viernes, 25 de abril del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Y seguimos investigando y obsevando el Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

En el año 1.609 Galileo Galilei apuntó por primera vez al cielo con un telescopio. Fue el comienzo de 400 años de descubrimientos que aún continúan. El 27 de Octubre de 2.006 la Unión Astronómica Internacional (UAI) anunció la declaración por la UNESCO del 2009 como el Año Internacional de la Astronomía (AIA-IYA2009), ratificada por la ONU el 19 de Diciembre de 2.007. Por todo el mundo fueron celebrados grandes eventos, conferencias, celebraciones con intervención de la gente corriente de la calle, en Colegios y Universidades y, se escribieron miles de artículos conmemorando la celebración que era como un homenaje a todo lo conseguido, a todos los secretos desvelados desde que Galelei nos enseñara, por primera vez, la existencia de otros planetas fuera de la Tierra.

El Año Internacional de la Astronomía (AIA-IYA2009) representará una celebración global de la Astronomía y de su contribución a la sociedad, a la cultura, y al desarrollo de la humanidad. Su objetivo principal es motivar a todos los ciudadanos de todo el mundo s replantearse su lugar en el Universo a través de todo un camino de descubrimientos que se inició hace ya 400 años.”

En aquellas celebraciones, pude colaborar aportando mi “granito de arena” en publicaciones, charlas y otras celebraciones acordes al evento histórico ya de aquellas celebraciones. Recuerdo que por aquellas fechas, en un lugar denominado Imagina 65, decían:

LA ZONA DE LOS NOMBRES:  Emilio Silvera Vázquez

“Emilio Silvera Vázquez ha escrito centenares de artículos, la mayoría de ellos de temas científicos y dedicados al espacio sideral y goza de un gran prestigio allende las fronteras de Huelva. ¿Cuál ha sido el secreto de su éxito? Sobre Emilio Silvera, no se ha escrito todavía una biografía imparcial y completa, un extenso artículo que nos ayude a comprender su compleja y descollante personalidad.”
Claro que, no es el tema de hoy hablar de mí y sí, hacerlo del Universo que, nos depara continuas sorpresas y asombrosas imágenes de objetos que nos muestran una belleza singular, unos colores que ninguna paleta de pintor podría imitar y, sobre todo, nos habla de los inimaginables fenómenos de los que se vale la Naturaleza para conseguir sus objetivos. Aunque confinados en estre pequeño y hermoso planeta que llamamos Tierra, nos las hemos ingeniado para saber de todas esas maravillas que, lejos de nosotros,
siguen el curso que les ordena el ritmo dinámico del Universo.
“Debido a las grandes distancias a las que se encuentran objetos de aquel tiempo, la luz que nos llega de ellos es extremadamente débil, por lo que sólo podemos observar objetos que sean extremadamente brillantes. Los cuásares son los objetos más energéticos que se conocen, por lo que a su vez son los objetos más lejanos que hemos sido capaces de observar, y los únicos medibles a tales distancias. ¿Es posible por tanto observar otro tipo de objetos que no son tan luminosos?, la respuesta es que si, mediante la técnica de lente gravitacional”
Imagen relacionadaResultado de imagen de Lente gravitacional

El Universo es inimaginablemente grande. Los planetas de nuestro sistema solar orbítan el Sol en un espacio de doce mil millones de kilómetros. Eso de por sí es un número enorme pero se queda pequeño cuando se compara con la distancia a la estrella más cercana al Sol, Próxima Centauri. Esa estrella está a 38,000,000,000,000 kilómetros de nosotros.Es decir, a 4,22 años-luz del Sol.

Con las velocidades que hoy podemos alcanzar, una expedición a esa estrella tardaría en llegar unos 28.000 años.


Como Próxima Centauri es uno de los objetos más cercanos a nosotros, está claro que los números se vuelven gigantescos si hablamos de cosas en nuestra Galaxia o más lejanas aún. Para describir estas distancias tan grandes, los astrónomos usan una unidad que llaman el año-luz. Aunque suena como una unidad de tiempo, un año-luz, es en realidad, una medida de distancia. La luz viaja a 299.792.458 metros por segundo, y un año-luz se refiere a la distancia que viaja la luz durante un año, que se traduce en 9,460,800,000,000 kilómetros. A través de esta Unidad y otras inventadas para medir las enormes distancias del Universo (Unidad Astroniomica, parsec, kiloparsec, megaparsec…), siendo las más correintes del “tiempo-luz”—segundos-luz, minutos-luz, y años-luz—para tratar de ayudar a tener un sentido de la escala y dar una perspectiva de dónde están estos objetos en el Universo.

Extraños objetos pueden ser observados en el Universo en los que, energías inimaginables están presentes. ESO Utilizando el Atacama Large Millimeter/submillimeter Array (ALMA), los astrónomos han descubierto que los planetas que orbitan la estrella Fomalhaut deben ser mucho más pequeños de lo que se pensaba en un principio.

Colores

Los grandes telescopios y las nuevas técnicas hacen que podamos ver imágenes de objetos esparcidos por el Universo en bellos colores. En muchas imágenes los colores son aproximados a lo que usted vería si se pudiese acercar lo suficiente y sus ojos fuesen lo suficientemente sensitivos. Los telescopios pueden ver mucho más que nuestros ojos. Son más sensitivos, pueden distinguir luz y color más ténue y son receptivos a otras formas de luz (ondas electromagnéticas) fuera del espectro visible—ultravioleta, infrarrojo, rayos-X, ondas de radio y otros. Para las imágenes realizadas con esas partes invisibles del espectro se asignan colores de manera que la luz “más roja” se le asigna rojo y la luz “más azul” se le asigna el color azul. De esta forma se hace un mapa de la luz invisible, como los rayos-X o la luz infrarroja para crear imágenes que podemos ver.

La joven estrella S106 IR expulsa material a gran velocidad y perturba el gas y el polvo que la rodean. Así la captó el Hubble como un ángel de alas extendidas hacia el espacio infinito.

ESA/Herschel
La Imagen nos muestra la Nebulosa del Águila en bellos colores que denotan los materiales de los que está formada.
HUBBLE
El conjunto de galaxias Arp 273 captado por el Telescopio Espacial Hubble que se encuentra en la constelación de Andrómeda y tiene esta particular forma de rosa cósmica.

Resultado de imagen de Nebulosa reloj de arena
IAC
La Nebulosa “Reloj de Arena” fue elegida ·Imagen astronómica del día” por la NASA

NASA
El Telescopio FERMI de la NASA, un Observatorio Espacial de rayos Gamma, ha descubierto estas dos burbujas colosales, que están situadas encima y debajo del centro de la Vía Láctea. Se trata de una estructura desconocida hasta ahora.

Astrónomos del Observatorio Europeo Austral (ESO) han captado nuevas imágenes de la Nebulosa La Laguna. Mediante un Telescopio de luz Infrarroja.

NASA/JPL/Space Science Institute.
Nos muestra la Imagen de Encelado, una de las lunas de Saturno que parece ir a propulsión. Así lo captó la sonda Cassini. Todo se debe a la iluminación recibida por el penacho de hielo que se desprende de su polo Sur. Viendo imágenes como esta nos damos cuenta de lo mucho que ignoramos aún de los misteriosos objetos de nuestra propia vecindad.

       El Telescopio HUBBLE nos muestra a la Nebulosa NGC 3603, en la Constelación de Carina

 

Los Telescopios espaciales de la NASA han captado la imagen del choque de dos galaxias que giran en torno a un agujero negro. Se muestra el momento del fenomenal encuentro entre las galaxias NGC 6872 y la galaxia IC 4970. Escenas como estas son cotidianas en nuestro Universo y, sin los sofisticados telescopios que poseemos no las podríamos contemplar.

ESO: “Un Agujero Negro en la galaxia espiral NGC 300, a una distancia de unos seis millones de años-luz de nuestro Sistema Solar, observe la materia de una estrella vecina en un Vals Infernal que la lleva a la irremisible desaparición para engrosar la masa de la singularidad de ese Agujero Negro “asesino” de estrellas.

HUBBLE nos muestra la imagen del Cluster R136, en el que podemos contemplar un paisaje de fantasía, repleto de luz y valles de oscuridad, junto a regiones en sombra en el centro que se asemejan a la silueta de un árbol navideño. Extrañas y exóticas configuraciones como esta pululan por doquier en todas las regiones del Universo que, siendo igual en todas partes, creo que en todas partes también, estará presente la Vida.

 

ESO / VISTA
La primera imagen del Telescopio europeo VISTA ha sido esta espectacular imagen al fotografiar la bonita Nebulosa de La Llama.
HUBBLE:
Nos muestra ésta bella imagen del Universo en sus albores, cuando solo tenía la edad de 600 millones de años y se formaron las primeras galaxias a pesar de la expansión de Hubble. ¿Que habría allí presente para retener la materia y que se pudieran formar?

NASA / ESA
Del choque de dos galaxias espirales ha surgido una nueva galaxia llamada NGC 2623. ¿Qué pasaría con los mundos y la vida allí presentes? En unos 3.000 millones de años, la galaxia Andrómeda se fusionará con la Vía Láctea… ¿Que destino nos espera?

NASA/Swift/Stefan Immler (GSFC) and Erin Grand (UMCP).
Es nuestra vecina mayor, la galaxia Andrómeda a la que nunca habíamos contemplado de esta manera, toda vez que la imagen fue captada en ultravioleta. Y pensar que dentro de unos miles de millones de años se fusionará con la Vía Láctea. ¿Dónde estará la Humanidad para entonces.

Alguna de las imágenes que hemos podido contemplar antes se tomaron utilizando filtros especiales que se concentran en un proceso físico particular, como determinadas composiciones o temperaturas y estas frecuentemente se le asignan colores de manera que puedan mostrar mejor la información. Son demostraciones hermosas de cómo la astronomía moderna puede ser parecida al arte.

Resultado de imagen de EstrellasResultado de imagen de Protoestrella

Resultado de imagen de Estrella super gigantesResultado de imagen de Estrella super gigantes

LAS ESTRELLAS:

Que por cierto, son algo más, mucho más, que simples puntitos luminosos que brillan en la oscuridad de la noche. Una estrella es una gran bola de gas luminoso que, en alguna etapa de su vida, produce energía por la fusión nuclear del hidrógeno para formar helio. El término estrella por tanto, no sólo incluye estrellas como nuestro Sol, que están en la actualidad quemando hidrógeno, sino también proto-estrellas, aún no lo suficientemente calientes como para que dicha combustión haya comenzado, y varios tipos de objetos evolucionados como estrellas gigantes y súper-gigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

         Una buena colección de proto-estrellas que pronto entraran en la secuencia principal

La masa máxima de una estrella es de unas 120 masas solares, por encima de la cual sería destruida por su propia radiación. La masa mínima es de 0,08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno, y se convertirían en enanas marrones.

La luminosidad de las estrellas varían desde alrededor de medio millón la luminosidad del Sol para las más calientes hasta menos de una milésima de la del Sol para enanas más débiles.

Aunque las estrellas más prominentes visibles a simple vista son más luminosas que el Sol, la mayoría de las estrellas son en realidad más débiles que éste y, por tanto, imperceptibles a simple vista.

Las estrellas brillan como resultado de la conversión de masa en energía por medio de reacciones nucleares, siendo las más importantes las que involucran al hidrógeno.

Por cada kilogramo de hidrógeno quemado de esta forma, se convierte en energía aproximadamente siete gramos de masa. De acuerdo con la famosa ecuación de Einstein E=mc2, los siete gramos equivalen a una energía de 6,3 x 1014 Julios.

Resultado de imagen de Reacciones nucleares en las estrellasResultado de imagen de Reacciones nucleares en las estrellas

Las reacciones nucleares no sólo aportan el calor y la luz de las estrellas, sino que también producen elementos más pesados que el hidrógeno y el helio. Estos elementos pesados han sido distribuidos por todo el Universo mediante explosiones de supernovas o por medio de Nebulosas planetarias y vientos estelares.

Las estrellas pueden clasificarse de muchas maneras:

  1. Mediante la etapa evolutiva, en presecuencia principal, secuencia principal, gigante, supergigante, enana blanca o estrella de neutrones.
  2. A partir de sus espectros, que indica su temperatura superficial conocida como clasificación de Morgan-Keenan.
  3. En Población I, II y III, que engloban estrellas con abundancias progresivamente menores de elementos pesados.

¿Pero que pasa en las Nebulosas?

 

Resultado de imagen de 154126641_0.jpg

 

 

En estas nubes se fraguan los mundos merced a la dinámica del universo que lo hace cambiante y evolutivo. Nada permanece y todo se transforma. Las cosas ocurren de cierta manera que puede ser prevista al aplicar esas fuerzas y esas constantes que hacen de nuestro “mundo” lo que podemos observar y, de esa manera, porque esas constantes universales son como las conocemos, la vida está presente y, si la carga del electrón o la masa del protón cambiara aunque solo fuese una diezmillonésima, ya la vida no sería posible tal como la conocemos.

