Abr
28
¡¡Atentos a los fenómenos naturales!!
por Emilio Silvera ~ Clasificado en La Tierra y su energía ~ Comments (0)
¡Nuestras Mentes! ¿Estarán predestinadas?
Los científicos del Caribe están preocupados con las ráfagas de arena venidas desde el Sahara que, también llega al Amazona y fertiliza la Selva lo mismo que nutre los Océanos. La Tierra se vale de éstos fenómenos para mantener activas sus distintas regiones, y, los terremotos, la actividad volcánica, huracanes y demás actividad Natural, aunque de momento nos pudieran parecer negativas, lo cierto es que, a la larga no lo son.
De manera periódica se produce una bruma causada por nubes de polvo sahariano que llegan desde el norte de África. Los científicos dicen que estas nubes pueden incrementar la incidencia del asma y cambiar el patrón de los huracanes.
“Es parte de un fenómeno que se conoce como esparcimiento de Rayleigh y que nos habla de cómo interacciona la luz del Sol con la atmósfera de la Tierra.
Sol tiene todos los colores pero éstos no se comportan de la misma manera cuando atraviesan la atmósfera de la Tierra.
Los colores más azules se esparcen mas fácilmente que los colores más rojizos. Por eso de día el cielo se ve azul, porque la luz azul que viene en los rayos del Sol es esparcida por las moléculas del aire formando ese cielo azul que nos llega de todas las direcciones.
La distancia que la luz del Sol está atravesando en la atmósfera es mucho mayor cuando el Sol se está poniendo que a mediodía.
La luz que nos llega del Sol cuando está en el horizonte no tiene ya nada de luz azul, nada de luz amarilla, nada de luz verde, prácticamente tiene sólo luz roja. Por eso vemos más rojo.
En esos días, los amaneceres y atardeceres podrían verse en tono rojizo en los países del Caribe, pero el bello espectáculo podría traer un mensaje poco alentador, ya que se trata de una tormenta de arena proveniente del Sahara conteniendo material biológico y químico potencialmente dañino para la salud. Sin embargo, ese material sahariano es bueno como nutriente de la riqueza vegetal y de los océanos a los que sirve como nutriente.
Desde África recorre miles de kilómetros para llegar a distintas partes del mundo
Como cada año, partículas infinitamente pequeñas recorrieron miles de kilómetros desde el desierto del Sahara hacia el Caribe. A simple solo provocan atardeceres más intensos y algo de bruma en las mañanas, pero ahora los científicos saben que también pueden incrementar la incidencia del asma y cambiar el patrón de los huracanes.
Inusualmente grande, la cobertura de polvo que llega cada año y descarga material sobre las Antillas y llega hasta Yucatán e incluso Wyoming, en el centro de Estados Unidos, según la NASA.
Aunque el fenómeno existe desde que hay arena en el desierto, los científicos están cada vez más preocupados por sus efectos, mientras buscan comunicarse para investigaciones y tratan de desentrañar muchos misterios sobre estas nubes.
Finalmente se llegó a la conclusión de que, aunque pueda causar algún daño, a la larga es un proceso beneficioso en muchos sentidos ¿Es sabia la Naturaleza?
Son muchas partes del mundo las afectadas por el fenómeno
“Es un tema de gran envergadura y sumo y de importancia para la salud”, manifestó a la AP el toxicólogo de la Universidad de Puerto Rico en Mayagüez Braulio Jiménez-Vélez. “La inhalación de partículas contaminadas se puede asociar con varias enfermedades respiratorias, alergias, asma, enfermedades cardiovasculares”, agregó.
En casos extremos podría inducir cáncer de pulmón, pero los científicos aseguran que aún falta mucho por estudiar.
Este año hubo dos alertas en Puerto Rico por nubes del Sahara por lo cual las autoridades hicieron un llamado a las personas que sufren de alergias y asma para que eviten actividades al aire libre. En República Dominicana se dieron a conocer alertas más suaves.
Esta tormenta cruza por encima de Las Islas Canarias camino de otros lugares. El 70% de dichas tormentas se originan en el Norte de África.
En Cuba los meteorólogos recordaron al público que el fenómeno es anual y se mostraron precavidos, mientras en México fue tratado como una “curiosidad meteorológica”.
El fenómeno es parecido a las gigantescas tormentas de polvo que pintan el cielo de amarillo en las metrópolis asiáticas y que pueden llegar a la costa del Pacífico estadounidense, aunque sus nubes son más polvorientas .
Este fenómeno fue estudiado por el naturalista Charles Darwin a mediados del siglo XIX y es, aseguran los expertos, un ejemplo de cómo la acción humana está distorsionando un fenómeno natural.
científicos consultados por AP en Cuba, Puerto Rico, México y Estados Unidos indicaron que los compuestos detectados en el polvo incluyen entre otros hierro, arsénico, mercurio, virus, bacterias, hongos, fertilizantes, pesticidas y hasta compuestos fecales.
La mayor parte del polvo atmosférico en todo el mundo tiene trazas químicas y material biológico, pero las cantidades son por lo general pequeñas como para constituir un riesgo.
Joseph M. Prospero, emérito de la Universidad de Miami, aseguró que algunas muestras tomadas en Barbados contenían niveles elevados de arsénico y cadmio, pero no eran peligrosos.
“Ha sido extremadamente difícil vincular la composición de la partícula específica a efectos en la salud “, dijo Prospero, autor de un artículo sobre el tema que se publicará en septiembre en el boletín de la Sociedad Americana de Meteorología. “No se puede decir qué efecto tiene todo este polvo, pero sí hay motivos para cierta preocupación”.
El fenómeno es seguido de por el Instituto de Meteorología de Cuba.
Además hay que tener en que este proceso genera otros efectos sobre los territorios al sur del Sahara, el incremento de la sequía produce un gran stress en los bosques y plantaciones que propician la ocurrencia de incendios forestales cada vez más frecuentes y devastadores con sus correspondientes consecuencias.
“Hemos hecho un estudio amplio de muchos años del comportamiento del polvo”, comentó a la AP el experto cubano Eugenio Mojena, del Instituto de Meteorología.
Mojena indicó que el mecanismo de la nube es “sencillo”: bajo las extremas de sequía del norte de África, las tormentas del Sahara levantan partículas súper finas y los vientos Alisios las trasladan.
A veces habréis oído decir: “El Aleteo de las alas de una mariposa en Singapur, puede provocar una tormenta en las Antillas”. Es una metáfora bastante cierta en la realidad si la trasladamos a hechos concretos.
El polvo del Sahara afecta a diversas zonas situadas a cientos de kilómetros del lugar en el que se produce la tor5menta
“El Polvo del Sahara está compuesto por arena y aerosoles dispersos – los cuales contienen además de material mineral, bacterias, hongos y virus-, que se generan en tormentas que se forman al Occidente de África.Este fenómeno meteorológico puede provocar disminución en las lluvias sobre las regiones en las que se mueve en grandes cantidades, de hecho, podría inhibir la formación de ciclones tropicales.”
Los expertos coinciden además en la incidencia que tiene en los ecosistemas, por ejemplo los corales que se afectan con el aumento de algas “abonadas” por el hierro de la nube, un aspecto de económico para unos países que viven del turismo de playa.
“El polvo no es el mismo que medía Darwin, no tenía DDT, no tenía pesticidas, ni herbicidas”, manifestó Mojena.
Las nubes también pueden complicar el tráfico aéreo, reduciendo la visibilidad, explicó Jason Dunion, investigador de la Administración Nacional Oceánica y Atmosférica de Estados Unidos, pero no lo suficiente como para obligar a las desviaciones de los vuelos comerciales o cerrar aeropuertos.
La tormenta de arena provoca la paralización del tráfico aéreo en muchas regiones del mundo
Omar Torres, investigador especializado en física atmosférica de la NASA, explicó que los por satélite comenzaron en 1980 y no muestran aumento de las emisiones de polvo del Sahara fuera de la variabilidad estacional normal, aunque admitió que las emisiones son más altas que los niveles de 1960.
En esta ocasión, advirtió Torres, la nube de comienzos de agosto llegó hasta el centro de los Estados Unidos.
“El avance de este hasta llegar a Wyoming (Estados Unidos) fue totalmente inesperado. Nunca he visto nada como eso en los últimos años”, expresó Torres.
Por otra parte, lo cierto es que, las tormentas de arena del Sahara son una fuente de minerales escasos para las plantas de la pluvisilva amazónica. Nunca llueve a gusto de todos y, como dicen que la Naturaleza es “sabia”… ¿quién sabe por qué hace muchas de las cosas que hace?
En los últimos años, además, los científicos han estado descubriendo el papel que juegan las nubes del Sahara en la –o desintegración– de los huracanes, cuya mayor intensidad debido al cambio climático preocupa a los países del Caribe.
La nube del desierto tiene un efecto “trascendental para la inhibición de los de ciclones tropicales”, manifestó a la AP el experto del Servicio Meteorológico Nacional de la Comisión Nacional del Agua de México, Juan Antonio Palma Solís.
Pero incluso con todo lo que hoy sabemos del fenómeno gracias al desarrollo de la tecnología satelital, los científicos coincidieron en la necesidad de más sus trabajos y coordinarlos regionalmente. “Estamos en un planeta que no deja de moverse… hay que meterle invstigación”, señaló Palma.
