libre en la atmósfera terrestre por primera vez y en gran cantidad. A este hecho se le ha denominado evento de gran oxidación, o GOE en sus siglas en inglés, y fue un hecho dramático en la historia de la Tierra. Este oxígeno permitió más tarde la aparición de vida animal compleja. Los geólogos creían que durante el GOE los niveles de oxígeno subieron rápidamente niveles prácticamente despreciables.
¿Cómo respondió la vida a la revolución del oxígeno? Podemos imaginar, un “holocausto de oxígeno” que habría llevado a la muerte y la extinción a innumerables linajes de microorganismos anaeróbicos. Pero hace dos mil doscientos millones de años los ambientes anóxicos no desaparecieron; simplemente, quedaron relegados bajo una capa oxigenada de agua y sedimentos superficiales.
Aquello permitió a la Tierra dar cobijo a una diversidad biológica sin precedentes. Los microorganismos anaeróbicos mantuvieron un papel esencial en el funcionamiento de los ecosistemas, igual que en la actualidad.
En la primera fase de cualquier ejercicio aeróbico, el oxígeno se combina con la glucosa procedente del glucógeno. Al cabo de unos minutos, cuando el cuerpo nota que escasea el azúcar, empieza a descomponer las grasas. Entonces disminuye un poco el rendimiento, mientras el cuerpo se adapta al cambio de origen de su energía. Superado punto, se vuelve a los niveles y sensaciones normales, pero se queman grasas en lugar de glucosa.
De otro lado, los organismos que utilizan, o al menos toleran el oxígeno se expandieron enormemente. La respiración aeróbica se convirtió en una de las formas principales de metabolismo en las bacterias, y las bacteria quimiosintéticas que obtienen energía de la reacción entre oxígeno e hidrógeno o iones metálicos se diversificaron a lo largo de la frontera ente ambientes ricos en oxígeno y ambientes pobres en oxígeno. ese momento, la Tierra comenzó a convertirse en nuestro mundo.
Nuestro mundo, rico en agua líquida que cubre el 71% de la superficie del planeta, y, su atmósfera con un 78% (en volumen) de Nitrógeno, un 21 de Oxígeno y un 0,9 de Argón, además de dióxido de carbono, hidrógeno y otros gases en cantidades mucho menores que, permiten que nuestros organismos encuentren el medio idóneo poder vivir. Otros muchos factores presentes en la Tierra contribuyen a que nuestra presencia aquí sea posible.
Ya hemos comentado que, si el oxígeno trajo consigo un cambio revolucionario, las heroínas de la revolución fueron las cianobacterias. Fósiles extraordinariamente bien conservados en sílex de Siberia de mil quinientos millones de años de edad demuestran que las bacterias verdeazuladas se diversificaron tempranamente y se han mantenido hasta la actualidad sin alterar de manera sustancial su forma. La capacidad de cambiar con rapidez, pero persistir indefinidamente, compendia la evolución bacteriana.
La resistencia general de las bacterias a la extinción es bien conocida. Las bacterias poseen tamaños poblacionales inmensos y pueden reproducirse rápidamente: no importa que por la mañana nos lavemos los dientes meticulosamente; a media tarde, las bacterias que hayan sobrevivido al cepillo se habrán multiplicado hasta el extremo de recubrir nuevamente el interior de la boca. Además, las bacterias saben habérselas muy bien con medios cambiantes. El aire, por ejemplo, está lleno de bacterias; un plato de leche colocado en el alfeizar de la ventana no tarda en fermentar. Lo que es más, las bacterias son muy buenas a la hora de resistir perturbaciones ambientales. Aunque la mayoría crece especialmente bien dentro de unos márgenes ambientales estrechos, son capaces de tolerar extremas, al menos durante un tiempo.
Si miramos el tiempo que llevan aquí, como se pueden adaptar a condiciones que, ni en sueños podríamos hacerlo nosotros, y, sobre todo, si pensamos en la diversidad y en la inmensa cantidad y en que están ocupando (prácticamente) todas las reguiones del planeta, tendremos que convenir que, es necesario saber cuanto más mejor de ellas y, es necesario que nos sumerjamos en los reinos de las pequeñas criaturas que, de una u otra , serán nuestra salvación o, podrían provocar nuestra extinción.