 

 

 

“Es difícil formular cualquier teoría firme sobre las etapas primitivas del universo porque no sabemos si hc/e2 es constante o varía proporcionalmente a log(t). Si hc/e2 fuera un entero tendría que ser una constante, los experimentadores dicen que no es un entero, de modo que podría estar variando. Si realmente varía, la química de las etapas primitivas sería completamente diferente, y la radiactividad estaría afectada. Cuando empecé a trabajar sobre la gravedad esperaba encontrar alguna conexión entre ella y los neutrinos, pero esto ha fracasado.”

Comentario de un físico desesperado

 

 

 

Extraños mundos que pudieran ser

 

Está muy claro que nuestro Universo es es debido a una serie de parámetros que poco a poco hemos ido identificando y hemos denominado Constantes de la Naturaleza. colección de números misteriosos son los culpables, los responsables, de que nuestro Universo sea tal como lo conocemos y que, a pesar de la concatenación de movimientos caóticamente impredecibles de los átomos y las moléculas, nuestra experiencia es la de un mundo estable y que posee una profunda consistencia y continuidad.

File:Orbital s1.png

En mecánica cuántica, el comportamiento de un electrón en un átomo se describe por un orbital, que es una distribución de probabilidad más que una órbita. En la figura, el sombreado indica la probabilidad relativa de «encontrar» el electrón en punto se tiene la energía correspondiente a los números cuánticos dados. Pensemos (como digo antes), que si la carga del electrón variara, aunque sólo fuese una diezmillonésima , los átomos no se podrían constituir, las moléculas consecuentemente tampoco y, por ende, ni la materia… ¡Tampoco nosotros estaríamos aquí! ¡Es tan importante el electrón!

Sí, nosotros también hemos llegado a saber que con el paso del tiempo aumenta la entropía y las cosas cambian. Sin embargo algunas cosas no cambian, continúan siempre igual, sin que nada les afecte. Ésas precisamente, son las constantes de la naturaleza que desde mediados del siglo XIX, comenzó a la atención de físicos como George Johnstone Stoney (1.826-1.911, Irlanda).

 

Parece, según todas las trazas, que el universo, nuestro universo, alberga la vida inteligente porque las constantes de la naturaleza son las que aquí están presentes; cualquier ligera variación en alguna de éstas constantes habría impedido que surgiera la vida en el planeta que habitamos. El universo con las constantes ligeramente diferentes habría nacido muerto, no se hubieran formado las estrellas ni se habrían unido los quarks para construir nucleones (protones y neutrones) que formarán los núcleos que al ser rodeados por los electrones construyeron los átomos, que se juntaron para formar las células que unidas dieron lugar a la materia. Esos universos con las constantes de la naturaleza distintas a las nuestras estarían privados del potencial y de los elementos necesarios para desarrollar y sostener el de complejidad organizada que nosotros llamamos vida.

Resultado de imagen de Cambiaran las constantes de la Naturaleza

Hasta el momento no se ha podido observar ningún cambio en las constantes de la Naturaleza

Nadie ha sabido responder a la pregunta de si las constantes de la naturaleza son realmente constantes o llegará un momento en que comience su transformación. Hay que tener en cuenta que para nosotros la escala del tiempo que podríamos considerar muy grande, en la escala de Tiempo del Universo podría ser ínfima. El universo, por lo que sabemos, tiene 13.500 millones de años. Antes que nosotros, el reinado sobre el planeta correspondía a los dinosaurios, amos y señores durante 150 millones de años, hace de ello 65 millones de años. Mucho después, hace apenas 2 millones de años, aparecieron nuestros antepasados directos, que después de una serie de cambios evolutivos desembocó en lo que somos hoy.

 

 

 

Estas observaciones de quásares brindan una imagen de nuestro universo tal como era durante su infancia, solo 750 millones de años después de producirse la explosión inicial que creó al universo. El análisis del espectro de la luz del quásar no ha aportado evidencias de elementos pesados gaseosa circundante, un hallazgo que sugiere que el quásar data de una era cercana al nacimiento de las primeras estrellas del universo.

Foto: Dr. Naoki Yoshida, Nagoya University, Japón, vía Science-AAAS

Todo ello pudo suceder como consecuencia de que unos 500 millones de años después del Big Bang se formaron las primeras estrellas que, a su vez, dieron lugar a las primeras galaxias. El material primario del universo fue el hidrógeno, el más sencillo y simple de los elementos que componen la tabla periódica. Hoy día, 13.500 millones de años después, continúa siendo el material más abundante del universo junto al helio.

hacer posible el resurgir de la vida, hacían falta materiales mucho más complejos que el hidrógeno. Éste era demasiado simple y había que fabricar otros materiales que, como el carbono, el hidrógeno pesado, el nitrógeno, oxígeno, etc, hicieran posible las combinaciones necesarias de materiales diferentes y complejos que al ser bombardeados por radiación ultravioleta y rayos gammas provenientes del espacio, dieran lugar a la primera célula orgánica que sería la semilla de la vida.

¿Quién, entonces, fabricó esos materiales complejos si en el universo no había nadie?

Buena pregunta. Para contestar tengo que exponer aquí algunas características de lo que es una estrella, de cómo se formar, como puede ser y cuál será su destino final. Veamos:

 

 

20091118155655-lores.jpg

 

El nacimiento de una proto-estrella

 

Lo que conocemos como estrella es una bola de gas luminosa que, durante una etapa de su vida, produce energía por la fusión nuclear del hidrógeno en helio. El término estrella, por tanto, no sólo incluye estrellas como el Sol, que están en la actualidad quemando hidrógeno, sino también protoestrellas, aún en formación y no lo suficientemente calientes como para que dicha combustión nuclear haya comenzado, y también varios tipos de objetos más evolucionados como estrellas gigantes y supergigantes, que están quemando otros combustibles nucleares, o las enanas blancas y las estrellas nucleares, que están formadas por combustible nuclear gastado.

Imagen relacionada

Las estrellas se forman a partir de enormes nubes de gas y polvo que a veces tienen hasta años-luz de diámetro. Las moléculas de polvo unidas a las de los gases se rozan y se ionizan, se calientan y la nube comienza a girar lentamente. El enorme conglomerado poco a poco se va juntando y la temperatura aumenta. Tal enormidad de materia crea una fuerza gravitatoria que hace contraerse la nube sobre sí misma. Su diámetro y su temperatura en el núcleo es tal que se produce la fusión de los protones de hidrógeno, que se transforman en un material más complejo, el helio, y ése es el en que nace la estrella que, a partir de ahí, puede estar miles de millones de años brillando y produciendo energía termonuclear.

 

Con la imagen de arriba como ilustración, hace algún tiempo que se publicó la noticia en la página web de la ESO, se muestra la masa determinada de una estrella que supera el límite anterior (152-150 masas solares) por un factor de 2, usando una combinación de obtenidos en el observatorio Paranal y con el telescopio espacial Hubble. Se trata de la estrella R136a1 en el centro de la nebulosa “Tarántula” en la Gran Nube de Magallanes. Esto es muy interesante, porque hasta ahora se creyó que cualquier estrella mayor que 150 masas solares se desintegra por el efecto de la presión de radiación que supera a la gravedad. En realidad, también R136a1 está desintegrándose, teniendo ahora “sólo” 260 masas solares, después de una vida corta de 1,5 millones de años. Pero los autores calculan que reunió, cuándo nació, un total de 320 masas solares.

 

Resultado de imagen de HUmanos primitivosResultado de imagen de HUmanos primitivos

 

Mucho tiempo ha pasado que esta imagen era el presente, y, sin embargo, el Universo supone una ínfima fracción marcada por el Tic Tac cósmico de las estrellas y galaxias que conforman la materia de la que provenimos. Es un gran misterio para nosotros que sean las estrellas las que fabrican los materiales que, más tarde, llegan a conformar a seres vivos que, en algunos caso, tienen consciencia.

“La ciencia no puede resolver el misterio final de la Naturaleza.  Y esto se debe a que, en el último análisis, nosotros somos parte del misterio que estamos tratando de resolver”.

Max Planck

 

De acuerdo con su perspectiva universal, en 1.899 Planck propuso que se construyeran unidades naturales de masa, longitud y tiempo a partir de las constantes más fundamentales de la naturaleza: la constante de gravitación G, la velocidad de la luz c y la constante de acción h, que lleva el de Planck. La constante de Planck determina la mínima unidad de cambio posible en que pueda alterarse la energía, y que llamó “cuanto”. Las unidades de Planck son las únicas combinaciones de dichas constantes que pueden formarse en dimensiones de masa, longitud, tiempo y temperatura. Se conocen las Unidades de Planck.

Planck con sus unidades nos llevo al extremo de lo pequeño

 

Mp = (hc/G)½ = 5’56 × 10-5 gramos
Lp = (Gh/c3) ½ = 4’13 × 10-33 centímetros
Tp = (Gh/c5) ½ = 1’38 × 10-43 segundos
Temp.p = K-1 (hc5/G) ½ = 3’5 × 1032      ºKelvin

 

Estas formulaciones con la masa, la longitud, el tiempo y la temperatura de Planck incorporan la G (constante de gravitación), la h (la constante de Planck) y la c, la velocidad de la luz. La de la temperatura incorpora además, la K de los grados Kelvin.

“Estas cantidades conservarán su significado natural mientras la Ley de Gravitación y la de Propagación de la luz en el vacío y los dos principios de la termodinámica sigan siendo válidos; por lo tanto, siempre deben encontrarse iguales sean medidas por las inteligencias más diversas con los métodos más diversos.”

 

Resultado de imagen de Estrellas enananas y masivas

 

Las estrellas masivas tienen una vida más corta que las estrellas medianas o enanas que, al consumir menos combustible nuclear de fusión duran miles de millones de años.

 

Resultado de imagen de Protuberancias solaresResultado de imagen de Protuberancias solares

 

Las estrellas viven el tiempo que sus masas le permiten. Una estrella masiva devora tanto material nuclear que sólo puede realizar la fusión durante un tiempo corto de unos millones de años en el mejor de los casos. Son las estrellas enanas rojas las que más tiempo de vida pueden tener al fusionar el hidrógeno de manera lenta en “pequeñas proporciones. Incluso nuestro Sol, que fusiona 4.654.600 Tn cada segundo de Hidrógeno en 4.650.000 Tn de Helio, Las 4.600 toneladas que se pierden en la transición, son eyectadas al Espacio Interestelar en forma de luz y calor, de lo que, a la Tierra llega la diezmillonésima parte. A pesar de esa inmensa cantidad consumida, el Sol tiene 5.000 millones de años de edad, y, según los cálculos le quedan otros 5.000 millones de años de vida.

Resultado de imagen de R136a1 en el centro de la nebulosa TarántulaImagen relacionada

R136a1 en el centro de la nebulosa “Tarántula” en la Gran Nube de Magallanes. La masa máxima de las estrellas para que sean estables puede rondar las 150 masas solares, es decir, ser 150 veces mayor que nuestro Sol y por encima de este límite sería destruida por la enorme potencia de su propia radiación. La masa mínima para poder ser una estrella se fija en 0’08 masas solares; por debajo de ella, los objetos no serían lo suficientemente calientes en sus núcleos como para que comience la combustión del hidrógeno y se convertirían en enanas marrones. Las luminosidades de las estrellas varían alrededor de medio millón de veces la luminosidad del Sol para las más calientes hasta menos de la milésima de la del Sol para las enanas más débiles. Aunque las estrellas más prominentes visibles a simple vista son más luminosas que el Sol, la mayoría de las estrellas son en realidad más débiles que éste y, por tanto, imperceptibles a simple vista.

 

Dependiendo de la temperatura  de la estrella y de los materiales que contiene…

He dicho antes, el brillo de las estrellas (la luz y el calor) es el resultado de la conversión de masa en energía (E=mc2) por medio de reacciones nucleares. Las enormes temperaturas de millones de grados de su núcleo hace posible que los protones de los átomos de hidrógeno se fusionen y se conviertan en átomos de helio.

 

 

Por cada kilogramo de hidrógeno quemado de esta manera se convierten en energía aproximadamente siete gramos de masa. Las reacciones nucleares no sólo aportan la luz y el calor de las estrellas, sino que también producen elementos pesados más complejos que el hidrógeno y el helio que, posteriormente, son distribuidos por el universo cuando al final la estrella explota en súper NOVA, lanzando sus capas exteriores al espacio que de esta , deja “sembrado” de estos materiales el “vacío” estelar.

 

 

Las estrellas pueden clasificarse de muchas maneras. Una manera es mediante su etapa evolutiva: en presecuencia principal, secuencia principal, gigante, supergigante, enana blanca, estrella de neutrones y agujeros negros. Éstas últimas son la consecuencia del final de sus vidas como tales estrellas, convirtiéndose en objetos estelares de una u otra clase en función de sus masas originales. Estrellas como nuestro Sol, al agotar el combustible nuclear se transforman en gigantes rojas, expulsan las capas exteriores para formar una Nebulosa planetaria y finalmente quedan como enanas blancas. Si la masa es mayor serán estrellas de neutrones y, si aún son mayores, su final está en agujeros negros.