Los científicos que estudian las tormentas de arena saben desde hace tiempo que la arena del Sahara puede viajar a través del Atlántico hasta América. Sin embargo, la arena asiática tiene que viajar mucho más lejos para llegar al mismo destino. En del 2001, los investigadores observaron con sorpresa como la arena de una tormenta asiática cruzó el Pacífico alcanzando lugares tan lejanos cómo los Grandes Lagos e incluso Maryland.
Otros desastres de la Naturaleza también nos asola y están los tornados solares que, no sólo producen las bellas auroras, algunos de inmensa virulencia asolan nuestros ingenios artificiales que nos comunican los datos de múltiples fenómenos, o, son enlaces para todo el mundo en las comunicaciones, y, cuando llegan esos fuertes “vientos solares”…
Vientos solares con un diámetro en el que cabrían varias Tierras
Conocemos por las noticias la violencia y la capacidad destructiva que puede tener un tornado. Ahora imagine que ese tornado es cinco veces más grande que la Tierra y que está compuesto por un material tan ardiente como el que debe de dar forma al peor de los infiernos. Ese fenómeno es real. Se produce sobre la superficie del Sol, generado por las emisiones magnéticas. Científicos de la Universidad de Aberystwyth (Reino Unido) pudieron filmarlo en septiembre de 2011 y ahora lo han dado a conocer. Resulta apabullante.
Todos conocemos la devastación que producen los tornados en EE.UU. Centenares de edificios y dos escuelas fueron destruidas por un tornado con vientos de hasta 320 km/h que azotó Oklahoma, la cifra de muertos aún no es oficial, pues algunos manejaron 51 El servicio meteorológico nacional de Estados Unidos calificó la fuerza del tornado como EF-4 en la escala de magnitud de estos fenómenos, es equivalente a un huracán de categoría 5. Los tornados suelen afectar las planicies de Oklahoma, situadas en el llamado “Corredor de Tornados”. La localidad de Moore ya había sido destruida en parte en mayo de 1999, cuando un potente tornado mató a 41 personas.
El tsunami fue producido a causa de un terremoto de 9 grados Ritcher con una duración de 6 minutos, en el que fue seguido por el tsunami, una ola gigantesca que llegó a medir 40,5 metros de altura, algo realmente impresionante. El terremoto del cual se creó el tsunami fue el más potente sufrido en Japón hasta la actualidad y el quinto más potente del mundo medidos hasta la fecha. Este tsunami dejó cientos de víctimas mortales, emergencia nuclear y un numero increíble de desaparecidos incluyendo gente que iba en barcos y en trenes. Sin duda la fuerza de la naturaleza es incomparable a la que el puede crear artificialmente.
Si hablamos de Terremotos, aunque han sido muchos en el mundo conocido, siempre recordamos el de San Francisco. A las 5:12 am. del miércoles 18 de abril de 1906, la mayoría de los habitantes en San Francisco, California, EE.UU. estaban dormidos. Pero estaban a punto de despertar muy repentinamente. La tierra se sacudió violentamente, era un terremoto. Duró de un minuto, pero hizo mucho daño. Edificios derribados. Personas atrapadas debajo de escombros. Se rompieron conductos de agua y gasolina. Y poco después de que la sacudida terminara, comenzaron incendios en la ciudad. Los fuegos estaban fuera de control y los incendios duraron tres días. El terremoto ocurrió cuando hubo un movimiento precipitado a lo largo de la falla de San Andreas. Esta gran falla de transfomación está en California. Es el límite entre dos de las placas tectonicas de la Tierra.
Imagen de la Falla de San Andres tomada de Wikipedia con el texto que la acompaña
La falla de San Andrés (en inglés: San Andreas Fault) está situada en una gran depresión del terreno en un área límite transformante, con desplazamiento derecho entre la placa Norteamericana y la placa del Pacífico. Esta falla transformante es famosa por producir grandes y devastadores terremotos. Tiene una longitud de aproximadamente 1,286 km y pasa a través del estado de California, en Estados Unidos, y de Baja California en México. El sistema está compuesto por numerosas fallas o segmentos. El sistema de fallas de San Andrés termina en el golfo de California.
El lunes 19 de septiembre de 2011, una serie de temblores se sintieron en Guatemala, El Salvador y Honduras, el lugar más afectado fue Santa Rosa, departamento de Guatemala, con 3 muertos y 12 desaparecidos. El Domingo 4 de abril de 2010 el Terremoto de Baja California de 7,2 grados en la escala de Richter con epicentro localizado en el poblado Guadalupe Victoria azotó fuertemente a la región de Baja California y Sonora dejando un saldo de 4 personas muertas y 182 heridos, el sismo se hizo sentir en varias ciudades de México y Estados Unidos como Los Angeles en California, Salinas, San Diego, Calexico, Moreno y otra más, además en México se sintió con mayor intensidad en Mexicali, San Luis Rio Colorado, Ensenada, Tijuana, Tecate y en poblaciones como el Golfo de Santa Clara en Sonora, este es considerado por expertos sismólogos como un pequeño paso de lo que puede ser el comienzo de la actividad sísmica que originara el The Big One, un sismo de dimensiones catastróficas que se predice afectará el área de una manera nunca antes imaginada en menos de 30 años según expertos.
Aquí lo dejo porque la lista es muy amplia.
¿Qué podemos decir de los Volcanes y de los cientos de miles de muertos que han provocado sus erupciones cuando la Tierra explota y expulsa el magma hacia el exterior al haber alcanzado sus entrañas el nivel máximo soportable y tiene que arrojar la materia ardiente para aliviar y regularizar de nuevo alcanzando una regularidad soportable.
Volcán Tambora:
82000 muertos aproximadamente en 1815
Fisura Volcánica Laki:
39350 muertos en 1783
Volcán Krakatoa:
36417 muertos en 1883
Monte Pelée:
30121 muertos en 1902
El Santa Elena (Washinton – EE·.UU.) que produjo una erupción atastrófico en 1980
El Volcan Chabeland en las Islas Aleutian en Alaska, sus nubes alcanzan los 6000 m
Tendráimos que prestar más atención a la Tectónica de Placas continentales que, en su actividad son las que producen todos esos fenómenos a los que antes hacíamos referencia. Aunque después se han realizado otras. Hay una experimental directa de la tectónica de placas. A mediados de la década de los ochenta, astrónomos de Europa y Estados Unidos dirigieron sus radiotelescopios hacia el mismo púlsar y luego midieron las diferencias en el tiempo de llegada de las ondas de radio.
Todos estos fenómenos naturales hacen cambiar el mundo. Los grandes accidentes de la superficie terrestre (el marino, los continentes y sus cordilleras) han sido generados por el imparable movimiento de los rígidos bloques de la litosfera. Las grandes placas oceánicas divergen en las crestas dorsales oceánicas, donde surge el magma creando nueva corteza basáltica, que se desliza a lo largo de fallas hasta que finalmente chocan con los bordes continentales donde se hunden en profundas fosas, zonas de subducción, para ser recicladas en el manto. Aunque el recorrido entre la dorsal y la fosa se completa en 107 años, algunas zonas continentales permanecen muy estables, estando cubiertas por rocas cuya edad es veinte veces la edad de las más antiguas cortezas marinas, que a su vez, datan de unos doscientos millones de años.
Movimientos divergentes: cuando dos placas se separan una de la otra, generalmente desde las dorsales oceánicas.
Dondequiera que choquen las relativamente rápidas placas tectónicas oceánicas con las enormes placas continentales, se forman cadenas montañosas en continua elevación. Los ejemplos más espectaculares se subducción y montañosa son, respectivamente, la placa del Pacífico sumergiéndose en las profundas fosas del Asia oriental, y el Himalaya, que se eleva por el choque de las placas índica y euroasiática.
El Himalaya es una cordillera en el continente asiático. Se extiende por los países de Bután, China, Nepal e India.
En otras zonas de la litosfera, la afloración de rocas calientes del manto debilita inicialmente y agrietan posteriormente la corteza continental, hasta que finalmente, formando nueva corteza oceánica, separan los continentes. Ejemplos de diversos estadios de este proceso son el Mar Rojo, el golfo de Adén y las fracturas del Valle del Rift, en el este de África.
La zona es conocida como el Gran Valle del Rift y corresponde a la fractura geológica producida por la fricción entre la Placa Africana y la Placa Arábiga. desde Google Maps, son una serie de estrías de entre 3.000 y casi 5.000 kilómetros de longitud. Comenzó a formarse hace más de 30 millones de años, y previsiblemente será el punto de separación entre los continentes africano y asiático.
Este proceso de separación continental parece ser bastante regular. Se observan periodos de montañosa por compresión en el intervalo de cuatrocientos a quinientos millones de años, a los que sigue, unos cien millones de años más tarde, un resurgir de la rotura. Esta secuencia se repite en un ciclo supercontinental en el que se alterna la separación de grandes zonas continentales con su agrupamiento.
Las plumas de magma que perforan la litosfera también crean focos calientes duraderos que están asociados a los volcanes. Las islas Hawai y la cadena de montañas oceánicas que se extienden desde ellas hasta Kamchatka constituyen la manifestación más espectacular de focos calientes que surgen en medio de la veloz placa del Pacífico, entre los que actualmente se encuentran los ríos continuos de lava del volcán Kilauea y la lenta creación de la futura isla hawaiana de Loihi.
Las enormes plumas de magma que afloran desde las capas profundas del mano han dado origen a grandes superficies de lava, la mayor de las cuales es la meseta oceánica de Ontong , que cubre dos millones de kilómetros cuadrados, y la meseta del Decán y la siberiana, que son las mayores formaciones basálticas continentales. La generación de estas extensas formaciones afecta de manera importante a la composición de la atmósfera debido a las grandes emisiones de CO2 y SO2 que las acompañan, y que causan elevaciones de la temperatura troposférica y lluvias ácidas, con los consiguientes efectos cruciales en la biota.