También, en lugares como , pueden estar presentes esos pequeños seres.
En este lugar, donde abundan los mundos…¿qué seres habrá? Ahí están presentes todos y cada uno de los elementos necesarios para la vida, y, simplemente con que uno sólo de una infinidad de planetas se encuentre dentro de la zona habitable, podría contener un sin fin de formas de vida que, como aquí en la Tierra, hayan evolucionado y, ¿quién sabe? hasta es posible que esa clase de vida, pueda haber logrado los pensamientos, la imaginación, la facultad de ser conscientes.
De todas las maneras…seguimos sin saber, de manera consistentemente científica, como pudo surgir las vida. Sólo tenemos vestigios que nos acercan a esa posible fuente, y, son muchas, las zonas oscuras que no dejan ver lo que allí ocurrió, lo que hizo la evolución o dejó de hacer y, las primigenias que, posibilitaron que, en este pequeño planeta rocoso, emergieran formas de vida que evolucionadas han podido salir al exterior para ver lo que hay fuera.
¡Seguiremos buscando respuestas!
¡La Vida! Ese misterio, esa maravilla…que, cuando no podemos afirmar que sea sólo materia… Cuando en ella aparecen algunos ingredientes peculiares que, como la intuición, la imaginación, la curiosidad, y, ¡el Amor! Uno llega a sospechar que, seguramente hay algo más, mucho más que desconocemos sobre nosotros mismos y sobre otras criaturas que pueblan el nuestro y otros muchos mundos que en el Universo son.
emilio silvera
el 30 de julio del 2019 a las 6:02
La llegada de la vida a nuestro planeta sigue siendo un gran misterio y, hay opiniones para todos los gustos. Unos dicen que vino del Espacio exterior y que fueron esporas llegadas en un cometa las que al llegar a la Tierra se desarrollaron y dio lugar a la diversidad de vida que conocemos. Otros, por el contrario, creen que en nuestro planeta joven, estaban todos los ingredientes necesarios para el surgir de aquella primera célula replicante que comkenzo la fascinante aventura.
el 30 de julio del 2019 a las 6:03
La llegada de la vida a nuestro planeta sigue siendo un gran misterio y, hay opiniones para todos los gustos. Unos dicen que vino del Espacio exterior y que fueron esporas llegadas en un cometa las que al llegar a la Tierra se desarrollaron y dio lugar a la diversidad de vida que conocemos. Otros, por el contrario, creen que en nuestro planeta joven, estaban todos los ingredientes necesarios para el surgir de aquella primera célula replicante que comenzó la fascinante aventura.
el 30 de julio del 2019 a las 21:45
Hola muchachada.
Me resulta extraordinariamente fantasioso que la vida se haya originado a partir de alguna molécula compleja que como por arte de magia y procedente de ignoto (y remoto) lugar haya viajado por el espacio interestelar en un pedruzco helado y hostil hasta desprenderse (¿?) y “caer” en nuestra Tierra y “casualmente” encontrarse con un medio ideal en una época ideal para su desarrollo.
Parece mucho más realista considerar que aparece como un resultado esperable dentro de lo que es la evolución de la materia desde las primeras y más simples formas de la materia en las primeras estrellas (hidrógeno y helio) y de su paulatina complejización hasta las avanzadas dobles cadenas de ADN (3200 millones de pares de base cada uno a su vez con numerosas combinaciones de átomos). Proceso que por otra parte coincide concomitantemente con un creciente nivel de conciencia primero y luego de autoconciencia hasta alcanzar la capacidad de abstracción de nuestra especie.
Saludos cordiales.
el 31 de julio del 2019 a las 3:51
Amigo Nelson, creo que el escenario que dibujas para la vida es muy plausible y, posiblemente, en él se escenifica lo que pudo realmente pasar en nuestro Mundo (como seguiramente, en muchos otros). La materia “inerte”, como he dicho alguna vez, evolucionó hasta los pensamientos. En presencia de las adecuadas condiciones… El proceso es inevitable, ya que, la vida es el ingrediente mayor del Universo. ¿Qué sería un UNiverso son vida?