Siempre que intento dar un paseo por el Universo, es grande que… ¡Me pierdo!

emilio silvera

Conocer la Naturaleza, sus secretos

Autor por Emilio Silvera    ~    Archivo Clasificado en Los secretos del Universo    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                     El amanecer del día es tan antiguo que se pierde en la noche de los tiempos

Desde tiempos inmemoriales, se hizo cada vez más evidente para nuestros antepsados que en la Naturaleza se daban sucesos predecibles y también impredecibles. Unos eran repetitivos, como el día y la noche y otros, nunca se veían venir, como los temblores de la Tierra. Así, los aspectos impredecibles eran peligrosos y temibles. En aquellos tiempos remotos, decían que eran castigos de los dioses por el compiortamiento humano y, ahí estaban incluídos desde la erupción de un volcán, un Tsunami o un terremoto. También plagas, desastres y pestilencias que asotaron al mundo se vieron como un castigo.

Imagen relacionadaResultado de imagen de La NaturalezaResultado de imagen de La NaturalezaResultado de imagen de La Naturaleza

Mucho menos interés tenían las predecibilidades de los comportamientos de la Naturaleza que, por cotidianos, se veían naturales y eran, al ser conocidos, aprovechados de una u otra manera. Advirtiendo y explotando los cambios periódicos del entorno, podían prepararse las cosechas, hacer acopios para el invierno y construir defensas contra las incursiones del viento y de las aguas. Estas regularidades de la Naturaleza se reflejaron en el comportamiento de las Sociedades estables que se estructuraron alrededor de estosm sucesos y generaron una creencia en la ley y el orden a escala cósmica.

Resultado de imagen de Terremotos

Resultado de imagen de VolcanesResultado de imagen de Fenómenos naturales

                              Lo impredecible

Finalmente, ayudadas por la fe monoteísta de muchas sociedades occidentales, estas creencias alimentaron la idea de que existían cosas llamadas “leyes de la Naturaleza” que son válidas en todos los tiempos y lugares. Estas leyes universales prescriben el modo en que se comportaran las cosqas y no, como las leyes humanas que son cambiantes y dependen de criterios que no siempre están aconsejados por la razón.

Hemos llegado a comprender que las leyes de cambio siempre pueden reemplazarse por el requisito de que algún otro aspecto de la Naturaleza no cambie: es lo que llaman el principio de conservación o una invariancia de la Naturaleza. Se cree que la energía es un ejemplo primordial. Puede ser intercambiada y reorganizada de formas diferentes pero, al final, cuando se hace la suma, la energía total debe ser siempre la misma.

Resultado de imagen de Las cuatro fuerzas de la naturaleza

Hasta la década de 1970 los físicos estaban impresionados por esta correspondencia entre leyes de la Naturaleza y pautas invariables que empezaron a explotar el catálogo de pautas invariables en busca de candidatos para las leyes de cambio asociadas. Las cuatro fuerzas básicas de la Naturaleza -Gravedad, electricidad y magnetismo, radiactividad e interacciones nucleares- eran descritas por teorías de este tipo. Cada una de estas cuatro fuerzas de la Naturaleza corresponde a una pauta independiente que se conserva cuando algo sucede en la Naturaleza: cuando un núcleo radiactivo se desintegra o un imán en movimiento en la dinámo de una bicicleta produce una corriente eléctrica.

Todo esto eran buenas noticias para los físicos. A mediados de la década de 1970 tenían teorías separadas para la Gravedad, el Electromagnetismo, la Fuerza débil (de la que se deriva la radiactividad) y la Fuerza fuerte (de la que se deriva las fuerzas nucleares) que estaban de acuerdo con los sucesos observados. La conservación de una pauta invariable en cada caso requería que existiese la respectiva fuerza de la Naturaleza y determinara en detalle cómo y sobre qué debería actuar. ¿Por qué debería el mundo estar gobernado por cuatro pautas invariables diferentes?

Hemos aprendido que las fuerzas de la naturaleza no son tan diferentes como a primera vista nos pueden parecer. Parecen tener intensidades muy diferentes y actuar sobre partículas elementales diferentes. Pero esto es una ilusión creada por nuestra necesidad de habitar un lugar en el Universo donde la temperatura es más bien baja; suficientemente baja para que existan átomos y moléculas. Conforme la temperatura aumenta y las partículas elementales de materia colisionan entre sí a energías cada vez más altas, las fuerzas separadas que gobiernan nuestro mundo quiescente a baja temperatura se hacen cada vez más parecidas. Las fuerzas fuertes se debilitan y las fuerzas débiles se fortalecen. aparecen nuevas partículas a medida que se alcanzan temperaturas más elevadas y consiguen producir interacciones entre las familias separadas de partículas que, a bajas temperaturas, parecen estar aisladas entre sí.

 

          Gran número de partículas generadas después del choque en el Gran Colisionador de Hadrones.

Las partículas viajan a velocidades cercanas a la velocidad de la luz y haces de hadrones chocan con tal violencia que, a muchos miles de millones de grados de temperatura, surge una nueva materia y partículas desconocidas que, durante una pequeñísima fracción de tiempo – de una trillonésima de segundo- son captadas por las potentes computadoras para que, posteriormente, los expertos experimentadores, diluciden los misterios que han surgido de ese big bang en miniatura.

Así, poco a poco, a medida que alcanzamos esas inimaginables condiciones de la temperatura “última” que Max Planck encontró definida por las cuatro constantes G, k, c y h, esperamos que las diferencias se vayan borrando completamente y que las fuerzas de la Naturaleza presenten al fín, un único frente unido como se cree que sucedía al principio de todo, antes de que las temperaturas iniciales del Universo se enfriaran y diera lugar a que, la única fuerza existente en aquel momento, se escindiera en las cuatro que hoy conocemos.

Resultado de imagen de El cerebro humanoResultado de imagen de Neuronas del cerebroResultado de imagen de Neuronas del cerebroResultado de imagen de Neuronas del cerebro

           Ahí, en ese recinto misterioso se producen conexiones sin fin que generan los pensamientos

Todo esto que aquí podemos contar es posible gracias a que existe algo que llamamos cerebro en el que se estructura un algo que llamamos mente y que, ha llegado a un nivel de consciencia  de inusitada grandeza, capaz de percibir esos parámetros y pautas de la Naturaleza que la hacen como es y que, permiten que dicha mente pueda estar presente para observar todo lo que aquí ocurre en tan inmenso Universo.

Hay cosas que se nos escapan pero que, de alguna manera presentimos. Por ejemplo, en nuestras vidas cotidianas, los efectos de la energía de vacío son ínfimos, diminutos, pero aún así detectables en pequeñas correcciones a los niveles de las energías de los átomos. En Teorías de campos relativistas, la energía de vacío está dada por una expresión matemáticamente idéntica y físicamente indistinguible de la famosa constante cosmológica, o por el contrario varia con el tiempo, algo que tendría consecuencias importantísimas para el destino del universo y que es un tema de investigación candente en cosmología, con varios experimentos propuestos para detectarlo.

Resultado de imagen de El núcleo de los átomosImagen relacionadaImagen relacionada

           Imaginar lo que puediera ser… siempre se nos ha dado muy bien y, a veces, hasta hemos acertado.

Es cierto que existen campos en los que tenemos dudas y queremos seguir avanzando, es mucha la ignorancia que sobre nuestros hombros cargamos pero, por ejemplo, si bien existe confusión e intriga acerca de su uso y factibilidad, la computación cuántica no es un sueño. De hecho, muchos expertos la ven como inevitable. En los computadores tradicionales, el procesamiento paralelo divide una tarea en partes y las delega a procesadores separados. La computación cuántica hace mas o menos lo mismo, solo que el procesamiento ocurre a nivel subatómico, donde rigen las leyes de la mecánica cuántica.

Mientras que un bit magnético tradicional puede representar solo un 1 o un 0, los bits cuánticos, o “qubits”, consistentes de atomos y partículas subatómicas ofrecen una gama de posibilidades exóticas. Un computador cuántico puede guardar datos en el espín de los electrónes, o en la posición de un cierto electrón. Un qubit, por ejemplo, puede ser 0, 1 y 0 y 1 al mismo tiempo, permitiendo la construcción de procesadores inmensamente más rápidos que los procesadores tradicionales.

Imagen relacionadaResultado de imagen de El núcleo de los átomos

Sabemos que, en el centro del átomo se encuentra un pequeño grano compacto aproximadamente 100.000 veces más pequeño que el propio átomo: el núcleo atómico. Su masa, e incluso más aún su carga eléctrica, determinan las propiedades del átomo del cual forma parte. Debido a la solidez del núcleo parece que los átomos, que dan forma a nuestro mundo cotidiano, son intercambiables entre sí, e incluso cuando interaccionan entre ellos para formar sustancias químicas (los elementos). Pero el núcleo, a pesar de ser tan sólido, puede partirse. Si dos átomos chocan uno contra el otro con gran velocidad podría suceder que los núcleos llegaran a chocar entre sí y entonces, o bien se rompen en trozos, o se funden liberando en el proceso partículas subnucleares. La nueva física de la primera mitad del siglo XX estuvo dominada por los nuevos acertijos que estas partículas planteaban.

Resultado de imagen de El núcleo de los átomos

Pero tenemos la mecánica cuántica; ¿es que no es aplicable siempre?, ¿cuál es la dificultad? Desde luego, la mecánica cuántica es válida para las partículas subatómicas, pero hay más que eso. Las fuerzas con que estas partículas interaccionan y que mantienen el núcleo atómico unido son tan fuertes que las velocidades a las que tienen que moverse dentro y fuera del núcleo están cerca de la velocidad de la luz, c, que es de 299.792’458 Km/s. Cuando tratamos con velocidades tan altas se necesita una segunda modificación a las leyes de la física del siglo XIX; tenemos que contar con la teoría de la relatividad especial de Einstein.

http://4.bp.blogspot.com/-uAPH2qzdCMA/TZIEbP_PB_I/AAAAAAAAAAQ/ptKz-ynw-uk/s1600/velocidad_luz.png

Esta teoría también fue el resultado de una publicación de Einstein de 1905. en esta teoría quedaron sentadas las bases de que el movimiento y el reposo son conceptos relativos, no son absolutos, como tampoco habrá un sistema de referencia absoluto con respecto al cual uno pueda medir la velocidad de la luz.

Pero había más cosas que tenían que ser relativas. En este teoría, la masa y la energía también dependen de la velocidad, como lo hacen la intensidad del campo eléctrico y del magnético.Einstein descubrió que la masa de una partícula es siempre proporcional a la energía que contienen, supuesto que se haya tenido en cuenta una gran cantidad de energía en reposo de una partícula cualquiera, como se denota a continuación:

E = mc2

Imagen abstracta que representa la velocidad de la luz mediante una curva de rayos coloridos convergiendo juntos sobre un fondo negro.  Foto de archivo - 7441629

Como la velocidad de la luz es muy grande, esta ecuación sugiere que cada partícula debe almacenar una cantidad enorme de energía, y en parte esta predicción fue la que hizo que la teoría de la relatividad tuviese tanta importancia para la física (¡y para todo el mundo!). Para que la teoría de la relatividad también sea autoconsistente tiene que ser holista, esto es, que todas las cosas y todo el mundo obedezcan a las leyes de la relatividad. No son sólo los relojes los que se atrasan a grandes velocidades, sino que todos los procesos animados se comportan de la forma tan inusual que describe esta teoría cuando nos acercamos a la velocidad de la luz. El corazón humano es simplemente un reloj biológico y latirá a una velocidad menor cuando viaje en un vehículo espacial a velocidades cercanas a la de la luz. Este extraño fenómeno conduce a lo que se conoce como la “paradoja de los gemelos”, sugerida por Einstein, en la que dos gemelos idénticos tienen diferente edad cuando se reencuentran después de que uno haya permanecido en la Tierra mientras que el otro ha viajado a velocidades relativistas.

Einstein comprendió rápidamente que las leyes de la gravedad también tendrían que ser modificadas para que cumplieran el principio relativista. Y, tras profundos pensamientos y continuados sufrimientos, él pudo elaborar su ecuación que es el reflejo de una de las mayores muestras de ingenio que han podido ser hechas por un humnano. Su Ecuación de campo de la Relatividad General.

R_{\mu\nu} - {1\over 2}R g_{\mu\nu} + \Lambda g_{\mu\nu} = {8 \pi G \over c^4} T_{\mu\nu}

De la ecuación de campo de Einstein (entre otras muchas cosas) nos sale el esquema de la curvatura del espacio-tiempo que se produce en presencia de grandes masas. Ahí, también está encerrado el exótico agujerom negro. En esa breve ecuación subyace la inmensidad del Cosmos, de su geometría y configuración. Así que, en el presente comentario, vamos a explicar una serie de cosas que ocurren y están aquí con nosotros en el Universo, e incluso, formar parte de nosotros mismos o hacen posible que podamos estar aquí.

Leyendo el material enviado por un amigo al que pidió ayuda, Einstein quedó paralizado. Ante él, en la primera página de una conferencia dada ante el Sindicato de Carpinteros, 60 años antes por un tal Riemann, tenía la solución a sus desvelos: el tensor métrico de Riemann, que le permitiría utilizar una geometría espacial de los espacios curvos que explicaba su relatividad general.