En nuestro mundo podemos admirar grandes maravillas naturales
Los procesos energéticos de la geotectónica terrestre son complejos. Incluso resulta todavía incierta la contribución relativa de las fuerzas involucradas en el movimiento de las placas tectónicas. Las dos fuerzas más importantes están asociadas a la convección del material caliente del manto y al hundimiento de las zonas frías, con flotabilidad negativa, de la litosfera oceánica en las zonas de subducción. Este último proceso es debido a diferencias de densidad, máxima a una profundidad de doscientos o trescientos kilómetros, que generan un momento de fuerzas en el manto viscoso responsable de la fuerza convectiva.
la distribución de los cinturones sísmicos y volcánicos, que coinciden con la situación de las fosas y dorsales oceánicas, han permitido mostrar una superficie terrestre fragmentada en placas litosféricas. A partir de profundos se estableció la hipótesis de la expansión del fondo oceánico, que, resumidamente, afirmaba que continuamente se está formando suelo oceánico en las dorsales oceánicas
Las velocidades de las placas, al ser estudiadas, se observa que las que cuentan con una mayor proporción de sus bordes en zonas de subducción se mueven a velocidades de 60 a 90 kilómetros por millón de años, mientras que la velocidad de las placas en las que no hay hundimiento de bloques es inferior a 40 kilómetros por millón de años.
Sin embargo, la contribución de la emisión de material del manto no es despreciable, ya que la considerable energía potencial gravitatoria de extensas zonas de rocas calientes hace que se genere nueva corteza marina en las dorsales oceánicas con una velocidad que es, al menos, tres veces a la velocidad con que se genera en los planos abisales.
La primera en Chuile y la segunda al Sur de Portugal casi en la frontera con España
La combinación de ese “tirar” a lo largo de las zonas de subducción y de “empujar” en las dorsales da lugar a velocidades, para las placas más rápidas, de aproximadamente 20 cm/año durante cortos periodos de tiempo. Entre estas placas que se mueven rápidamente se encuentran no sólo los pequeños bloques como Nazca y Cocos, sino también la enorme placa del Pacífico, lo cual indica que la fuerza de arrastre del manto, proporcional al área y a la velocidad, debe ser relativamente pequeña.
La mayor parte del flujo de calor que se ha medido en la Tierra debe atribuirse a la de nueva litosfera oceánica. Lo cierto es que, de todos estos fenómenos naturales que no son deseados por ninguno de nosotros por los destrozos que causan, lo cierto es que, sin ellos, la vida no se renovaría y tampoco podría surgir la sabia nueva. La Naturaleza es sabia y hace lo que tiene que hacer, aunque ello sea !La destrución de la construcción!
emilio silvera
El presente , en su mayor parte (salvo algunos añadidos) corresponde al redactor de ciencia Seth Borenstein en Washington y los corresponsales Peter Orsi en La Habana y Dánica Coto en Puerto Rico que contribuyeron con este reportaje.
Abr
25
En Física hablamos de masa, inercia…, ¡de tántas cosas!
por Emilio Silvera ~ Clasificado en Física ~ Comments (2)
“El kilogramo (símbolo kg), antiguamente escrito como quilogramo,es la unidad básica de masa del Sistema Internacional de Unidades (SI).Desde el 20 de mayo de 2019 se define al fijar el valor numérico fijo de la Constanter de Planck, h constante de Planck, como 6.626 070 15 x 10-34 expresado en J·s (julios por segundo), unidad igual a kg·m2·s-1, estando el metro y el segundo definidos según c ( la velocidad de la luz en el vacío) y ΔνCs.·”
Patrones de medida del metro, utilizados de 1889 a 1960, compuestos de una aleación de platino e iridio.
“Metro (símbolo m). Es la unidad principal de unidades de longitud del Sistema Internacional de Unidades. Un metro es la distancia que recorre la luz en el vacío durante un intervalo de 1/299.792.458 de segundo, es decir, la velocidad de la luz, c, en el vacío.”
Un péndulo de un reloj marcando cada segundo
“El segundo (símbolo: s) es la unidad de tiempo en el Sistema Internacional de Unidades, el Sistema Cegesimal de Unidades y el Sistema Técnico de Unidades. Supone comúnmente una sesentava parte de un minuto (1⁄60) y es esencial para la medición en múltiples sistemas de unidades.”
Cuando hablamos de masa, nos estamos refiriendo a la medida de la inercia de un cuerpo, es decir, su resistencia a la aceleración. Todos sabemos la inmensa cantidad de combustible que se necesita para enviar al espacio exterior a esos transbordadores que llevan suministros y astronautas al espacio exterior para el mantenimiento de la Estación Espacial Internacional. El esfuerzo, es vencer la masa que se quiere transportar hasta que esta, alcanzando los 11 km/s de velocidad, pueda escapar de la fuerza de gravedad de la Tierra y poder así, cumplir con su cometido.
De acuerdo con las leyes de Newton del movimiento, si dos masas distintas, m1 y m2, son hechas colisionar en ausencia de cualquier otra fuerza, ambas experimentaran la misma fuerza de colisión. Si los dos cuerpos adquieren aceleraciones a1 y a2, como resultado de la colisión, entonces m1 a1 = m2 a2. Esta ecuación permite comparar dos masas. Si una de las masas se considera como una masa estándar, la masa de todas las demás puede ser medida comparándola con esta masa estándar. El cuerpo utilizado para este fin es un cilíndro de un kilógramo de una aleación de platino iridio. llamado el estándar internacional de masa (como se deja explicado más arriba). La masa definida de esta forma es llamada masa inercial del cuerpo.
Las masas también se pueden definir midiendo la fuerza gravitacional que producen. Por tanto, de acuerdo con la ley de gravitación de Newton, mg = Fd2 / MG, donde M es la masa de un cuerpo estándar situado a una distancia d del cuerpo de masa mg; F es la fuerza gravitacional entre ellos, y G es la constante gravitacional. La masa definida de esta forma es la masa gravitacional. En el siglo XIX, Roland Eötvös (1848-1919) demostró experimentalmente que las masas inerciales y gravitatorias son indistinguibles, es decir, m1 = mg.
Aunque la masa se define formalmente utilizando el concepto de inercia, es medida habitualmente por gravitación. El peso (W) de un cuerpo es la fuerza con la que un cuerpo es atraído gravitacionalmente a la Tierra, corregido por el efecto de la rotación, y es igual al producto de la masa del cuerpo y la aceleración en caída libre (g), es decir, W = mg.
Kilogramo patrón.
El kilogramo (unidad de masa) tiene su patrón en: la masa de un cilindro fabricado en 1880, compuesto de una aleación de platino-iridio (90 % platino – 10 % iridio), creado y guardado en unas condiciones exactas, y que se guarda en la Oficina Internacional de Pesos y Medidas en Sevres, cerca de París.
Una balaza mide solo cantidad de masa. |
La masa es la única unidad que tiene este patrón, además de estar en Sevres, hay copias en otros países que cada cierto tiempo se reúnen para ser regladas y ver si han perdido masa con respecto a la original.
No olvidemos que medir es comparar algo con un patrón definido universalmente.
¿Y el peso?
De nuevo, atención a lo siguiente: la masa (la cantidad de materia) de cada cuerpo es atraída por la fuerza de gravedad de la Tierra. Esa fuerza de atracción hace que el cuerpo (la masa) tenga un peso, que se cuantifica con una unidad diferente: el Newton (N).
La UNIDAD DE MEDIDA DEL PESO ES EL NEWTON (N)
Entonces, el peso es la fuerza que ejerce la gravedad sobre una masa y ambas magnitudes son proporcionales entre sí, pero no iguales, pues están vinculadas por el factor aceleración de la gravedad.
En el lenguaje común, el peso y la masa son frecuentemente usados como sinónimos; sin embargo, para fines científicos son muy diferentes. La masa es medida en kilogramos; el peso, siendo una fuerza, es medido en newtons (símbolo N. Unidad del SI de la fuerza, siendo la fuerza requerida para comunicar a una masa de un kilogramo una aceleración de 1 m s –2). Es más, el peso depende de donde sea medido, porque el valor de g es distintos en diferentes puntos de la superficie de la Tierra. La masa, por el contrario, es constante donde quiera que se mida, sujeta a la teoría especial de la relatividad. De acuerdo con esta teoría, publicada por Albert Einstein en 1905, la masa de un cuerpo es una medida de su contenido total de energía.
Por tanto, si la energía del cuerpo crece, por ejemplo, por un aumento de su energía cinética o temperatura, entonces su masa también crece. De acuerdo con esta ley, un aumento de energía ΔE está acompañado de un aumento de masa Δm, en conformidad con la ecuación de masa-energía Δm = ΔE/c2, donde c es la velocidad de la luz. Por tanto, si un kilo de agua se eleva de temperatura en 100 K, su energía interna aumentará en 4 x 10 –12 kg. Este es, por supuesto, un incremento despreciable y la ecuación de masa-energía es sólo significativa para energías extremadamente altas. Por ejemplo, la masa de un electrón es siete veces mayor si se mueve con relación a un observador al 99% de la velocidad de la luz.