La región de formación estelar S106

                                                  ¡La belleza y los misterios del Universo!

Para poder aplicar el principio de la relatividad a la fuerza gravitatoria, el principio tuvo que ser extendido de la siguiente manera: no sólo debe ser imposible determinar la velocidad absoluta del laboratorio, sino que también es imposible distinguir los cambios de velocidad de los efectos de una fuerza gravitatoria.

Resultado de imagen de El Espacio Tiempo se arruga por la GravedadResultado de imagen de La Gravedad

Einstein comprendió que la consecuencia de esto era que la gravedad hace al espacio-tiempo lo que la humedad a una hoja de papel: deformar la superficie con desigualdades que no se pueden eliminar. Hoy en día se conocen muy bien las matemáticas de los espacios curvos, pero en el época de Einstein el uso de estas nociones matemáticas tan abstractas para formular leyes físicas era algo completamente nuevo, y le llevó varios años encontrar la herramienta matemática adecuada para formular su teoría general de la relatividad que describe cómo se curva el espacio en presencia de grandes masas como planetas y estrellas.

Claro que, no siempre es todo como creemos verlo, ni siempre estamos en disposición de elegir. Nada es lo que nos dicen nuestros sentidos que es. Y, lo que entendemos por libre albedrío, de la misma manera, está distorsionado por mil parámetros ajenos a nosotros que, sólo podemos ejercer de manera parcial y hasta el punto en que, el entorno nos lo permite.

emilio silvera

¿Cerebro y Mente? ¿Inteligencia y Sabiduría?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Mente    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 

 

http://alexpantarei.files.wordpress.com/2008/03/tiempo3.jpg

                               El mito del eterno retorno: la Regeneración del Tiempo

Tomado literalmente, el tiempo cíclico hasta sugiere una especie de inmortalidad. Eudemo de Rodas, discípulo de Aristóteles, decía a sus propios discípulos: “Si creéis a los pitagóricos, todo retornorá con el tiempo en el mismo orden numérico, y yo conversaré con vosotros con el bastón en la mano y vosotros os sentaréis como estáis sentados ahora, y lo mismo sucederá con toda otra cosa”. Por estas o por otras razones, el tiempo cíclico aún es popular hoy, y muchos cosmólogos defienden modelos del “universo oscilante” en los que se supone que la expansión del universo en algún momento se detendrá y será seguida por un colapso cósmico en los fuegos purificadores del siguiente big bang.

 

La estrella Wolf 1061 y sus tres planetas. El «c» es el potencialmente habitable

               La estrella Wolf 1061 y sus tres planetas. El «c» es el potencialmente habitable – UNSW

Un equipo de astrónomos australianos ha descubierto el planeta potencialmente habitable más cercano a la Tierra fuera del Sistema Solar, a «solo» 14 años luz, una distancia que puede parecer muy larga, pero que es mucho más corta que la que nos separa de la mayoría de candidatos a albergar vida y una nadería en la inmensidad del Universo. Este nuevo mundo, que tiene más de cuatro veces la masa del nuestro, es uno de los tres que el equipo detectó alrededor de una estrella enana roja llamada Wolf 1061.

 

 

 

 

En el Universo existen muchas clases de resonancias…inesperadas

 

Las resonancias parecen ser solamente una especie de versión excitada de los Hadrones estable. Son réplicas que rotan más rápidamente de lo normal o que vibran de diferente manera. Análogamente a lo que sucede cuando golpeamos un gong, que emite sonido mientras pierde energía hasta que finalmente cesa de vibrar, una resonancia termina su existencia emitiendo piones, según se transforma en una forma más estable de materia.

Por ejemplo, la desintegración de una resonancia ∆ (delta) que se desintegra por una interacción fuerte en un protón o neutrón y un pión, por ejemplo:

 

∆⁺⁺→р + π⁺;  ∆⁰→р + πˉ; o п+π⁰

 

En la desintegración de un neutrón, el exceso de energía-masa es sólo 0,7 MeV, que se puede invertir en poner en movimiento un protón, un electrón y un neutrino. Un Núcleo radiactivo generalmente tiene mucha menos energía a su disposición.

 

 

Visión tridimensional del gas expulsado de NGC 253. El eje vertical muestra la velocidad y el horizontal la posición. Los colores representan la intensidad de la emisión; rosa es la emisión más fuerte y rojo la más débil. : ALMA (ESO/NAOJ/NRAO)/Erik Rosolowsky.

 

Pero, comencemos con el trabajo: ¿Cerebro y Mente? ¿Inteligencia y Sabiduría?

Cerebro y Mente, son dos entes separados que depende el uno del otro… ¡Siempre nos dio mucho en que pensar! El cerebro quizás sea la “máquina” más compleja del Universo, la Mente, el Ente inmaterial (metafísico) que surge de ella y que podría llegar a emitir un poder inimaginable.

No acabamos de ponernos de acuerdo en el hecho de si, la sabiduría, o la competencia profesional o la pericia, también la Inteligencia, pueden ser catalogadas como categorías biológicas, pero lo son. La mayoría de la gente comprende, de forma general y vaga, que la mente es producto del cerebro, pero no siempre resulta fácil comprender lo íntima que es esta relación. Aunque acepte la conexión entre Mente y Cerebro en tanto que proposición abstracta, la mayoría de las personas no llegan a entender ni asimilar de forma inmediata estas cuestiones del cerebro-mente-inteligencia-sabiduría, como sí lo hacen con las cuestiones más cotidianas.

En realidad, cuando hablamos de Mente y cerebro lo hacemos como parte de un vestigio pertinaz y recalcitrante que nos viene de lejos, cuando algunos estudiosos de la Filosofía como René  Descartes, proponían que mente y cerebro estaban separados y que la Mente existe de manera independiente del cuerpo. Muchos son los libros que sobre el tema han sido escritos, algunos excelentes como: El error de Descartes, La Table rasa y otros muchos. La secular incapacidad para entender que la mente es producto del cuerpo inspiró la pintoresca imagen de la mente como el ente superior, inmaterial, que viviendo en el cerebro, en realidad era sensorialmente inmaterial y podía, estar fuera o dentro de nosotros para general ideas y pensamientos.

Resultado de imagen de Causa efecto en imagen GIFsImagen relacionada

Las reglas de causa y efecto, tal como las aceptas, te han metido en el volumen de un cuerpo, y la duración de la vida humana. En realidad, el campo de la vida humana es abierto e ilimitado en su más profundo plano.

Tu cuerpo carece de edad y tu mente de tiempo. Una vez que te identifiques con esa realidad, que es congruente con la visión cuántica del universo, entraras en el nuevo paradigma, y tu conciencia, sé expandirá, cósmica y cuánticamente en fractales radiales exponenciales y dimensionales.

Resultado de imagen de Al mirar el Microscopio electrónico, (Microcosmos) vemos como las partículas cuánticas se mueven,

Al mirar el Microscopio electrónico, (Microcosmos) vemos como las partículas cuánticas se mueven, (virtualmente) a la velocidad de la luz, y si miramos al cielo y observamos las Estrellas, veremos la inmutabilidad del Macrocosmos. Cada uno habita en una realidad que se encuentra mas allá de todo cambio. En lo más profundo de nosotros, sin que lo sepan nuestros sentidos externos tridimensionales o físicos, existe un intimo núcleo del ser, un campo de inmortalidad, que crea la personalidad, él yo y el cuerpo. Este ser es nuestro estado esencial, es nuestra esencia (Alma), es quien realmente somos. Somos Almas en este inmutable escenario eterno.

Resultado de imagen de El Tiempo Eterno

Nadie ha sabido nunca explicar lo que el Tiempo es. Lo único que hemos podido sacar en claro es que, su transcurrir lo cambia todo. Su hermana inseparable, la Entropía, se encarga de ello. Y, de su hipotética prima, la Etermidad, no podemos decir que la tengamos localizada, ya que, todo tiene un principio y un final y, siendo así (que lo es), la Eternidad no tiene cabidad aquí.

Resultado de imagen de La galaxia más antigua captada por el Hubble

                 Ni una Galaxia, cuya vida se remonta a miles de millones de años… ¡Es Eterna!

Otros dicen que el Tiempo existe solo como eternidad, el tiempo es Eternidad Cuantificada, es la temporalidad cortada por nosotros, en trozos o fragmentos, de tiempo que llamamos días, horas, minutos, y segundos. Lo que llamamos tiempo lineal es solo un reflejo de nuestro modo de percibir los sucesos o los cambios en que nos vemos envuelto en nuestro limitado sistema perceptual .

Si se pudiera percibir lo inmutable, el tiempo dejaría de existir tal como lo conocemos. Podemos empezar por aprender, a concebir y metabolizar lo Inmutable, la Eternidad, lo Absoluto, al hacerlo, estaremos listos para crear la fisiología de la Inmortalidad. Claro que es difícil, si se tiene una comprensión aceptable del universo, asimilar esos conceptos de eternidad, infinito o inmortalidad que… ¡En nuestro universo no están presentes! Aquí todo se transforma, todo comienza y termina, todo nace y muere.

Somos propensos los Humanos, cuando hablamos y queremos contar cosas, hacer referencias que, en realidad, sólo son metáforas de “Vacío”, de “Infinito”, o, de “Eternidad” esos tres conceptos que utilizamos para decir que hay poco, que nunca muere, y que dura siempre. Claro que, ninguno de los tres conceptos son ciertos en nuestro Universo: Ni existe el Vacío (siempre hay), Ni tampoco nada es infinito (todo muere), y, de la Eternidad que podemos decir: Sólo es una abstracción de la Mente.

Si somos capaces de entrar en ese campo transcendente de superior nivel filofósifoco y hasta metafísico se podría decir, ya no creeremos en ese dualismo cartesiano entre cuerpo y mente…nos podremos deposajr de vestigios del pasado y llegar a comprender, con claridad meridiana que, la Mente es algo evolucionado dentro de nuestro cuerpo que ha sido puesta ahí por mecanismos del universo que no hemos podido llegar a entender pero que, de todas formas intuimos que, la conexión entre ambos, Mente y Universo, es tan real como la vida misma.

Resultado de imagen de Simbiosis del cuerpo y mente

Los mecanismos del Universo hizo posible el surgir de la Vida y, en alguna de sus modalidades (seguro que exioten muchas más) se plasmó esa simbiosis primera de Cuerpo y Mente que haría posible la evolución de la segunda para que, después de algunos miles o millones de años, pudiera alcanzar el zenit en individuos que eran poseedores de rasgos e ingredientes predeterminados de personalidad e inteligencia, empuje y energía, la capacidad para entender lo que otros no entienden, el poder fijarse objetivos a largo plazo que requerían de un talento innato y especial que no era posible adquirir sino que se nace con él. Es el destino biológico de unos pocos que, a pesar de su talento, sí necesitaron del empuje y la ambición y, finalmente, los triunfosd, llegaban como frutos del esfuerzo individual.

114433-83863_p

Al fin y al cabo todo el mundo acepta que el esfuerzo solo no basta para convertirse en un Mozart, un Shakesperare o un Ramanujan. Para subir esa escalera que te llevará a la cumbre, principalmente, el ingrediente necesario será el Talento, la Sabiduría y, de vez en cuando, se agreaga un poquito de suerte o azar.

Claro que la Sabiduría es una buena noticia para todos nosotros. Si alguien la posee, siempre tenderá a exponerla a los demás para que, de una u otra forma podamos disfrutar de ella aunque sólo sea a través de la admiración hacia el Sabio que no la muestra pero, en realidad, en el último momento, lo que deseamos es apropiarnos de algo de esa sabiduría para nosotros. ¡Necesitamos saber!

Es el saber popular de todas las Sociedades a lo alrgo de la Historia, la sabiduría siempre ha sido asociada con los ancianos. La sabiduría ha sido el más preciado bien y, en torno a ella, todos nos hemos puesto en coro a escuchar esas palabras sabias que nos indicaban el camino a seguir.

No siempre hemos sabido determinar lo que es la realidad y lo que son sólo sueños. Escenarios que nuestros ojos ven y que nuestros oidos oyen, son los mensajes que el cerebro recibe y se los cree. Así que, teniendo unos sentidos limitados, es posible, que los mensajes no sean todo lo fiables que debería y, el “mundo” que el cerebro conforma… ¡Puede que no se ajuste a la realidad del “mundo”!

¿Qué es la realidad?, ¿Como la definimos?, ¿Cuántas realidades hay?, ¿Cada uno de nosotros tiene su propia realidad?¿Qué realidad nos transmite el Universo en nuestro Mundo, será distinta a realidades de otros Mundos? ¿Es una realidad la cuántica? ¿Existen realidades que no podemos percibir? La realidad va en función de la percepción que se tenga de ella, y esta forma parte de la Conciencia. Nuestra conciencia actual es un condicionamiento de nuestra visión del mundo actual y colectivo, es la que nos enseñaron nuestros padres, maestros, la sociedad, gobierno y religiones. A esta manera de ver y entender el mundo, pertenece el antiguo paradigma. Y, como nos diría Tom Wood, necesitamos nuevos paradigmas para poder entender la “realidad” de la Naturaleza.