Naves espaciales del futuro que pudieran viajar a velocidades cercanas a c (299,792.458 m/s), la velocidad de la luz en el vacío, verían incrementada su masa, ya que, al ser esa velocidad un límite impuesto por el Universo, a medida que la nave se acercara a ese límite, se vería frenada y, su fuerza inercial se convertiría en masa según la fórmula E= mc2
Ya sabemos que, se ha comprobado una y mil veces que, la teoría de Einstein de la relatividad especial es cierta en el sentido de que, al ser la velocidad de la luz el límite de velocidad del Universo, nada puede ir más rápido que la luz, cuando un cuerpo viaja a velocidades cercanas a la de la luz, a medida que se acerca a ella, puede ver como su masa aumenta, ya que, la energía de movimiento se convierte en masa al no poder conseguir su objetivo de marchar más rápido que la luz.
Muones lanzados a velocidades cercanas a c, aumentaron su masa 10 veces
En los anillos enterrados en las entrañas de la Tierra (en el Acelerador de partículas LHC), haces de partículas son lanzadas a la velocidad de la luz para que colisionen y, su peso aumenta conforme se van acercando a ese límite marcado por el universo.
La masa relativista de un cuerpo medida por un observador (un físico del LHC que mide el aumento de masa de los protones a medida que adquieren velocidad en el acelerador de partículas del CERN) con respecto al cual este cuerpo se mueve. De acuerdo con la teoría de Einstein, la masa m de un cuerpo moviendose a velocidad v está dada por m = m0/√ (1 – v2 / c2), donde m0 es su masa en reposo y c es la velocidad de la luz. La masa relativista solo difiere significativamente de la masa en reposo si su velocidad es una fracción apreciable de la velocidad de la luz. Si v = c/2, por ejemplo, la masa relativista es un 15% mayor que la masa en reposo.
Según las consecuencias obtenidas en el proyecto Manhattan, lo que sí es seguro es que, una pequeña fracción de materia, contiene una gran cantidad de energía. Según nos decía Asimov: “…un sólo gramo de materia se podría convertir en energía eléctrica que bastaría para mantener luciendo continuamente una bombilla de 100 vatios durante unos 28.200 años. O bien, la energía que representa un sólo gramo de materia es equivalente a la que se obtendría de quemar unos 32 millones de litros de gasolina”.
Una cosa si que nos puede quedar muy clara: Aunque sabemos algunas cosas sobre la masa y lo que entendemos por la energía, no podemos decir que, al día de hoy, “sepamos de verdad”, lo que la masa y la energía son.
Seguiremos aprendiendo.
emilio silvera
Abr
23
Biosfera, hidrosfera…¡La Tierra!
por Emilio Silvera ~ Clasificado en La magia de la Tierra ~ Comments (1)
“La teoría M avanza a paso firme, aunque quizás más lento de lo que nos gustaría. Introducida por Edward Witten en la conferencia anual de teoría de cuerdas Strings 1995 aún conserva un halo de misterio (M=Mistery). Sabemos que, como teoría cuántica de la gravitación, tiene como límite clásico la supergravedad en 11 dimensiones (10+1); entre sus objetos fundamentales están las M0-branas (un tipo de superpartícula), que permiten estudiarla en el límite de la teoría de cuerdas matricial (M=Matrix). También sabemos que, como teoría cuántica de campos, sus objetos fundamentales son las M2- y M5-branas (M=Membrane); no presenta análogos a las supercuerdas (M1-branas), lo que dificulta mucho su estudio matemático. Por fortuna, la teoría M está conectada por una extensa red de dualidades (analogías físicomatemáticas) con las cinco teorías de cuerdas en 10 dimensiones (9+1), algo tan asombroso que parece mágico (M=Magic).”
La BIOSFERA en realidad no es una capa de la Tierra; Es el conjunto de todos los ecosistemas existentes en el planeta, es decir, de todos los seres vivos junto con el medio en el que viven. Por eso, la biosfera es parte de la corteza terrestre, pero también es parte de la hidrosfera y de la atmósfera.
“La biosfera o biósfera es la capa del planeta Tierra donde existe la vida. Los geógrafos y físicos usan el término biosfera para describir nuestro mundo viviente. Todos los microbios, plantas y animales se encuentran en algún lugar de esta capa terrestre. Podría decirse que es la suma de todos los ecosistemas.
La biosfera se extiende incluso hasta las áreas superiores de la atmósfera, donde se pueden encontrar aves e insectos. También llega a las cuevas profundas, tanto terrestres como en el fondo del océano. En resumen, la biosfera se extiende a cada lugar donde exista vida, de cualquier tipo, y se compone de elementos bióticos y abióticos:
:
- Componentes bióticos: son todos los seres vivos, que dependen de su inter-relación y de la relación con el medio ambiente.
- Componentes abióticos: son los elementos que no tienen vida, como el suelo, el aire, el agua, los minerales, la luz o las rocas. Son muy importantes para la vida y el desarrollo de los componentes bióticos.”
En esta imagen puedes observar lo que supone el agua respecto al conjunto de nuestro Planeta. Recuerda que el 97% del agua de la Tierra es salada y solo un 3% es agua dulce. Tanto el agua salada como el agua dulce, son muy necesarias para la vida en el planeta y, el contaminarlas es ir contra nuestros propios intereses-
Armonía entre los seres vivos y la Naturaleza y para ello, la hidrosfera es de vital importancia, toda vez que abarca todo el agua que existe en el planeta sin importar la forma que en cada situación pueda adoptar y el estado en el que se pueda encontrar, sin agua, la vida no sería posible.,
La biosfera y la hidrosfera están estrechamente relacionadas: el agua es el elemento esencial de todas las formas de vida, y la distribución del agua en el planeta (es decir, los límites de la hidrosfera) condiciona directamente la distribución de los organismos (los límites de la biosfera). El término biosfera, de reciente creación, indica el conjunto de zonas de la Tierra donde hay vida, y se circunscribe a una estrecha región de unos 20 Km de altura comprendida entre las cimas montañosas más elevadas y los fondos oceánicos más profundos. Sólo pueden hallarse formas de vida en la biosfera, donde las condiciones de temperatura, presión y humedad son adecuadas para las más diversas formas orgánicas de la Tierra.
Ciclo del agua
Obviamente, las fronteras de dicha “esfera” son elásticas y su extensión coincide con la de la hidrosfera; se superpone a las capas más bajas de la atmósfera y a las superficiales de la litosfera, donde se sumerge, como máximo, unos 2 Km. Sin embargo, si por biosfera se entiende la zona en la que hay vida así como la parte inorgánica indispensable para la vida, deberíamos incluir en este concepto toda la atmósfera, sin cuyo “escudo” contra las radiaciones más fuertes no existiría ningún tipo de vida; o la corteza terrestre entera y las zonas superiores del manto, sin las cuales no existiría la actividad volcánica, que resulta necesaria para enriquecer el suelo con nuevas sustancias minerales.
Por tanto, la biosfera es un ecosistema tan grande como el planeta Tierra y en continua modificación por causas naturales y (desgraciadamente) artificiales.
Es importante cuidar los ecosistemas de la Tierra, es mucho lo que nos jugamos en ello
Las modificaciones naturales se producen a escalas temporales muy variables: en tiempos larguísimos determinados por la evolución astronómica y geológica, que influyen decididamente en las características climáticas de los distintos ambientes (por ejemplo, durante las glaciaciones), o en tiempos más breves, relacionados con cambios climáticos desencadenados por sucesos geológicos-atmosféricos imprevistos (por ejemplo, la erupción de un volcán, que expulsa a la atmósfera grandes cantidades de cenizas capaces de modificar el clima de extensas áreas durante periodos considerables).
Siempre quisimos doblegas a la Naturaleza y construimos grandes presas, ideamos la manera de vencerla construyendo canales que conectaran dos océanos, contaminamos bellos paisajes con “molinos o aspas” que aprovechan el viento para crear energía, también invadimos montañas y nos asentamos en ellas para disfrutar de sus bellos parajes, grandes espigones de piedra y cemento parten desde la costa y se adentra en el Mar para crear nuevas y bonitas playas regenerando las costas.
La Selva del Amazonas es una prueba de ello, allí inmensas superficies son taladas para aprovechar la madera, y, no siempre se repone lo que tardó muchos años en crecer.
Pero también, , las modificaciones artificiales debidas a la actividad humana tienen efectos rápidos: la deforestación producida en África por las campañas de conquista romanas contribuyó a acelerar la desertificación del Sahara, como tampoco hay duda de que la actividad industrial de los últimos siglos determina modificaciones dramáticas y repentinas en los equilibrios biológicos.
La biosfera es el punto de encuentro entre las diversas “esferas” en las que se subdivide la Tierra: está surcada por un flujo continuo de energía procedente tanto del interior del planeta como del exterior, y se caracteriza por el intercambio continuo de materia, en un ciclo incesante que une todos los entornos.
La biosfera es el ecosistema global. Comprende todos los ecosistemas y organismos vivos en la atmósfera, en la tierra (biosfera terrestre), o en los océanos (biosfera marina), incluida materia orgánica muerta derivada (por ejemplo, basura, materia orgánica en suelos y desechos oceánicos).
La Vida requiere de ciertas condiciones para poder surgir allí donde estas puedan estar presentes, y, aunque es persistente y la podemos encontrar en los lugares menos esperados, existen algunos lugares que son imposibles para la vida, y, donde el planeta no facilita los parámetros necesario para su presencia.
Por esta razón no hay vida por todas partes, pues la vida requiere condiciones particulares e imprescindibles. Existen determinados elementos físicos y químicos que “limitan” el desarrollo de la vida. La presencia y disponibilidad de agua es el primero y el más importante. El agua es el disolvente universal para la química de la vida; es el componente primario de todos los organismos y sin agua la vida es inconcebible (Tales de Mileto fue el primero en darse cuenta de ello). Pero no sólo es eso: al pasar del estado sólido al líquido y al gaseoso y viceversa, el agua mantiene el “efecto invernadero natural”, capaz de conservar la temperatura del planeta dentro de los niveles compatibles con la vida (es decir, poco por debajo de los 0º C y poco por encima de los 40º C).
La presión, que no deberá superar mucho el kilogramo por centímetro cuadrado (como sucede alrededor de los 10 m de profundidad en el mar), así como una amplia disponibilidad de sales minerales y de luz solar (indispensable – como expliqué antes – para la vida de las plantas) son también factores que marcan las posibilidades de vida.
Muchos son los misterios que se esconden en las profundidades marinas
Está claro que se nos ha dado un lugar privilegiado, que reúne todas y cada una de las condiciones excepcionales para la vida, y somos tan ignorantes que aún siendo un bien escaso (en nuestro enorme Sistema Solar, parece que el único), nos lo queremos cargar. Pero sin querer, me marcho por las ramas y me desvío del tema principal, la evolución por la energía, y como está directamente implicada, hablemos un poco de nuestra casa.
El planeta Tierra
Cinturones de Van Allen: Fuerzas invisibles actúan para preservarnos de energías nosivas provenientes del espacio interestelar.
Las fuerzas que actúan sobre la Tierra, como planeta en el espacio, tiene profundas implicaciones energéticas. La gravitación ordena y orienta, y obstaculiza y facilita los flujos de energía cinética. La rotación genera la fuerza centrífuga y la de Coriolis: la primera achata el planeta por los polos ensanchándolo por el ecuador, y la segunda desvía los vientos y las corrientes de los océanos (a la derecha del hemisferio norte y a la izquierda en el hemisferio sur). La rotación es también la causa de los ritmos diarios de las plantas y animales, y de la desaceleración de la Tierra, que alarga el día un promedio de 1’5 ms cada siglo, lo que representa una pérdida de tres teravatios por fricción de mareas.
La Tierra presenta varios movimientos en su viaje anual alrededor del Sol. Los más conocidos son el movimiento de Rotación y el movimiento de Traslación. Uno lo elegimos para significar la duración del día, y, el otro, nos marca la duración del Año.
En el movimiento de Rotación, la Tierra da una vuelta sobre si misma en 24 horas alrededor de un eje imaginario. Es decir en lo que denominamos un día. El de traslación se computa por un año.
Pero ni la gravitación ni la rotación (fricción) hacen de la Tierra un planeta único entre los cuerpos celestes de nuestro entorno. Su exclusividad procede de sus propiedades térmicas internas, que causan los ciclos geotectónicos que modifican la superficie, y de su atmósfera, océanos y plantas que transforman la radiación solar que reciben. Los orígenes de estos procesos no están claros.
Poco a poco evolucionó hasta ser un planeta habitable, y, de hecho, los fósiles más antiguas encontrados de formas rudimentarias de vida, tienen 3.850 millones de años.
Podemos fijar la edad de la Tierra en algo más de los 4.600 millones de años por la desintegración de los isótopos radiactivos, pero poco podemos asegurar sobre la formación del planeta o sobre la energética de la Tierra primitiva. Sobre el tema circulan varias teorías, y es muy plausible que el origen del Sistema Solar planetario fuera una nube interestelar densa en la que el Sol se formó por una inestabilidad gravitatoria y que la posterior aglomeración del resto de esta materia dispersa, que giraba a distintas distancias, a su alrededor, diera lugar a los planetas. No está claro si al principio la Tierra estaba extremadamente caliente o relativamente fría. Me inclino por lo primero y estimo que el enfriamiento fue gradual con los cambios de atmósferas y la creación de los océanos.
Los océanos de la Tierra vistos desde el espacio
Las incertidumbres geológicas básicas se extienden hasta el presente. Diferentes respuestas a cuestiones como la cantidad de 40K en el núcleo terrestre o sobre la convección del magma en el manto (hay una o dos celdas) dan lugar a diferentes explicaciones para el flujo de calor y la geotectónica de la Tierra. Lo que sí está claro es que el flujo interno de calor, menos de 100 mW/m2, tiene un efecto pequeño comparado con la reflexión, absorción y emisión de la radiación solar.
El balance de la radiación terrestre (Rp) en la capa alta de la atmósfera es la suma de la radiancia extraterrestre (la constante sola Q0) reducida por el albedo planetario y el flujo saliente de larga longitud de onda (Qi): Rp = Q0(1-ap) + Qi = 0. El flujo emitido es igual a la suma de la radiación atmosférica y la terrestre: Qi = Qea + Qes. Los balances de la radiación en la atmósfera (Ra) y en la superficie de la Tierra (Rs) son iguales, respectivamente, a la diferencia entre la correspondiente absorción y emisión: Ra = Qaa + Qea y Rs = Qas + Qes, de manera que Rp = Ra + Rs = 0. Hay que continuar explicando la radiación saliente con los flujos irradiados y emitidos por la superficie terrestre, el flujo de radiación medio absorbida, etc., etc., etc., con una ingente reseña de símbolos y tedioso esquemas que, a mi parecer, no son legibles para el lector normal y no versado en estos conocimientos. Así que, aunque sea mutilar el trabajo, desisto de continuar por ese camino y prosigo por senderos más amenos y sugestivos para el lector.
La fuente más importante del calentamiento atmosférico proviene de la radiación terrestre de longitud de onda larga, porque el flujo de calor latente es una contribución secundaria y el flujo de calor sensible sólo es importante en las regiones áridas donde no hay suficiente agua para la evaporación. Los océanos y los continentes también reciben indirectamente, irradiadas por la atmósfera, la mayor parte de su calor en forma de emisiones de longitudes de onda larga (4 – 50 μm). En este flujo de radiación reenviado hacia la superficie terrestre por los gases invernadero, domina a la radiación del vapor de agua, que con una concentración variable, emite entre 150 y 300 W/m2, y al que también contribuye el CO2 con unos 75 W/m2.
El intercambio de radiación de longitud de onda larga entre la superficie y la atmósfera sólo retrasa temporalmente las emisiones de calor terrestre, pero controla la temperatura de la biosfera. Su máximo es casi 400 W/m2 en los trópicos nubosos, pero es importante en todas las estaciones y presenta significativas variaciones diarias. El simple paso de una nube puede aumentar el flujo en 25 W/m2. Las mayores emisiones antropogénicas de gases invernadero han aumentado este flujo en cerca de un 2’5 W/m2 desde finales del siglo XIX.
Como era de esperar, las observaciones de los satélites confirman que el balance de energía de la Tierra está en fase con la radiación solar incidente (Q0), pero la radiación media saliente (Qi) está desfasada con la irradiancia, alcanzando el máximo durante el verano en el hemisferio norte. La distribución asimétrica de los continentes y el mar explica este fenómeno. En el hemisferio norte, debido a la mayor proporción de masa terrestre, se experimentan mayores cambios estacionales que dominan el flujo global de la radiación saliente.
Quizás el resultado más sorprendente que se deriva de las observaciones por satélite sea que, estacionalmente, se observan cierto déficit y superávit de radiación y el balance de la radiación en el planeta no es igual a cero, pero sin embargo, en cada hemisferio la radiación anual está en equilibrio con el espacio exterior. Además, la contribución atmosférica por transporte de energía hacia los polos es asimétrica respecto al ecuador con valores extremos de unos 3 PW cerca de los 45º N, y -3 PW cerca de 40º S.
Podría continuar hablando sobre los vientos, los terremotos, las lluvias y otros fenómenos atmosféricos, sin embargo, no creo que, por ser estos fenómenos naturales muy conocidos de todos, pudieran tener gran interés. Pasemos pues a comentar sobre los océanos.
Las lluvias tan necesarias para todos y para todo
Agua, mejor que Tierra, habría sido el nombre adecuado para el tercer planeta, puesto que los océanos cubren más del 70 por ciento de la superficie terrestre, con una profundidad media de 3’8 Km. Debido a las especiales propiedades térmicas del agua, éstas constituyen un extraordinario regulador del balance energético del planeta.
Este líquido tiene cinco ventajas termodinámicas importantes: un punto de ebullición inusualmente alto, debido a su capacidad para formar enlaces de hidrógeno intermoleculares; un calor específico de 2’5 a 3’3 veces más elevado que el del suelo; una capacidad calorífica (calor específico por unidad de volumen) aproximadamente seis veces mayor que la tierra seca; un altísimo calor de vaporización que le permite transportar una gran cantidad de calor latente; y su relativamente baja viscosidad, que le convierte en un eficiente transportador de calor en los océanos mediante miríadas de remolinos y caudalosas corrientes.
No es sorprendente, pues, que los océanos, que tienen cerca del 94 por ciento de toda el agua, sean determinantes en el balance energético del planeta. Cuatro quintas partes de la radiación solar que llega a la Tierra entra en la atmósfera que cubre los océanos, los cuales con un albedo superior al 6% absorben la energía con una tasa cercana a 65 PW, casi el doble de la absorción atmosférica total y cuatro veces mayor que la continental. Inevitablemente, los océanos también absorben la mayor parte, casi dos tercios, del calor rerradioirradiado hacia abajo por la atmósfera elevando su ritmo de calentamiento a los 175 PW.