Es cierto que, algunas veces, cuando profundamente pensamos en todos estos conceptos, llegamos a la conclusión de que la realidad no existe, y, si entramos en el mundo de la filosófía podríamos argumentar que nunca nadie ha podido “ver” un pensamiento y, sin embargo, ¿cuántos generamos durante nuestras vidas?

    A partir del mundo físico de Faraday Maxwell nos pudo señalar su mundo mental de la electricidad y el magnetismo

El mundo físico, incluido nuestro cuerpo, es una reacción del observador. Creamos el cuerpo según creamos la experiencia de nuestro mundo.En su estado esencial (microcósmico), el cuerpo está formado de energía e información, y no de materia sólida. Esta energía e información, surge de los infinitos campos de energía e información que abarcan todos los universos. La mente y sus cuerpos, desde el físico hasta el espiritual y sus múltiples manifestaciones multidimensionales, son inseparablemente uno, o sea la unidad YO SOY.

Esta unidad Yo Soy, la separaremos en dos corrientes de experiencia. La experimentamos primero como corriente subjetiva, como pensamientos, ideas, sentimientos, deseos y emociones. La corriente objetiva la experimentamos como el cuerpo físico, mas sin embargo en un plano mas profundo, las dos corrientes se encuentran en una sola fuente creativa, y es a partir de esta , desde donde realmente nos manifestamos y tenemos nuestro ser.

La bioquímica del cuerpo es un producto de la conciencia, las creencias, los sentimientos, las emociones, los pensamientos e ideas, crean reacciones que sostienen la vida en cada célula. La percepción parece como algo automático, pero esto es un fenómeno aprendido, si cambias tu percepción, cambias la experiencia de tu yo , y por ende de tu mundo.

Por supuesto, todos sabemos el dilema del observador en la cuántica. Se trata del enigmático principio de incertidumbre que nos impide medir una partícula sin afectar el resultado. Es posible conocer una cosa, más no la otra. Por mucho tiempo, Copenhague fue el modelo que rigió ese conocimiento específico de la cuántica pero ya existe otro. Tenemos el experimento del físico John Cramer que basó su modelo en la teoría de radiación electromagnética de Wheeler-Feynman y predice los resultados de los experimentos cuánticos tan bien como el “viejo” modelo lo hace. Lo más atractivo: el observador no tiene ningún papel especial en el resultado.

Resultado de imagen de Los Humanos no somos el Centro de nada

En realidad, solo somos una parte infinitesimal de lo mucho que podemos vislumbrar.

Los humanos seguimos afianzándonos a todo lo que nos ponga en el centro de las cosas. Los fenómenos que no pueden ser explicados nos excitan y hemos estado usándolos para justificar a nuestros dioses desde que descubrimos que podemos producir ilusiones para tapar nuestra ignorancia. Cada vez que algo es explicado, movemos nuestras pertenencias hacia el próximo misterio; y cuando ese enigma revela sus mecanismos nos pasamos a otro. No es la ausencia de evidencia lo que mortifica al creyente que propone afirmaciones extraordinarias como verdaderas, son las evidencias del otro, del científico en el laboratorio; él lo obliga a buscar otra casa y mudarse donde no haya iluminación.

Lo cierto es que, creamos nuestra propia realidad dentro de otra realidad más grande que resulta ser el UNIVERSO.

Claro que, esa sabiduría a la que antes me refería nos debería llevar hasta propósitos superiores, incluso de una célula podríamos aprender: Cada Célula del cuerpo acuerda trabajar por el bien del Todo; el Bienestar individual es secundario. Si es preciso, morirá para proteger al cuerpo (Lo que ocurre con frecuencia). La vida de cualquier célula es muchísimo más breve que la nuestra. Las celulas de la piel mueren por cientos cada hora, al igual que las inmunológicas que combaten los microbios invasores. El egoísmo resulta inconcebible, incluso cuando la supervivencia de las células está en juego.

Resultado de imagen de Egoismo del Ser viviente por seguir vivo

 Los paisajes cambian como todo en nuestro Universo

¿Por qué no hacemos nosotros lo mismo? ¿Acaso no hemos finalizado nuestro proceso de Humanización, o, por el contrario, simplemente se trata de que somos así. Seres egoistas en los que prima lo individual y el YO, contra el NOSOTROS, como Ente principal. Hay una cuestión que me da algo de esperanza: Cuando hablamos de nuestros hijos, de nuestro ser Amado…El Yo se queda detrás y prevalecen esos valores que, en realidad, son los que nos ditinguen y nos hacen grandes.

Bueno, pero ¿no estaba hablando de la Mente, la Sabiduría y la Inteligencia? Sí, es posible. Sin embargo, todo siempre viene a desembocar en lo mismo: Nosotros y el Universo.

emilio silvera

Todo es Universo… ¡También nosotros!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

 

Sobrevuelos a Venus, la Tierra y Júpiter

La masa de la sonda Cassini es tan grande que no fue posible emplear un vehículo de lanzamiento que la dirigiese directamente a Saturno. Para alcanzar este planeta fueron necesarias cuatro asistencias gravitacionales; de esta forma, Cassini empleó una trayectoria interplanetaria que la llevaría a Venus en dos ocasiones, posteriormente hacia la Tierra y después hacia Júpiter. Después de sobrevolar Venus en dos ocasiones a una altitud de 284 Km, el 26 de abril de 1998 y a 600 Km, el 24 de junio de 1999, el vehículo se aproximó a la Tierra, acercándose a 1171 Km de su superficie el 18 de agosto de 1999. Gracias a estas tres asistencias gravitacionales, Cassini adquirió el momento suficiente para dirigirse al Sistema Solar externo. La cuarta y última asistencia se llevaría a cabo en Júpiter, el 30 de diciembre de 2000, sobrevolándolo a una distancia de 9.723.890 Km, e impulsándose hacia Saturno.

     ¿Que es el núcleo atómico? ¿Cómo en un objeto tan pequeño pueden pasar tantas cosas?+

El propio Rutherford empezó a vislumbrar la respuesta a la pregunta que arriba hacemos. Entre 1.906 y 1.908 (hace más de un siglo) realizó constantes experimentos disparando partículas alfa contra una lámina sutil de metal (como oro o platino), para analizar sus átomos. La mayor parte de los proyectiles atravesaron la barrera sin desviarse (como balas a través de las hojas de un árbol), pero no todos. Algunas de aquellas partículas no aparecían por ninguna parte, parecían que chocaban con algo sólido… ¿Qué sería?

Pero centrémonos en el trabajo que aquí se expone que se anuncia arriba como: Todo es Universo… ¡También nosotros!

Resultado de imagen de EspaciotiempoResultado de imagen de EspaciotiempoResultado de imagen de Las cuatro fuerzas fundamentalesResultado de imagen de Las constantes naturales

El Universo lo es todo. El Espacio y el Tiempo, la Materia y las fuerzas que con ella interaccionan, las Constantes de la Naturaleza y todo ello, implica una serie de cuestiones de una complejidad inmensa que aún, no hemos podido resolver. La cantidad de teorías, de modelos, de experimentos y de posibilidades que están en marcha en los distintos campos del saber, son enormes, y, finalmente, todas deberán ser unidas en un solo y complementado conocimiento que nos lleve a ese entendimiento profundo de nuestro Universo como un todo que es, lo que podremos ver, trás unir las piuezas del rompecabezas con el que ahora estamos trabajando al dilucidar parcelas de esa inmensidad que no podemos abarcar con la vista y menos con el conocimiento, sólo la imaginación se acerca a ese todo que pretendemos construir.

 

No podemos tener una imagen del Universo completo, es demasiado grande para que eso sea posible y sólo, pequeñas regiones del mismo podemos captar con nuestros telescopios que nos enseñan regiones más o menos lejanas del inmenso Cosmos. En cualquier parte que podamos mirar y observar, nos daremos cuenta de que las cosas que allí puedan pasar, son las mismas que pasan en otros lugares, toda vez que, el Universo se rige por leyes que actúan en todas partes de la misma manera. Muchos, desde hace mucho tiempo, pensaron en todas esas cuestiones.

Resultado de imagen de Mileto en la Grecia clásica

Tales nació en la ciudad de Mileto en el año 639 a. de C. Fue el primero de los 7 sabios de Grecia y era matemático, geógrafo, pensador, astrónomo y astrólogo. Hijo de Examio e Cleóbula. Se marchó a Egipto para formarse con los sacerdotes del faraón en Geometría, astrología y física, allí aprendió cosas tan útiles como medir las pirámides por la longitud de la sombra. Era experto en astrosofía (algo que unía astronomía con filosofía) y que le daba el título de rudito en el más alto nivel. Se cuenta de él que, un día caminaba, de noche, observando las estrellas y cayó en un socabon que había en el suelo. Él fue el primero en dar al Agua la importancia que tiene para la vida.


Resultado de imagen de Tales de Mileto señaló la importancia del agua para la vida

Hoy trataré de dejar aquí una insignificante brizna de toda esa búsqueda, desesperada, por ese saber incansablemente perseguido por la especie humana que,deseosa de conocer todos aquellos misterios encerrados dentro de esa burbuja que llamamos Universo, no ha dejado, desde que Tales de Mileto desterró la mitología para emplear la lógica, de buscar el por qué del mundo, de los cielos y, en fin, de la Naturaleza. Claro que, desde aquel entonces hasta ahora, mucho es lo que nuestra curiosidad nos ha podido dar de ese saber que buscamos y del que no todos, hanestado siempre seguros de lograr.

Por ejemplo:

No olvidemos que, en el siglo XIX, algunos científicos declararon que la composición de las estrellas estaría siempre fuera del alcance del experimento, y, que la única manera que tendríamos de conocerlas sería la de mirar al cielo y verlas allí, inalcanzables como puntos de luz brillantes y lejanos en la oscuridad del vacío del cosmos.Sin embargo, podemos decir hoy, recien cumplida la primera década del siglo XXI, , que no solo podemos saber la composición de las estrellas, sino también como nacen, “viven” y mueren, las distancias que las separan de nosotros y un sin fin de datos más que el estudio y la investigación nos ha posibilitado descubrir.

http://chandra.harvard.edu/photo/2007/a3627/a3627.jpg

Las estrellas del cielo, ¡tan lejanas! ¡tan misteriosas! que en las noches oscuras nos envían guiños de complicidad, como si trataran de decirnos alguna cosa, como si nos estuvieran llamando. Fue tanto el misterio que en nuestras mentes sembraron las estrellas que, no hemos parado ni un momento por saber, no sólo de qué estaban hechas, sino como surgen a la vida, como se desarrollan sus mecanismos, como mueren y en qué se convierten después. Sabemos que las estrellas son importantes en nuestras vidas hasta el punto de que, sin ellas, no podríamos estar aquí. Una de ellas, a la que llamamos Sol, nos envía su luz y su calor haciendo posible la vida en el planeta Tierra, otra antes que el Sol, hace seguramente muchos miles de millones de años, regó el espacio con su materia estelar y, pasado el tiempo, se condenso (ayudada por la Fuerza de Gravedad) en lo que hoy conocemos como el Sistema Solar.

Archivo:Buenos Aires-Plaza Congreso-Pensador de Rodin.jpg

Nada más cierto que lo que quiere simbolizar esa enorme imagen del Pensador. Es un fiel reflejo de lo que, a través de los tiempos, ha sido el SER Humano. Nunca hemos dejado ni dejaremos de pensar, en ello está nuestro futuro. A las pruebas de la Historia me remito.

Particularmente creo que el ser humano es capaz de realizar todo aquello en lo que piensa dentro de unos limites racionales.Podremos, en un futuro no muy lejano, alargar de manera considerable la media de vida.Podremos colonizar otros planetas (terraformarlos) y explotar recurso mineros en las lunas de nuestro sistema solar (las grandes compañias petroleras estarían encantadas en Titán), los turistas irán al planeta Marte o a las lunas Ganímedes o Europa.Los transportes de hoy serán reliquias del pasado y nos trasladaremos mediantes sistemas de transportes aéreos más limpios, rápidos y exentos de colisiones, sus modernos censores lo impedirán.Tendremos computadoras de cifrado cuántico que harán más seguras las comunicaciones y el intercambio de datos será realmente el de la velocidad de c, y así en todos los campos del saber humano.

En el nombre “Internet del Futuro” se asocian una serie de conceptos y tecnologías que abarcan desde la infraestructura de red, dispositivos e interfaces, software y aplicaciones que compondrán el que en unos años conformará el panorama de las Tecnologías de Información y Comunicaciones.

Entre estos temas, aparece la red de redes de gran velocidad y llegando a todas partes, mediante nuevos dispositivos, con nuevas formas de interaccionar con el mundo digital, acceso fácil e inteligente los diferentes tipos de contenidos con mención especial a 3D, y todo ello soportado por innovadores modelos de negocio adaptados a este nuevo panorama.

Resultado de imagen de Internet y los jóvenesResultado de imagen de Internet y los jóvenesImagen relacionadaResultado de imagen de Internet

A los jóvenes no hay que convencerles de que Internet es imprescindible. El futuro para ellos es ya hoy. Una reciente encuesta pone de relieve la enorme vocación juvenil de tomar la red como bandera generacional. De hecho ellos, los jóvenes lo van a construir y modelar a su gusto y, probablemente, el Internet del futuro poco se parecerá al Internet que conocemos hoy. Alguien ha dicho: “Hoy, Internet está en su Prehistoria”. Lleva toda la razón

Estamos inmersos en un avance exponencial, imparable.

http://cuchyx.files.wordpress.com/2010/10/tecnologia1.jpg

Se podría decir que, gracias a los Aceleradores de Partículas, podemos jugar con los átomos para mirar en su interior y saber, de qué está hecha la Materia que nos confroma a nosotros, a las estrellas y a los mundos de las galaxias del Universo.

Otro ejemplo de una idea “inverificable” la tenemos en la existencia del átomo.En el siglo XIX, la hipótesis atómica se reveló como el paso decisivo en la comprensión de las leyes de la química y la termodinámica.Sin embargo, muchos físicos se negaban a creer que los átomos existieran realmente, los aceptaban como un concepto o herramienta matemática para operar en su trabajo que, por accidente, daba la descripción correcta del mundo.Hoy somos todavía incapaces de tomar imágenes directas del átomo debido al principio de incertidumbre de Heisenberg, aunque ahora existen métodos indirectos.En 1.905, Einstein proporcionó la evidencia más convincente, aunque indirecta, de la existencia de átomos cuando demostró que el movimiento browniano (es decir, el movimiento aleatorio de partículas de polvo suspendidas en un líquido) puede ser explicado como colisiones aleatorias entre las partículas y los átomos del líquido.

Ejemplo en el que se observa la variación de los valores de la dimensión de masa y de la dimensión del contorno calculada por el método del compás en los siguientes DLA.

Resultado de imagen de Otra posibilidad de crecimiento DLA es el vertical. Las partículas se lanzan desde lo alto y las partículas fijas se sitúan en el fondo del recipienteResultado de imagen de Otra posibilidad de crecimiento DLA es el vertical. Las partículas se lanzan desde lo alto y las partículas fijas se sitúan en el fondo del recipiente

Otra posibilidad de crecimiento DLA es el vertical. Las partículas se lanzan desde lo alto y las partículas fijas se sitúan en el fondo del recipiente. Se puede observar en la siguiente figura como cuando una formación sobresale, las de sus lados dejan de crecer. Esto es debido a que las más grandes absorben los recursos de las más pequeñas e impiden su crecimiento, fenómeno que se da en la naturaleza cuando un árbol grande impide que crezcan los que están a su alrededor quitándoles los recursos de luz, agua…

Por analogía, podríamos esperar la confirmación experimental de la física de la décima dimensión utilizando métodos indirectos que aún ni se han inventado o descubierto.En lugar de fotografiar el objeto que deseamos, quizá nos conformaríamos, de momento, con fotografiar la “sombra” del mismo.

Bueno, con la imagen de la sombra podemos tener una idea, bastante acertada de la imagen original, el movimiento lo delata.

También la existencia de los neutrinos, propuestos por Wolfgang Pauli en 1.930, para dar cuenta de la energía perdida en ciertos experimentos sobre radiactividad que parecían violar la conservación de la materia y la energía, también digo, era inverificable (en aquel momento).Pauli comprendió que los neutrinos serían casi imposibles de observar experimentalmente, porque interaccionarían muy débilmente y, por consiguiente muy raramente con la materia.La materia, toda la materia, si profundizamos en ella a niveles microscópicos, podremos comprobar el hecho de que, en un 99% está constituida de espacios vacíos y, siendo así, los neutrinos pueden atravesarla sin rozar siquiera sus átomos, de hecho, pueden atravesar la Tierra como si ni siquiera existiera y, al mismo tiempo, también nosotros somos atravesados continuamente por billones de neutrinos emitidos por el sol, incluso por la noche.

Resultado de imagen de Pesando neutrinosResultado de imagen de Pesando neutrinos

 Resultado de imagen de Pesando neutrinos Resultado de imagen de Pesando neutrinos

Unos quieren pesar planetas y otros neutrinos pero, todos quieren saber sobre los misterios del Universo

Hablando de neutrinos recuerdo cuando el experimento Opera de los neutrinos pusiera en tela de juicio la teoría de Einstein, la medición de la luz proveniente de las galaxias confirmaron por primera vez a escala cósmica la teoría de la relatividad del genio físico.Sin embargo, no en una, sino en varias ocasiones han querido quitarle al bueno de Einstein el honor de haber marcado el límite de velocidad en nuestro Universo.

Pauli admitió:  ”He cometido el pecado más grave, he predicho la existencia de una partícula que nunca puede ser observada”. Él predijo la existencia del neutrino para explicar “la masa perdida” en procesos de desintegración.

Pero incluso Pauli, con todos sus enormes conocimientos, se equivocaba, y el neutrino ha sido comprobado mediante distintos métodos que no dejan dudas de su existencia. Incluso producimos regularmente haces de neutrinos en colisionadores de átomos, realizamos experimentos con los neutrinosemitidos por reactores nucleares y, detectamos su presencia en enormes depósitos de agua pesada colocados en profundas minas abandonadas en las entrañas de la Tierra. Cuando una espectacular supernova de iluminó en el cielo del hemisferio sur en 1.987, los físicos registraron una ráfaga de neutrinos que atravesaron sus detectores situados, precisamente, en profundas minas.

         El Enorme recipiente lleno de agua pesada (SNOLSB), delatará a los neutrinos que lo atraviesen.

Dentro de una antigua mina de Sudbury (Ontario, Canadá) está ubicado el complejo de investigación astrofísica SNOLAB. Una de sus instalaciones es el Observatorio de Neutrinos (ONS, en la imagen). Los neutrinos son partículas subatómicas con una masa tan ínfima —se ha calculado que menos de una milmillonésima parte de la masa de un átomo de hidrógeno— que pueden atravesar la materia ordinaria sin apenas perturbarla. La materia está “compuesta” en su mayor parte de vacío aunque nuestros ojos y nuestro cerebro (en primera instancia) no lo interpreten así.

Para evitar la interferencia de otras partículas cósmicas este peculiar observatorio no está situado en la superfície, sino nada menos que a dos kilómetros de profundidad en el interior de la corteza terrestre. La instalación ONS es básicamente un “cazador de neutrinos” capaz de detectar estas partículas producidas por las reacciones de fusión en el interior Sol y así poder analizar la composición del núcleo de nuestra estrella. La cubierta acrílica del ONS contiene un kilotón (1.000 toneladas) de agua pesada (D2O) que al reaccionar con los neutrinos hacen que se produzcan unos azulados destellos de radiación o luz Cherenkov, llamada así en honor del destacado miembro de la Academia de Ciencias de la Unión Soviética Pável Alekséyevich Cherenkov (1904-1990), Premio Nobel de Física de 1958 por el descubrimiento e interpretación de este fenómeno. El primer detector orbital de partículas de estas características —Detector Cherenkov— fue uno de los equipos científicos instalados en el satélite Sputnik-3, lanzado por la URSS el mismo año en que Cherenkov recibiera el Nobel.

Si hablamos de la masa de Planck, lo hacemos de la masa de una partícula cuya longitud de onda Compton es igual a la Longitud de Planck, está dada por la ecuación de arriba, donde tenemos la constante de Planck racionalizada (la h cortada con ese palito arriba), c que es la velocidad de la luz y G la constante gravitacional, la descripción de una partícula elemental de esta masa.o partículas que interacionan con energías por partículas equivalentes a ellas a través de E = mc2, requiere una teoría cuántica de la Gravedad. Como la masa de Planck es del orden de 10-8 kg (equivalente a una energía de 1019 GeV) y, por ejemplo, la masa del protón es del ordende 10-27 Kg y las mayores energías alcanzables en nuestros aceleradores de partículas actuales son de un orden (aún pequeño) los efectos de gravitación cuántica no aparecen en los laboratorios de física de partículas. Sin embargo, en el universo primitivo se cree quen las partículas tenían ejnergías del orden de la energía de Planck (representada en la ecuación de abajo) que sería la energía necesaria para llegar hasta las cuerdas.

[energia_de_Planck.png]

Echando una larga mirada a la historia de la ciencia, creo que existen motivos para un moderado optimismo. Witten está convencido de que la ciencia sería algún día capaz de sondear hasta las energías de Planck.

E. Witten, padre de la versión más avanzada de la teoría de supercuerdas, la teoría M, dice:

“No siempre es tan fácil decir cuáles son las preguntas fáciles y cuáles las difíciles.En el S.XIX, la pregunta de por qué el agua hierve a 100 grados era desesperadamente inaccesible.Si usted hubiera dicho a un físico del siglo XIX que hacia elS. XX sería capaz de calcularlo, le habría parecido un cuento de hadas…. La teoría cuántica de campos es tan difícil que nadie la creyó completamente durante veinticinco años.”

 

 

Lo mismo que otros muchos, no creo que tengamos que esperar un siglo antes de que nuestro ingenio y nuestras máquinas puedan sondear de manera indirecta la décima dimensión, alguien sabrá, durante ese periodo de tiempo, resolver esa teoría de campos de cuerdas o alguna otra formula no perturbativa.El problema es teórico, no experimental.Necesitamos alguien con el ingenio y la inteligencia necesaria (además de un enorme índice de observación), para saber “ver” lo que probablemente tenemos ante nuestras narices, utilizando para ello todos los datos e indicios existentes de gente como Einstein, Kaluza y Klein, Veneziano y Suzuki, el cuarteto de cuerdas de Princeton, Michio Kaku, Witten…, y tantos otros.

Suponiendo que algún físico brillante resuelva la teoría de campos de cuerdas y derive las propiedades conocidas de nuestro Universo, sigue existiendo el problema practico de cuándo seríamos capaces de aprovechar el poder de la teoría del hiperespacio.Existen dos posibilidades:

  1. Esperar que nuestra civilización alcance la capacidad para dominar energías millones de veces mayores que las de hoy.
  2. Encontrar civilizaciones extraterrestres que, más avanzadas, hayan dominado el arte de manipular el Hiperespacio.

 

                                      Pero, si no son como esta…¡Mejor!

Antes de que Edison (robara las ideas de Tesla) y con sus otros colaboradores aprovecharan los descubrimientos de Faraday y las ecuaciones de Maxwell, sobre la electricidad y el magnetismo, para explotarlos de manera práctica, pasaron unos setenta años.

La civilización moderna depende crucialmente del aprovechamiento de esta fuerza.La fuerza nuclear fue descubierta casi con el cambio de siglo, pasó todo el siglo XX y estamos en la primera década del XXI, han pasado 100 años, y, sin embargo, todavía no tenemos medios de aprovecharla con éxito en reactores de fusión, la energía limpia que produce el Sol.

El próximo paso, el aprovechar la potencia de la teoría de campo unificado, requiere un salto mucho mayor en nuestra tecnología, aunque sea un salto que probablemente tendrá implicaciones muchísimo más importantes.

El problema reside en que obligamos a la teoría de supercuerdas a responder preguntas sobre energías cotidianas, cuando su “ámbito natural” está en la energía de Planck.Energía que sólo fue liberada en el propio instante de la creación.Es decir, la teoría de supercuerdas es una teoría de la propia creación, así nos puede explicar todas las partículas y la materia, las fuerzas fundamentales y el espacio-tiempo, es decir, es la teoría del propio Universo.

http://2.bp.blogspot.com/-DMfdwHfKrQI/TcGvQe-jUMI/AAAAAAAAAHE/RaQZiXk2GN4/s1600/worm3.jpg

El dolor de cabezas que nos causa pensar en el espacio-tiempo y en el cómo podemos desplazarnos por él a grandes distancias de tiempo y también de espacio. ¿Se conseguirá alguna vez? ¿Será cierto que existen los Agujeros de Gusano? ¿Podremos alguna vez construir naves que surquen el Hiperespacio hacia otras galaxias y otros mundos?

Durante estos comentarios, frecuentemente he reseñado la palabra “espacio-tiempo” refiriéndome a una geometría que incluye las tres dimensiones espaciales y una cuarta dimensión temporal.En la física newtoniana, el espacio y el tiempo se consideraban como entidades separadas y el que los sucesos fueran simultáneos o no era una materia que se consideraba como obvia para cualquier observador capacitado.

En el concepto de Einstein del universo físico, basado en el sistema de geometría inventada por H. Minkowski (1864-1909), el espacio y el tiempo estaban considerados como enlazados, de manera que dos observadores en movimiento relativo podían estar en desacuerdo sobre la simultaneidad de sucesos distantes.En la Geometría de Minkowski (inspirada a partir de la teoría de la relatividad especial de Einstein), un suceso se consideraba como un punto de universo en un continuo de cuatro dimensiones.