Arrecife poco profundos y ecosistemas
Salvo en los océanos menos profundos, la interacción aire-mar no afecta directamente a las aguas profundas. Las oscuras y frías aguas de las profundidades marinas están aisladas de la atmósfera por la capa mixta, una capa de poca profundidad que va de pocos metros a pocos cientos de metros y que está afectada por los vientos y el oleaje.
A pesar de que el alto calor específico del agua limita el rango de variación, las temperaturas de esta capa sufren importantes fluctuaciones diarias y estacionales. Sin embargo, variaciones relativamente pequeñas de la temperatura de la superficie de los océanos tienen importantes consecuencias climáticas: quizás el mejor ejemplo de esta teleconexión climática sea el fenómeno del Niño, que consiste en una extensión en forma de lengua de las aguas superficiales calientes hacia el este, cuyos efectos se extienden desde Canadá hasta África del sur.
Debido a que la conductividad térmica del agua es muy baja, la transferencia de energía de la capa mixta hacia las profundidades se realiza fundamentalmente mediante corrientes convectivas. Estas corrientes compensan la extremadamente baja fuerza ascensional de las aguas profundas, más calientes, que son desplazadas por el movimiento hacia el ecuador de las corrientes frías provenientes de los polos. En contraste con el gradual ascenso general de las aguas oceánicas, la convección hacia abajo se produce en corrientes bien delimitadas que forman gigantescas cataratas oceánicas. Seguramente la mayor es la que fluye hacia el sur bajo el estrecho de Dinamarca, entre Islandia y Groenlandia, y se sumerge unos 3’5 Km transportando 5 millones de m3/s, un caudal veinte veces mayor que el del Amazonas.
El agua de la vida
Miríadas de corrientes oceánicas, que a menudo viajan cientos de kilómetros a diferentes profundidades, transportan considerables cantidades de energía y sal. Quizás el ejemplo más importante de estas combinaciones de transportes sea la corriente de agua caliente y salada que sale del Mediterráneo a través del estrecho de Gibraltar. Este flujo caliente pero denso desciende sobre la pendiente de la plataforma continental hasta alcanzar el equilibrio entre el peso y el empuje ascensional a unos mil metros de profundidad. Aquí se separa en dos celdas lenticulares que se mueven durante siete años hacia el este y hacia el sur, respectivamente, hasta que decaen o chocan contra alguna elevación marina.
Un mapa global de los flujos de calor desde la superficie oceánica hasta las capas profundas muestra claramente máximos longitudinales a lo largo del ecuador y a lo largo de aproximadamente 45º S en los océanos Atlántico e Índico. Esta transferencia es también importante en algunas áreas costeras donde se producen intensos flujos convectivos ascendentes que intercambian calor entre las aguas superficiales y las profundas, como ocurre en la costa de California y al oeste de África. Un flujo en dirección contraria, que calienta la atmósfera, se produce en las dos mayores corrientes oceánicas calientes, la corriente del Golfo en el Atlántico y la de Kuroshio en el Pacífico oriental.
Aguas termales y sulfurosas
Todas la regiones donde se produce este ascenso de aguas calientes (a lo largo de las costas del continente americano, África, India y la zona ecuatorial del Pacífico occidental) se distinguen fácilmente por los elevados niveles de producción de fitoplancton, causados por un importante enriquecimiento de nutrientes, comparados con los que, de otra manera, corresponderían normalmente a las aguas superficiales oligotrópicas.
La radiación transporta la mayor parte (casi 4/5) de la energía que fluye desde la capa mixta hasta la atmósfera, y el resto del flujo calorífico se produce por calor latente en forma de vapor de agua y lluvias.
Aún no se ha realizado una valoración cuantitativa del transporte total para cada latitud, pero en el océano Atlántico hay transferencia de calor hacia el norte a lo largo de toda su extensión, alcanzando en el trópico un valor aproximado de 1 PW, flujo equivalente al que se produce en el Pacífico norte. En el Pacífico sur, el flujo de calor hacia el polo a través del trópico es de 0’2 PW. La parte occidental del Pacífico sur puede constituir la mayor reserva de calor del Atlántico sur, de igual modo que es probable que el océano Índico sur constituya una reserva del Pacífico.
Ahora tocaría comentar algo sobre los ríos del planeta, sin embargo, lo obvio y me dirijo directamente a comentar sobre el calor de la Tierra.
Aunque la Tierra se formara inicialmente a partir de materia fría (material cósmico) que se contrajo por acción de la gravedad, durante la formación posterior del núcleo líquido y en los periodos de intensa actividad volcánica se ha liberado una enorme cantidad de calor. Los frecuentes impactos de objetos pesados también han contribuido al calentamiento de la superficie. Hay mucha incertidumbre sobre la historia térmica de la Tierra de los últimos 3.000 millones de años, durante los cuales el planeta se ha ido enfriando y una gran parte de este flujo de calor ha alimentado los movimientos geotectónicos globales, creando nueva corteza en las dorsales oceánicas; un proceso que ha ido acompañado de terremotos recurrentes y erupciones volcánicas de lava, cenizas y agua caliente.
Solamente hay dos posibles fuentes de calor terrestre, pero la importancia relativa de las respectivas contribuciones no está aún muy clara. El calor basal, liberado por un lento enfriamiento del núcleo terrestre debe representar una gran parte del flujo total, si bien cálculos basados en la desintegración radiactiva del U235, U238, Th232 y K40 sugieren que éste representa al menos la mitad y quizás hasta nueve décimos del flujo total de calor del planeta. Esta disparidad obedece a la incertidumbre en la concentración de K40 en la corteza terrestre. Pero sea cual sea la proporción, el flujo total, basado en miles de medidas realizadas desde los años cincuenta, está próximo a los 40 TW.
Aunque inicialmente se pensó que los flujos continentales y oceánicos eran aproximadamente iguales, en realidad difieren de forma sustancial. Las regiones del fondo oceánico más recientes contribuyen con más de 250 mW/m2, cantidad que supera hasta tres veces las zonas continentales más recientes. El flujo medio para todo el fondo marino es aproximadamente igual a 95 mW/m2, lo que representa un 70% más que el correspondiente a la corteza continental. El flujo medio global es de 80 mW/m2, unos tres órdenes de magnitud inferior al valor medio del flujo de calor de la radiación solar global.
Llegados a este punto, tengo que respirar. ¡Qué maravilla! ¡La Tierra!
emilio silvera
Abr
21
En tan vasto Universo… ¡No estamos solos!
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
¡Inexorable paso del “Tiempo”! ¿Qué será el Tiempo?
“Dentro de miles de millones de años a partir de hoy , habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la evolución solar es inexorable. Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.”
Eso nos decía Carl Sagan pensando en ese tiempo que llegará, nuestro Sol, agotado su combustible nuclear de fusión, se convierta primero en gigante roja y en enana blanca después. El Sol crecerá tanto que su esfera se hinchará como un gigantesco globo rojo hasta engullir a los planetas Mercurios y Venus quedando muy cerca de la Tierra.
Lo único que sabemos es que con el transcurrir del Tiempo las cosas cambian, nada permanece ni es eterno, todo tiene un Principio y tendrá un Final, y, el Sol, amigos míos, no será ninguna excepción a esta máxima que impone el Universo por medio de la Entropía.
Los fenómenos naturales son todos aquellos que ocurren sin que nosotros, los seres vivos que habitamos el planeta, tengamos ninguna clase de intervención en ellos, es la Naturaleza la que, en cada momento, hace lo que tiene que hacer y ocurre lo que viene dado por algo que antes ociurrió. Todo tiene su por qué, nada es misterioso y, simplemente, se trata de ignorancia y desconocimiento el hecho de que no sepamos explicar las cosas.
“Nadie sabe si las estrellas de quarks existen, pero se publicó en Science un artículo que muestra cómo distinguirlas de las estrellas de neutrones cuando están en un sistema binario y emiten radiación como un púlsar de milisegundos. Una estrella compacta en rápida rotación emite pulsos de radiación de forma periódica debido a su intenso campo magnético. Los sistemas binarios formados por dos púlsares han permitido verificar de forma indirecta la existencia de ondas gravitatorias gracias a la reducción de su periodo de emisión. Kent Yagi y Nicolás Yunes (Univ. Estatal de Montana, EEUU) afirman que las estrellas compactas en rotación rápida se deforman de forma diferente según su composición y que ello afecta a su emisión como púlsares.El resultado es que el momento cuadripolar de la radiación de los púlsares binarios es diferente entre estrella de neutrones y estrellas de quarks. La variación del periodo de emisión de los púlsares de milisegundos además de permitir comprobar la validez de la relatividad general (Premio Nobel de Física de 1993) también podría permitir descubrir la existencia de las estrellas de quarks. Para ello habría que observar uno que violara, en apariencia, la relatividad general, pero que lo hiciera siguiendo las predicciones de este nuevo artículo. Toda una sorpresa para muchos. El artículo técnico es Kent Yagi, Nicolás Yunes, “I-Love-Q: Unexpected Universal Relations for Neutron Stars and Quark Stars,” Science 341: 365-368, 26 Jul 2013.”
Pensar que estamos solos en el Universo “infinito”, es demasiado pretencioso y no creo que seámos “la especie elegida” ni nada parecido. En cientos de miles de mundos como el nuestro y parecidos, estarán presentes las más diversas criaturas que, en algunos casos tendrán entendimiento y en otros, como pasa en la Tierra, simplemente serán seres vivos vegetativos sin ninguna clase de conciencia, o, con una conciencia limitada.