Pero volvamos a las supercuerdas.El problema fundamental al que se enfrenta esta teoría es este: de los millones de universos posibles que pueden ser generados matemáticamente por la teoría de supercuerdas, ¿cuál es el correcto? Como ha dicho David Gross:

Resultado de imagen de tres dimensiones espaciales

“Existen millones y millones de soluciones con tres dimensiones espaciales. Existe una enorme abundancia de soluciones clásicas posibles… Esta abundancia de riqueza era originalmente muy satisfactoria porque proporcionaba evidencia de que una teoría como la de la cuerda heterótica podía tener un aspecto muy parecido al mundo real. Estas soluciones, además de tener cuatro dimensiones espacio-temporales, tenían otras muchas propiedades que se asemejaban a nuestro mundo: el tipo correcto de partículas tales como quarks y Leptones, y el tiempo correcto de interacciones… Esto constituyó una fuente de excitación en su momento.”

 

 

 

Es difícil escenificar lo que las supercuerdas son, nunca nadie pudo ver ninguna.

 

Gross, sin embargo, advierte que aunque alguna de estas soluciones están muy próximas al modelo estándar, otras dan lugar a propiedades físicas muy embarazosas e indeseables, lo que finalmente se traduce en una auténtica incomodidad o problema, ya que tenemos muchas soluciones pero ninguna forma aceptable de escoger entre ellas.Además algunas tienen propiedades deseadas y otras potencialmente desastrosas.

Un profano, al oir esto por primera vez, puede quedar intrigado para preguntar: ¿por qué no calcular simplemente que solución se adapta o prefiere la cuerda? Puesto que la teoría de cuerdas es una teoría bien definida, parece enigmático que los físicos no puedan calcular la respuesta.

Lo único seguro es que los físicos seguirán trabajando a la búsqueda de la solución que, más pronto o más tarde, llegará.

Efecto túnel a través del espacio y del tiempo

Resultado de imagen de efecto túnel

         ¡Extraña mecánica cuántica!

Estaría bien poder saber como un electrón, cuando absorbe un fotón, desaparece del lugar que ocupa y, de manera instántanea, aparece en otro lugar más ener´getico sin haber recorrido la distancia que separa ambos lugares, es el efecto túnel o salto cuántico. ¿Cuánto podríamos ganar si aprendiéramos como se hacer eso?

En definitiva, estamos planteando la misma cuestión propuesta por Kaluza, cuando en 1.919, escribió una carta a Einstein proponiéndole su teoría de la quinta dimensión para unificar el electromagnetismo de James Clark Maxwell y la propia teoría de la relatividad general. ¿Dónde está la quinta dimensión?, pero ahora en un nivel mucho más alto.Como Klein señaló en 1.926, la respuesta a esta cuestión tiene que ver con la teoría cuántica.Quizá el fenómeno más extraordinario (y complejo) de la teoría cuántica es el efecto túnel.

El efecto túnel se refiere al hecho de que los electrones son capaces de atravesar una barrera al parecer infranqueable hacia una región que estaría prohibida si los electrones fuesen tratados como partículas clásicas.El que haya una probabilidad finita de que un electrón haga un túnel entre una región clásicamente permitida a otra que no lo está, surge como consecuencia de la mecánica cuántica.El efecto es usado en el diodo túnel.La desintegración alfa es un ejemplo de proceso de efecto túnel.

Antes preguntábamos, en relación a la teoría de Kaluza – Klein, el destino o el lugar en el que se encontraba la quinta dimensión.

El profesor Teodor Kaluza nos hablaba de la Quinta Dimensión que unificaba la Relatividad de Einsteincon la Teoría de Maxwell. Todo en cinco dimensiones…Ahí comenzó toda la historia que después, desembocaron enm las supersimetrías, supergravedad, cuerdas y supercuerdas, cuerda heteráotica y teoría M…¿Qué vendrá después?

La respuesta de Klein a esta pregunta fue ingeniosa al decir que estaba enrollada o compactada en la distancia o límite de Planck, ya que, cuando comenzó el Big Bang, el Universo se expandió sólo en las cuatro dimensiones conocidas de espacio y una de tiempo, pero esta dimensión no fue afectada por la expansión y continua compactada en Lp=√(Għ/c3),cuyo valor es del orden de 10-35 metros, distancia que no podemos ni tenemos medios de alcanzar, es 20 ordenes de magnitud menor que el protón que está en 10 con exponente -15 metro.

Pues las dimensiones que nos faltan en la teoría decadimensional, como en la de Kaluza – Klein, también están compactada en una recta o en un círculo en esa distancia o límite de Planck que, al menos por el momento, no tenemos medios de comprobar dada su enorme pequeñez menor que un protón.

¿Cómo pueden estar enrolladas unas dimensiones?

Bueno, igual que para explicar de manera sencilla la gravedad mediante el ejemplo de una sábana estirada por los 4 extremos, en la que ponemos un enorme peso en su centro y se forma una especie de hondonada que distorsiona la superficie antes lisa de la sábana, al igual que un planeta distorsiona el espacio a su alrededor, de manera tal que cualquier objeto que se acerca a la masa del objeto pesado, se ve atraído hacia él.Pues bien, en las dimensiones de espacio enrolladas, utilizamos el símil de la sábana con bandas elásticas en las esquinas.

La sábana que tenemos es pequeña y la cama es grande.Con esfuerzo logramos encajar las cuatro esquinas, pero la tensión es demasiado grande; una de las bandas elásticas salta de una esquina, y la sábana se enrolla. Este proceso se llama ruptura de simetría.La sábana uniformemente estirada posee un alto grado de simetría.La sábana se enrolla.Se puede girar la cama 180º alrededor de cualquier eje y la sábana permanece igual.Este estado altamente simétrico se denomina falso vacío.Aunque el falso vacío aparece muy simétrico, no es estable. La sábana no quiere estar en esta condición estirada. Hay demasiada tensión y la energía es demasiado alta.Pero, la sábana elástica salta y se enrolla.La simetría se rompe, y la sábana pasa a un estado de energía más baja con menor simetría. Si notamos la sábana enrollada 180º alrededor de un eje ya no volvemos a tener la misma sábana.

Reemplacemos ahora la sábana por el espacio-tiempo decadimensional, es espacio-tiempo de simetría definitiva.En el comienzo del tiempo, el universo era perfectamente simétrico.Si alguien hubiera estado allí en ese instante, podría moverse libremente y sin problemas por cualquiera de las diez dimensiones. En esa época la Gravedad y las fuerzas débiles y fuertes y electromagnéticas estaban todas ellas unificadas por la supercuerda.Sin embargo, esta simetría no podía durar.El Universo decadimensional, aunque perfectamente simétrico, era inestable, la energía existente muy alta, exactamente igual que la sábana, estaba en un falso vacío. Por lo tanto, el paso por efecto túnel hacia un estado de menor energía era inevitable. Cuando finalmente ocurrió el efecto túnel, tuvo lugar una transición de fase y se perdió la simetría.

                                               La imaginación no tiene límites y, la Naturaleza tampoco

Puesto que el Universo empezó a dividirse en un Universo de cuatro y otro de seis dimensiones, el universo ya no era simétrico. Seis dimensiones se habían enrollado (como la sábana elástica).Pero nótese que la sábana puede enrollarse de cuatro maneras, dependiendo de qué esquina haya saltado.Para el universo decadimensional, sin embargo, existen aparentemente millones de modos de enrollarse.Para calcular que estado prefiere el Universo decadimensional, necesitamos resolver la teoría de campos de cuerdas utilizando la teoría de transiciones de fase, el problema más difícil en la teoría cuántica.

Las transiciones de fase no son nada nuevo. Trasladémoslo a nuestras propias vidas.En un libro llamado PASAJES, el autor, Gail Sheehy destaca que la vida no es un flujo continuo de experiencias, como parece, sino que realmente pasa por varios estadios, caracterizados por conflictos específicos que debemos resolver y por objetivos que debemos cumplir.

El psicólogo Eric Ericsson llegó a proponer una teoría de estadios psicológicos del desarrollo.Un conflicto fundamental caracteriza cada fase.Si este conflicto no queda resuelto, puede enconarse e incluso provocar una regresión a un periodo anterior.Análogamente, el psicólogo Jean Piaget demostró que el desarrollo mental de la primera infancia tampoco es un desarrollo continuo de aprendizaje, sino que está realmente caracterizado por estadios discontinuos en la capacidad de conceptualización de un niño.Con un mes de edad, un niño puede dejar de buscar una pelota una vez que ha rodado fuera de su campo de visión.Sin comprender que la pelota existe aunque no la vea.Al mes siguiente, esto resultará obvio para el niño.

http://1.bp.blogspot.com/-1Cu7_plq8Cg/TcMxjF7Hm7I/AAAAAAAAAgg/lQaeFfnR1AE/s1600/dejame%2Bser%2Bni%25C3%25B1o%2Buan%2Bvez%2Bm%25C3%25A1s.jpg

    ¡Siempre aprendiendo! Jugando comenzamos a conocer cómo es el mundo.

Esta es la esencia de la dialéctica.Según esta filosofía, todos los objetos (personas, gases, estrellas, el propio Universo) pasan por una serie de estadios.Cada estadio está caracterizado por un conflicto entre dos fuerzas opuestas.La naturaleza de dicho conflicto determina, de hecho, la naturaleza del estadio.Cuando el conflicto se resuelve, el objeto pasa a un objetivo o estadio superior, llamado síntesis, donde empieza una nueva contradicción, y el proceso pasa de nuevo a un nivel superior.

Los filósofos llaman a esto transición de la “cantidad” a la “cualidad”.Pequeños cambios cuantitativos se acumulan hasta que, eventualmente, se produce una ruptura cualitativa con el pasado.Esta teoría se aplica también a las sociedades o culturas.Las tensiones en una sociedad pueden crecer espectacularmente, como la hicieron en Francia a finales del siglo XVIII.Los campesinos se enfrenaban al hambre, se produjeron motines espontáneos y la aristocracia se retiró a sus fortalezas.Cuando las tensiones alcanzaron su punto de ruptura, ocurrió una transición de fase de lo cuantitativo a los cualitativo: los campesinos tomaron las armas, tomaron Paris y asaltaron la Bastilla.

 

            Parece que el “vacio” está bastante lleno de cosas…que no llegamos a comprender.

Las transiciones de fases pueden ser también asuntos bastante explosivos.Por ejemplo, pensemos en un río que ha sido represado.Tras la presa se forma rápidamente un embalse con agua a enorme presión Puesto que es inestable, el embalse está en el falso vacío.El agua preferiría estar en su verdadero vacío, significando esto que preferiría reventar la presa y correr aguas abajo, hacia un estado de menor energía.Así pues, una transición de fase implicaría un estallido de la presa, que tendría consecuencias desastrosas.

También podría poner aquí el ejemplo más explosivo de una bomba atómica, donde el falso vacío corresponde al núcleo inestable de uranio donde residen atrapadas enormes energías explosivas que son un millón de veces más poderosas, para masas iguales, que para un explosivo químico.De vez en cuando, el núcleo pasa por efecto túnel a un estado más bajo, lo que significa que el núcleo se rompe espontáneamente.Esto se denomina desintegración radiactiva.Sin embargo, disparando neutrones contra los núcleos de uranio, es posible liberar de golpe esta energía encerrada según la formula de EinsteinE=mc2, por supuesto, dicha liberación, es una explosión atómica ¡menuda transición de fase!

http://4.bp.blogspot.com/_Fu_Yym_Znbg/TTx0v6fodHI/AAAAAAAAAHY/3HiSooefiN0/s1600/COSMOS.jpg

Una transición de fase que perseguimos, es dominar la Galaxia, poder moldearla con nuestras manos, y, si eso llega a ser posible alguna vez, seremos los señores del Hiperespacio.Para entonces, los misteriosos agujeros negros no tendrán secretos para nosotros, las energías perdidas tampoco y…los viajes en el tiempo, serán cosa cotidiana. ¿Será realidad algún día ese pensamiento?

Las nuevas características descubiertas por los científicos en las transiciones de fases es que normalmente van acompañadas de una ruptura de simetría.Al premio Nobel Abdus Salam le gusta la ilustración siguiente: consideremos una mesa de banquete circular, donde todos los comensales están sentados con una copa de champán a cada lado.Aquí existe simetría.Mirando la mesa del banquete reflejada en un espejo, vemos lo mismo: cada comensal sentado en torno a la mesa, con copas de champán a cada lado.Asimismo, podemos girar la mesa de banquete circular y la disposición sigue siendo la misma.

Rompamos ahora la simetría.Supongamos ahora que el primer comensal toma la copa que hay a su derecha.Siguiendo la pauta, todos los demás comensales tomaran la copa de champán de su derecha.Nótese que la imagen de la mesa del banquete vista en el espejo produce la situación opuesta.Cada comensal ha tomado la copa izquierda.De este modo, la simetría izquierda-derecha se ha roto.

Así pues, el estado de máxima simetría es con frecuencia también un estado inestable, y por lo tanto corresponde a un falso vacío.

Con respecto a la teoría de supercuerdas, los físicos suponen (aunque todavía no lo puedan demostrar) que el universo decadimensional original era inestable y pasó por efecto túnel a un universo de cuatro y otro de seis dimensiones.Así pues, el universo original estaba en un estado de falso vacío, el estado de máxima simetría, mientras que hoy estamos en el estado roto del verdadero vacío.

 

Al principio, cuando el Universo era simétrico, solo existía una sola fuerza que unificaba a todas las que ahora conocemos, la gravedad, las fuerzas electromagnéticas y las nucleares débil y fuerte, todas emergían de aquel plasma opaco de alta energía que lo inundaba todo.Más tarde, cuando el Universo comenzó a enfriarse, se hizo transparente y apareció la luz, las fuerzas se separaron en las cuatro conocidas, emergieron las primeras quarks para unirse y formar protones y neutrones, los primeros núcleos aparecieron para atraer a los electrones que formaron aquellos primeros átomos.Doscientos millones de años más tarde, se formaron las primeras estrellas y Galaxias. Con el paso del tiempo, las estrellas sintetizaron los elementos pesados de nuestros cuerpos, fabricados en supernovas que estallaron, incluso antes de que se formase el Sol.Podemos decir, sin temor a equivocarnos, que una supernova anónima explotó hace miles de millones de años y sembró la nube de gas que dio lugar a nuestro sistema solar, poniendo allí los materiales complejos y necesarios para que algunos miles de millones de años más tarde, tras la evolución, apareciéramos nosotros.

Las estrellas evolucionan desde que en su núcleo se comienza a fusionar Hidrógeno en Helio, de los elementos más ligeros a los más pesados.Avanza creando en el Horno termonuclear, cada vez, metales y elementos más pesados.Cuando llega al hierro y explosiona en la forma explosiva deuna super nova.Luego, cuando este material estelar es otra vez recogido en una nueva estrella rica en hidrógeno, al ser de segunda generación (como nuestro Sol), comienzo de nuevo el proceso de fusión llevando consigo materiales complejos de aquella supernova.

Puesto que el peso promedio de los protones en los productos de fisión, como el cesio y el kripton, es menor que el peso promedio de los protones de uranio, el exceso de masa se ha transformado en energía mediante E=mc2.Esta es la fuente de energía que subyace en la bomba atómica.

                                         Restos de Hipernova que produce cambios hacia el futuro del Universo

Así pues, la curva de energía de enlace no solo explica el nacimiento y muerte de las estrellas y la creación de elementos complejos que también hicieron posible que nosotros estemos ahora aquí y, muy posiblemente, será también el factor determinante para que, lejos de aquí, en otros sistemas solares a muchos años – luz de distancia, puedan florecer otras especies inteligentes que, al igual que la especie humana, se pregunten por su origen y estudien los fenómenos de las fuerzas fundamentales del Universo, los componentes de la materia y, como nosotros, se interesen por el destino que nos espera en el futuro.

Cuando alguien oye por vez primera la historia de la vida de las estrellas, generalmente (lo sé por experiencia), no dice nada, pero su rostro refleja escepticismo. ¿Cómo puede vivir una estrella 10.000 millones de años? Después de todo, nadie ha vivido tanto tiempo como para ser testigo de su evolución.

Sin embargo, tenemos los medios técnicos y científicos para saber la edad que tiene, por ejemplo, el Sol.

 

                          El Sol que nos da la vida con su luz y su calor

Nuestro Sol, la estrella alrededor de la que giran todos los planetas de nuestro Sistema Solar (hay que eliminar a Plutón de la lista, ya que, en el último Congreso Internacional, han decidido, después de más de 20 años, que no tiene categoría para ser un planeta), la estrella más cercana a la Tierra (150 millones de km=UA), con un diámetro de 1.392.530 km, tiene una edad de 4.500 millones de años.

Es tal su densidad, es tal su enormidad que, como se explicó en otro ensayo anterior de este mismo trabajo, cada segundo, transforma por medio de fusión nuclear, 4.654.000 Toneladas de Hidrógeno en 4.650.000 Toneladas de Helio, las 4.000 toneladas restantes, son lanzadas al espacio exterior en forma de luz y calor de la que, una parte nos llega a la Tierra y hace posible la vida. Se calcula que al Sol le queda material de fusión para otros 4.500 millones de años.Cuando transcurra dicho periodo de tiempo, se convertirá en una gigante roja, eyectará sus materiales exteriores al espacioy se transformará finalmente en una estrella enana blanca.Para entonces, ya no podremos estar aquí.

Cuándo mentalmente me sumerjo en las profundidades inmensas del Universo que nos acoge, al ser consciente de su enormidad, veo con claridad meridiana lo insignificante que somos, en realidad, en relación al universo, como una colonia de bacterias que habitan en una manzana, allí tienen su mundo, lo más importante para ellas, y no se paran a pensar que puede llegar un niño que, de un simple puntapié, las envíe al infierno.

Resultado de imagen de Nuestra importancia es familiar

Sólo somos importantes a nivel local, pretendemos serlo a otros niveles pero, ¿será posible eso? De lo que no cabe duda alguna es que, es el núcleo familiar nuestra más importante huella en el Universo, lo demás, viene por añadidura

Igualmente, nosotros nos creemos importantes dentro de nuestro cerrado y limitado mundo en el que, de momento, estamos confinados.Podemos decir que hemos dado los primeros pasos para dar el salto hacia otros mundos, pero aún nos queda un largo recorrido por delante.

Resultado de imagen de La energía del SolResultado de imagen de Naves espaciales del futuro

Tendremos que dominar la energía del Sol, ser capaces de fabricar naves espaciales que sean impenetrables a las partículas que a cientos de miles de trillones circulan por el espacio a la velocidad de la luz, poder inventar una manera de imitar la gravedad terrestre dentro de las naves para poder hacer la vida diaria y cotidiana dentro de la nave sin estar flotando todo el tiempo, y, desde luego, buscar un combustible que procure velocidades relativistas, cercanas a c, ya que, de otra manera, el traslado por los mundos cercanos se haría interminable.Finalmente, y para escapar del sistema solar, habría que buscar la manera de romper la barrera de la velocidad de la luz.

¿Viajar en el tiempo?

Nuestra imaginación sólo es comparable a la inmensidad del Universo. Ahí radica nuestra verdadera riqueza. La curiosidad del SER humano le empuja de manera irremediable hacia su destino en las estrellas.

emilio silvera

¿Pueden llegarnos mensajes del futuro?

Autor por Emilio Silvera    ~    Archivo Clasificado en Especulando    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Mensajes desde el futuro

 

Investigadores proponen una solución a algunos problemas de la Física Cuántica, como los viajes en el tiempo o la paradoja del abuelo. Nuestra imaginanción (que es casi tan grande como el UNiverso mismo), no deja de elucubrar sobre lo que podría ser… ¡ A veces se ha salido con la suya!

Las curvas temporales abiertas podrían resolver muchos problemas de la Física

Las curvas temporales abiertas podrían resolver muchos problemas de la Física – NPJ QUANTUM INFORMATION. Las curvas abiertas son las que siguiendo esa sucesión de puntos con un lápiz y sin levantarlo del papel, nunca llegamos al punto desde el que comenzamos.

Resultado de imagen de Las curvas temporales abiertas

“En una variedad Lorentziana de la geometría diferencial, se llama curva cerrada de tipo tiempo o curva temporal cerrada (closed timelike curve, o abreviadamente CTC, en inglés) a la línea de universo de una partícula material que está cerrada en el espacio-tiempo, es decir, que es susceptible de regresar al mismo estado del que partió en el tiempo.

Esta posibilidad fue planteada por Willem Jacob van Stockum en 1937 y por Kurt Gödel en 1949. De probarse la existencia de la CTC, el hecho podría implicar al menos la posibilidad teórica de construir una máquina del tiempo, así como una reformulación de la paradoja del abuelo.”

La CTC está relacionada con la deformación gravitatoria y con el cilindro de Tipler, (en referencia al físico Frank J. Tipler), capaces teóricamente de posibilitar el viaje en el tiempo, todo ello contemplado en la relatividad general.

 

Imagen relacionada

Imagen relacionada

 

 

Un grupo internacional de investigadores, liderados por la Universidad de Singapur, acaba de demostrar que numerosos problemas de la Física Cuántica, hoy por hoy irresolubles, podrían solucionarse fácilmente con un ordenador cuántico que viajara a través de “curvas temporales abiertas”. El trabajo, que ha levantado gran expectación en la comunidad científica, se publica en la revista Nature Quantum Information.

Hace ya una década que el físico Dave Bacon, que en la actualidad trabaja para Google, demostró que la mejor forma de resolver rápidamente todo un grupo de problemas de la Física (llamados NP-completo) y que traían de cabeza a los matemáticos, era utilizando un ordenador cuántico que se desplazara a través del tiempo. ¿La razón? El hipotético ordenador de Bacon podría moverse con libertad a través de una serie de “curvas cerradas de tiempo”, atajos en el tejido espaciotemporal que se curvan sobre sí mismos. La relatividad general en efecto, permite que dichos caminos puedan existir a través de las contorsiones en el espacio-tiempo que conocemos como agujeros de gusano.

Resultado de imagen de Caminos a través de agujeros de gusano

¿Pero para qué enviar un mensaje en el tiempo y bloquearlo después para que nadie pueda leer su contenido? Sencillamente porque el procedimiento podría ser la clave que se necesitaba para resolver problemas que, actualmente, no tienen solución alguna. Y es que incluso un mensaje “sin abrir” puede resultar tremendamente útil, especialmente si los científicos “entrelazan” el mensaje con algún otro sistema antes de enviarlo.

Resultado de imagen de Entrelazamiento cuántico

Como se sabe, el entrelazamiento cuántico es un efecto extraño que es posible solo en el mundo de la Física subatómica, y consiste en una suerte de “comunicación instantánea” entre partículas que, como si fueran hermanos gemelos diminutos, “saben” al instante lo que le ha sucedido a las demás partículas entrelazadas y reaccionan al instante, sin importar la distancia que las separe. Y lo que proponen los investigadores es precisamente eso, crear un entrelazamiento entre el mensaje enviado a través del tiempo y el sistema del laboratorio. Una correlación que podría alimentar y potenciar la computación cuántica.

Resultado de imagen de Curvas temporales cerradas

Sin embargo, las curvas temporales cerradas conllevan no pocos problemas. En general, los físicos creen que, aunque son teóricamente posibles, algo debe de estar evitando que ese tipo de desplazamientos temporales se produzcan en la Naturaleza. De otra forma, argumentan, podrían darse todo tipo de paradojas, entre ellas la clásica de que alguien podría viajar al pasado y matar a su abuelo, impidiendo así su propia existencia.

Y no solo es la familia la que estaría amenazada por unos viajes así. En efecto, romper el flujo temporal, dejando a un lado el principio de causalidad (un acontecimiento causa otro, que causa otro, y otro…) también puede tener consecuencias para la propia Física cuántica. A lo largo de las dos décadas pasadas los investigadores han mostrado hasta la saciedad que los principios mismos sobre los que se basa la Física Cuántica se quiebran en pedazos ante la presencia de curvas temporales cerradas. Por ejemplo, se puede quebrar el principio de incertidumbre, que establece la imposibilidad de conocer al mismo tiempo determinados pares de magnitudes físicas de una partícula (como la velocidad y el momento). O incluso dejar a un lado el Teorema de no Clonación, que dice que los estados cuánticos no se pueden copiar y que constituye uno de los pilares más sólidos de la Mecánica Cuántica.

Evitar las paradojas

 Resultado de imagen de Paradojas temporales

Sin embargo, el nuevo trabajo muestra que un ordenador cuántico sería capaz de resolver problemas hasta ahora irresolubles si en vez de por curvas cerradas, se desplazara a través de “curvas temporales abiertas”, que no crean los problemas de causalidad anteriormente descritos. Esto se debe a que dichas curvas no permiten la interacción directa con cualquier cosa en el propio pasado del objeto: las partículas viajeras del tiempo (o, para ser más exactos, los datos que contienen) nunca interaccionarían con sí mismas.

Pra Mila Gu, de la Universidad de Singapur y director de la investigación, de esta forma “evitamos las paradojas clásicas, como la de los abuelos, aunque seguimos consiguiendo todos esos resultados extraños”.

Resultado de imagen de Viajar al futuro para saber como moristeResultado de imagen de Viajar al futuro para saber como moriste

                   Viajar al futuro para saber como moriste. Quién fuiste en tu vida y saber tu final

“Cada vez que presentamos la idea -afirma por su parte Jayne Thompson, coautor de la investigación- todo el mundo dice que no hay forma de que esto pueda tener un efecto”. Pero sí que la hay. Las partículas enviadas de esta forma a través de un bucle temporal pueden, de hecho, ganar un enorme poder de “super computación”, incluso si jamás interactúan con nada del pasado. “La razón se debe a que algunos datos se almacenan en las correlaciones de entrelazado: y esto es precisamente lo que estamos aprovechando”, asegura Thompson.

Resultado de imagen de Curvas temporales cerradasResultado de imagen de Curvas temporales cerradas

Sin embargo, no todos los físicos piensan que estas líneas de tiempo abiertas tengan más posibilidades de manifestarse en el Universo físico que las líneas cerradas. Y pueden que tengan razón. Uno de los principales argumentos en contra de la existencia de curvas temporales cerradas es que nadie, que sepamos, nos ha visitado nunca desde el futuro. Un argumento que, por lo menos, no es válido con las curvas temporales abiertas, ya que en ellas cualquier mensaje procedente del futuro resultaría bloqueado.

emilio silvera