Hay que pensar que sólo en nuestra Galaxia, la Vía Láctea, existen más de 30.000 millones de estrellas como el Sol, y, muchas de ellas tendrán planetas que la orbitan en la zona habitable, El Sol es una estrella mediana amarilla de la clase G2V que está presente en todas las galaxias del Universo.
Poco esfuerzo mental tendríamos que hacer para vernos en ellos reflejados
Una característica sorprendente de nuestro retrato reconstruido del antepasado primitivo es su carácter moderno. Si este organismo lo encontráramos hoy, seguramente no delataría su inmensa antigüedad, excepto por sus secuencias de DNA. Tuvo que estar precedido, necesariamente, por formas más rudimentarias, estadios intermedios en la génesis de sistemas estructurales, metabólicos, energéticos y genéticos complejos que son compartidos por todos los seres vivos de hoy en día. Por desgracia, tales formas no han dejado descendientes igualmente primitivos que permitan su caracterización. carencia complica mucho el problema del origen de la vida.
La Tierra nació hace unos 4.550 millones de años. Se condensó, junto con los otros planetas del sistema solar, en un disco de gas y polvo que giraba alrededor de una joven estrella que iba a convertirse en nuestro Sol. Fenómenos de violencia extrema, incompatible con el mantenimiento de ningún de vida, rodearon este nacimiento. Durante al menos quinientos millones de años, cometas y asteroides sacudieron la Tierra en formación, con lo que la hicieron incapaz de albergar vida durante todo este tiempo. Algunos impactos pudieron haber sido incluso suficientemente violentos como para producir la pérdida de toda agua terrestre por vaporización, después de lo cual los océanos se habrían vuelto a llenar con agua aportada por cometas. Según esta versión de los acontecimientos, los océanos actuales de remontarían a la última oleada de bombardeo cometario intenso, que los expertos creen que tuvo lugar hace unos cuatro mil millones de años. Existen señales de que había vida en la Tierra poco después de que dichos cataclismos llegaran a su fin.
El tiempo inexorable no deja de transcurrir, el Universo dinámico hace que todo lo que contiene, sobre todo la materia, evolucione desde formas simples a complejas y, en algunos lugares que han logrado tener las para ello, puede estar presente la vida. Nosotros, seres evolucionados a partir de la matería inerte creada en las estrellas, hemos logrado saber algunas cosas y no dejamos de hacernos preguntas como aquella de: ¿Habrá otros mundos? ¿Estarán, como la Tierra, llenos de vida? Bueno, lo de los mundos sí hemos sido capaces de saberlo y estarán muy cerca del millar los mundos que hemos descubierto. Sin embargo, la vida, sólo la hemos podido encontrar aquí en nuestra casa, en la Tierra.
No dejamos de mandar ingenios espaciales a mundos cercanos, como Marte, Saturno, las lunas Europa y Titán…, para tratar de saber. Nos embarga una ilusión, una esperanza, y…, al mismo tiempo, un temor: ¿Estaremos solos? Y, si no lo estamos, ¿cómo serán esos otros mundos y que criaturas lo habitan? ¿Si alguna vez llegamos allí, seremos tan destructivos como lo hemos sido aquí en la Tierra? ¿Le querremos quitar lo que ellos tienen? ¡Esperemos que no! Y, sobre todo, en ese primer encuentro, ¿Sabremos comportarnos y respetar sus derechos?
Cuando pude ver la película Avatar, quedé fascinado por el mundo que allí quedaba escenificado y las criaturas que lo poblaban, y, sobre todo, era sobrecogedor el alto grado espiritual que tenían de la Naturaleza con la que se sentían en comunidad, formaban una simbiosis perfecta que nosotros, los humanos, nunca podremos alcanzar.
Hemos sabido recrear historias de esos mundos presentidos y de sus habitantes. En ellas, han quedado reflejados los instintos humanos, tantos los buenos como los malos y, mientras que unos querían preservar aquella Naturaleza, otros, sin embargo, querían destruirla apoderarse de sus preciados tesoros. ¡La condición Humana! ¿Estamos acaso destinados al desacuerdo que nos lleve a la destrucción, o, por el contrario, es precisamente esa condición la que nos llevará lejos?
La belleza que se describe en el mundo llamado “Pandora” también está aquí pero, ¡no sabemos cuidarla!
Fascinantes criaturas de exóticas bellezas nos podrían estar esperando, en un futuro lejano, en esos mundos soñados que tantas veces hemos podido imaginar. Es difícil saber qué comportamiento tendremos con ellos si eso llega a sucecder, sin embargo, el ejemplo que nos deja la película a la que pertene la imagen de arriba, no es muy alentador ni dice mucho en de nuestra especie que, irrumpimos por la fuerza en un planeta extraño y, violando todas las reglas, pasamos por encima de los derechos de otros para conseguir nuestros objetivos. ¿La Civilización que ocupa el planeta? ¿Qué importa? Si hay que destruirla, ¡adelante!
Los humanos invasores trataron de destruir a los nativos para quedarse con la riqueza de Pandora
La fuerza bruta que siempre acompañó la falta de inteligencia, es la única salida para seres de cuya racionalidad podríamos dudar, sin el menor temor a equivocarnos. Destruir nunca será el camino más conveniente. Creo que sería aconsejable guiarse por ese principio de la física, la causalidad. Si respetamos seremos respetados. Sobre todo, no podemos llegar a nuevos lugares pretendiendo imponer nuestras costumbres y nuestras reglas. En esos otros lugares donde posiblemente existan seres que tienen su propia de vivir, se impone, sobre todo, que supeditemos nuestro comportamiento a su propias reglas a su propio mundo. Los extraños allí seremos nosotros. Ellos, los seres de la historia, a diferencia de nuestra Civilización Terrestre, sí han sabido convivir con su entorno, han creado una especie de simbiosis que une a todos los seres de aquel fascinante mundo, sean seres racionales o plantas, hasta el punto de poder comunicarse entre ellos en un alto grado de compenetración que va mucho más allá de lo físico.
No siempre somos conscientes de que nuestra simbiosis con el mundo que habitamos es grande, de él dependemos para seguir aquí. Pocas veces tenemos esa sensación de que, nosotros u nuestro mundo somos una sola cosa que deben cuidarse mutuamente.
De ellos podríamos aprender a… ¿A ser más humanos?
En esos otros Mundos pueden estar presentes seres maravillosos que han optado por otras maneras de vivir, más cercana y conectados con la Naturaleza a la que respetan y comprenden al ser conscientes de que ellos mismos, forman de ella que es algo que, los humanos no han acabado de comprender y, se comportan como si la Tierra fuera un simple instrumento a su servicio, sin ser conscientes que tal comportamiento, los puede llevar a la extinción de la especie.
Las montañas, los árboles, los ríos y el viento, todo bañado por la luz y el calor de esa estrella que nos alumbra, forman un todo que mantiene el equilibrio que hace posible la vida. Si alguno de esos parámetros se viera alterado seriamente… ¡Mal nos iría! Y, sin embargo, algunos se empeñan en no ver lo evidente.
Si algún día conseguimos llegar a otros mundos y en ellos encontramos a criaturas vivas más o mneos evolucionadas, lo conveniente sería respetarlos y, dentro de lo posible, aprender de ellos procurando alterar lo menos posible lo que allí nos encontremos y, si tienen algo que nosotros necesitamos, hacer un intercambio justo olvidándonos de la fuerza bruta que conlleva la destrucción irreparable.
La historia que nos cuentan en esa maravillosa película, , desde el principio nos pone a favor de los habitantes de aquel Mundo agredido y de sus habitantes, hasta tal punto es así que muchos de los terrestres que visitan aquél planeta, no dudan, en dar sus propias vidas por preservar aquel entorno, para nosotros de fantasía y que para aquellos seres tan especiales que han sido capaces de convivir con su mundo y “hablar” con él, demostrando de alguna manera que, son mucho mñás civilizados que nosotros. Cuando ví aquella película… ¡Qué envidia me dieron!
Utilizar lo que la Naturaleza les ofrecía sin dañar, no coger más de lo estrictamente necesario para vivir, respetando las otras formas de vida del planeta y dejando que el ritmo de la Naturalerza sea el que desarrolle las cosas, sin agredir el entorno y dejando que cada cosa ocupe su lugar sin tratar de violentar, de alguna manera, su desarrollo natural.
Si el caso llega, tendremos que aprender a mirar más allá de la superficie, a entender los mensajes que nos envían la mirada de esos nuevos y exóticos seres y, sobre todo, tratar de comprender su mundo, sus maneras para poder respetarlas y hacernos acreedores, nosotros también, a su respeto.
¡Quién pudiera ser uno de los afortunados que, en el futuro, visitarán algunos de esos Mundos!
Nos quedan muchos muros por derribar, muchas puertas que abrir para las que aún no poseemos las llaves, y, sobre todo, para que cuando eso llegue y sea una realidad (esperemos que así sea), lo más importante: ¡Que hayamos podido evolucionar hasta ese deseado estadio de sabiduría que ahora no tenemos! De todas las maneras, no me gustaría que ese primer encuentro se produjera aquí en la Tierra. Es preferible que los visitantes seamos nosotros y, como antes digo, espero que para entonces, la Humanidad sea otra.
Claro que, también podríamos toparnos con civilizaciones mucho más avanzadas que la nuestra y, en ese caso… ¡La desventaja sería nuestra! Siempre hemos oído decir que no debemos hacer a otros lo que no queremos que nos hagan a nosotros y, si respetamos esa máxima… ¡Todo podrá ir mejor! El presente es el que tenemos y no sabemos lo que nos depara el futuro pero, una cosa es bien cierta: ¡No dejamos de avanzar! Cada día que pasa damos un paso hacia ese futuro que presentimos y estamos más cerca de saber… ¡Si realmente, como pensamos, estamos miuy bien acompañados en este inmenso Universo nuestro! Y, digo en éste universo nuestro porque, en realidad, pienso que tampoco es, el único Universo.
emilio silvera
Abr
19
La Inmensidad del Universo y, la “pequeñez” de los seres…
por Emilio Silvera ~ Clasificado en El Universo y la Química de la Vida ~ Comments (6)
En nuestro sistema solar la vida se desarrolló por primera vez sorprendentemente pronto tras la formación de un entorno terrestre hospitalario. Hay algo inusual en esto. Según todos los datos de los que podemos disponer la edad de la Tierra data de hace unos 4.500 millones de años, y, los primeros signos de vida que han podido ser localizados fosilizados en rocas antiguas, tienen unos 3.800 millones de años, es decir, cuando la Tierra era muy joven ya apareció en ella la vida.
Fósiles de más de 3.850 millones de años hallados en las rocas más antiguas del planeta
El secreto reside en el tiempo biológico necesario para desarrollar la vida y el tiempo necesario para desarrollar estrellas de segunda generación y siguientes que en novas y supernovas cristalicen los materiales complejos necesarios para la vida, tales como el Hidrógeno, Nitrógeno, Oxígeno, CARBONO, etc.
Parece que la similitud en los “tiempos” no es una simple coincidencia. El argumento, en su forma más simple, lo introdujo Brandon Carter y lo desarrolló John D. Barrow por un lado y por Frank Tipler por otro. Al menos, en el primer sistema Solar habitado observado ¡el nuestro!, parece que sí hay alguna relación entre t(bio) y t(estrella) que son aproximadamente iguales el t(bio) –tiempo biológico para la aparición de la vida- algo más extenso.
La evolución de una atmósfera planetaria que sustente la vida requiere una fase inicial durante la cual el oxígeno es liberado por la fotodisociación de vapor de agua. En la Tierra esto necesitó 2.400 millones de años y llevó el oxígeno atmosférico a aproximadamente una milésima de su valor actual. Cabría esperar que la longitud de esta fase fuera inversamente proporcional a la intensidad de la radiación en el intervalo de longitudes de onda del orden de 1000-2000 ángstroms, donde están los niveles moleculares clave para la absorción de agua.
La imagen del cielo de Canarias nos puede servir para mostrar una atmósfera acogedora para la vida
Este simple modelo indica la ruta que vincula las escalas del tiempo bioquímico de evolución de la vida y la del tiempo astrofísico que determina el tiempo requerido para crear un ambiente sustentado por una estrella estable que consume hidrógeno en la secuencia principal y envía luz y calor a los planetas del Sistema Solar que ella misma forma como objeto principal.
A muchos les cuesta trabajo admitir la presencia de vida en el Universo como algo natural y corriente, ellos abogan por la inevitabilidad de un Universo grande y frío en el que, es difícil la aparición de la vida, y, en el supuesto de que ésta aparezca, será muy parecida a la nuestra.
Es cierto que la realidad puede ser mucho más imaginativa de lo que nosotros podamos imaginar. ¿Habrá mundos con formas de vida basadas en el Silicio? Aunque me cuesta creerlo, también me cuesta negarlo toda vez que, la Naturaleza nos ha demostrado, muchas veces ya, que puede realizar cosas que a nosotros, nos parecen imposibles y, sin embargo, ahí está el salto cuántico… Por ejemplo.
Los biólogos, por ejemplo, parecen admitir sin problemas la posibilidad de otras formas de vida, pero no están tan seguros de que sea probable que se desarrollen espontáneamente, sin un empujón de formas de vida basadas en el carbono. La mayoría de los estimaciones de la probabilidad de que haya inteligencias extraterrestres en el Universo se centran en formas de vida similares a nosotras que habiten en planetas parecidos a la Tierra y necesiten agua y oxígeno o similar con una atmósfera gaseosa y las demás condiciones de la distancia entre el planeta y su estrella, la radiación recibida, etc. En este punto, parece lógico recordar que antes de 1.957 se descubrió la coincidencia entre los valores de las constantes de la Naturaleza que tienen importantes consecuencias para la posible existencia de carbono y oxígeno, y con ello para la vida en el Universo.
Hay una coincidencia o curiosidad adicional que existe entre el tiempo de evolución biológico y la astronomía. Puesto que no es sorprendente que las edades de las estrellas típicas sean similares a la edad actual del Universo, hay también una aparente coincidencia entre la edad del Universo y el tiempo que ha necesitado para desarrollar formas de vida como nosotros.
Para nosotros ha pasado mucho tiempo, y, sin embargo, para el Universo ha sido solo un instante
Si miramos retrospectivamente cuánto tiempo han estado en escena nuestros ancestros inteligentes (Homo sapiens) vemos que han sido sólo unos doscientos mil años, mucho menos que la edad del Universo, trece mil millones de años, o sea, menos de dos centésimos de la Historia del Universo. Pero si nuestros descendientes se prolongan en el futuro indefinidamente, la situación dará la vuelta y cuando se precise el tiempo que llevamos en el Universo, se hablará de miles de millones de años.
Brandon Carter y Richard Gott han argumentado que esto parece hacernos bastante especiales comparados con observadores en el futuro muy lejano.
Podríamos imaginar fácilmente números diferentes para las constantes de la Naturaleza de forma tal que los mundos también serían distintos al planeta Tierra y, la vida no sería posible en ellos. Aumentemos la constante de estructura fina más grande y no podrá haber átomos, hagamos la intensidad de la gravedad mayor y las estrellas agotarán su combustible muy rápidamente, reduzcamos la intensidad de las fuerzas nucleares y no podrá haber bioquímica, y así sucesivamente.
Hay cambios infinitesimales que seguramente podrían ser soportados sin notar cambios perceptibles, como por ejemplo en la vigésima cifra decimal de la constante de estructura fina. Si el cambio se produjera en la segunda cifra decimal, los cambios serían muy importantes. Las propiedades de los átomos se alteran y procesos complicados como el plegamiento de las proteínas o la replicación del ADN PUEDEN VERSE AFECTADOS DE MANERA ADVERSA. Sin embargo, para la complejidad química pueden abrirse nuevas posibilidades. Es difícil evaluar las consecuencias de estos cambios, pero está claro que, si los cambios consiguen cierta importancia, los núcleos dejarían de existir, n se formarían células y la vida se ausentaría del planeta, siendo imposible alguna forma de vida.
Las constantes de la naturaleza ¡son intocables!
Ahora sabemos que el Universo tiene que tener miles de millones de años para que haya transcurrido el tiempo necesario par que los ladrillos de la vida sean fabricados en las estrellas y, la gravitación nos dice que la edad del Universo esta directamente ligada con otros propiedades como la densidad, temperatura, y el brillo del cielo.
Puesto que el Universo debe expandirse durante miles de millones de años, debe llegar a tener una extensión visible de miles de millones de años luz. Puesto que su temperatura y densidad disminuyen a medida que se expande, necesariamente se hace frío y disperso. Como hemos visto, la densidad del Universo es hoy de poco más que 1 átomo por M3 de espacio. Traducida en una medida de las distancias medias entre estrellas o galaxias, esta densidad tan baja muestra por qué no es sorprendente que otros sistemas estelares estén tan alejados y sea difícil el contacto con extraterrestres. Si existe en el Universo otras formas de vía avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada, entonces, como nosotros, habrán evolucionado sin ser perturbadas por otros seres de otros mundos hasta alcanzar una fase tecnológica avanzada.
La expansión del Universo es precisamente la que ha hecho posible que el alejamiento entre estrellas con sus enormes fuentes de radiación, no incidieran en las células orgánicas que más tarde evolucionarían hasta llegar a nosotras, diez mil millones de años de alejamiento continuado y el enfriamiento que acompaña a dicha expansión, permitieron que, con la temperatura ideal y una radiación baja los seres vivos continuaran su andadura en este planeta minúsculo, situado en la periferia de la galaxia que comparado al conjunto de esta, es solo una cuota de polvo donde unos insignificantes seres laboriosos, curiosos y osados, son conscientes de estar allí y están pretendiendo determinar las leyes, no ya de su mundo o de su galaxia, sino que su osadía ilimitada les lleva a pretender conocer el destino de todo el Universo.
En el contexto temporal del Universo, podemos ser insignificantes. Sin embargo, en nuestro ámbito natural, en el recorrido de nuestras vidas, podemos ser importantes para muchos.
Cuando a solas pienso en todo esto, la verdad es que no me siento nada insignificante y nada humilde ante la inmensidad del Cosmos. soy muy consciente de que, aunque una parte infinitesimal, ¡soy una parte de él! Las estrellas pueden ser enormes y juntas, formar inmensas galaxias… pero no pueden pensar ni amar; no tienen curiosidad ni en ellas está el poder de ahondar en el porqué de las cosas, nosotros si podemos hacer todo eso y más. De todas las maneras, nsootros somos una parte esencial del universo: La que siente y observa, la que genera ideas y llega a ser consciente de que es, ¡la parte del universo que trata de comprender!
emilio silvera