Una misión para buscar extraterrestres en la estrella más cercana a la Tierra
Avanza el proyecto para enviar una sonda espacial a Próxima Centauri y su planeta
Noticia de Prensa
IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR
por Emilio Silvera ~ Clasificado en El Universo asombroso ~ Comments (0)
Aunque de extraña y atípica figura, también, esta galaxia, está hecha de materia
Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza. Es algo que vemos en sus distintas formas materiales que configuran y conforman todo lo material desde las partículas elementales hasta las montañas y los océanos. Unas veces está en estado “inerte” y otras, se eleva hasta la vida que incluso, en ocasiones, alcanza la consciencia de SER. Sin embargo, no acabamos de dilucidar de dónde viene su verdadero origen y que era antes de “ser” materia. ¿Existe acaso una especie de sustancia cósmica anterior a la materia? Y, si realmente existe esa sustancia… ¿Dónde está? Tenemos un Modelo plausible de la creación del Universo que nos dice de dónde surgió y cómo se formaron los primeros átomos de materia pero, sospecho que… ¡No es suficiente!
De hecho, hemos podido saber de que está hecha la materia de una estrella enana blanca y, también de una estrella de Neutrones. Sin embargo, no conocemos de que materia está hecha el exótico objeto que llamamos agujero negro.
Con esta imagen se publicó que se habían descubiertos restos de la materia prima del universo. Sin embargo, no es mucho lo que de ello podemos asegurar y, en cualquier parte que podamos mirar nos dan más o menos, las mismas respuestas sobre lo que la materia es:
“Materia es todo aquello que tiene localización espacial, posee una cierta cantidad de energía, y está sujeto a cambios en el tiempo y a interacciones con aparatos de medida. En física y filosofía, materia es el término para referirse a los constituyentes de la realidad material objetiva, entendiendo por objetiva que pueda ser percibida de la misma forma por diversos sujetos. Se considera que es lo que forma la parte sensible de los objetos perceptibles o detectables por medios físicos. Es decir es todo aquello que ocupa un sitio en el espacio, se puede tocar, se puede sentir, se puede medir, etc.”
En Ginebra.- Físicos en el centro de investigación CERN están logrando colisiones de alta carga energética de partículas subatómicas en su intento por recrear las condiciones inmediatamente posteriores al Big Bang, el cual llevó al inicio del universo 13.700 millones de años atrás. Mucho se ha criticado al LHC y, sin embargo, es un gran paso adelante que nos posibilitará saber, como es el Universo y, nos descubrirá algunos de sus secretos. Hará posible que avancemos en el conocimiento sobre de dónde venimos, cómo el universo temprano evolucionó, cómo tienen y adquieren su masa las partículas y, algunas cosas más.
Estos son las dos familiar de partículas básicas. Los Quarks, se juntan en Tripletes para formar Hadrones
Lo cierto es que, adentrarse en el universo de las partículas que componen los elementos de la Tabla Periódica, y en definitiva, la materia conocida, es verdaderamente fantástico”. Esos pequeños objetos que no podemos ver, de dimensiones infinitesimales, son, en definitiva, los componentes de todo lo que contemplamos a nuestro alrededor: Las montañas, ríos, Bosques, océanos, los más exoticos animales y, hasta nosotros mismos, estamos hechos de Quarks y Leptones que, en nuestro caso, han podido evolucionar hasta llegar…¡A los pensamientos!
Desde los Quarks a los pensamientos, Así evolucionó la materia en nuestro Universo
Estas dos familias de partículas (Quarks y Leptones) conforman todo lo que podemos ver a nuestro alrededor, la materia del Universo y, si la “materia oscura” en realidad existe, no sabemos de qué pueda estar hecha y las clases de partículas que la puedan conformar. Habrá que esperar y, de momento, hablaremos de lo que conocemos.
Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos. Sí, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos, los que están más hallá del Uranio, Número 92 de la Tabla Periódica de elementos naturales.
A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobrepasando a la emisión de partículas alfa.
¡Parece que la materia está viva!
Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas.
El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lepto que significa “delgado”).
Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto. Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón(o positrón) y que lleve una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.
Josepth John Thomson
Lo cierto es que, el electrón, es una maravilla en sí mismo. El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.
(“Aunque no se trata propiamente de la imagen real de un electrón, un equipo de siete científicos suecos de la Facultad de Ingeniería de la Universidad de Lund consiguieron captar en vídeo por primera vez el movimiento o la distribución energética de un electrón sobre una onda de luz, tras ser desprendido previamente del átomo correspondiente.
Previamente dos físicos de la Universidad Brown habían mostrado películas de electrones que se movían a través de helio líquido en el International Symposium on Quantum Fluids and Solids del 2006. Dichas imágenes, que mostraban puntos de luz que bajaban por la pantalla fueron publicadas en línea el 31 de mayo de 2007, en el Journal of Low Temperature Physics.
En el experimento que ahora nos ocupa y dada la altísima velocidad de los electrones el equipo de investigadores ha tenido que usar una nueva tecnología que genera pulsos cortos de láser de luz intensa (“Attoseconds Pulses”), habida cuenta que un attosegundo equivalente a la trillonésima parte de un segundo”.)
¡No por pequeño, se es insignificante! Recordémoslo, todo lo grande está hecho de cosas pequeñas.
En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo). Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones.)
Imagen ilustrativa de la dualidad onda-partícula, en el cual se puede ver cómo un mismo fenómeno puede tener dos percepciones distintas. Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.
El fotón tiene una masa de 1, una carga eléctrica de 0, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.
Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales. Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.
La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrónse atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.
De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón. Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío. Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.
Joseph Weber
El interferómetro funciona enviando un haz de luz que se separa en dos haces; éstos se envían en direcciones diferentes a unos espejos donde se reflejan de regreso, entonces los haces al combinarse presentarán interferencia.
Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea. En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias. Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general). Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.
De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosónmediador de la fuerza gravitatoria. La masa del gravitón es cero, su carga es cero, y su espín de 2. Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.
Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros. Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.
Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- NASA
La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones. Tenemos varios proyectos en marcha de la NASA y otros Organismos oficiales que buscan las ondas gravitatorias de los agujeros negros, de colisiones entre estrellas de neutrones y de otras fuentes análogas que, según se cree, nos hablará de “otro universo”, es decir, nos dará información desconocida hasta ahora y sabremos “ver” un universo distinto al reflejado por las ondas elecromagnéticas que es el que ahora conocemos.
¿Espuma cuántica? Si profundizamos mucho en la materia…
Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo. Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica. El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.
“Una investigación ha llevado a pensar que, la materia se construye sobre fundamentos frágiles. Los físicos acaban de confirmar que la materia, aparentemente sustancial, es en realidad nada más que fluctuaciones en el vació cuántico. Los investigadores simularon la frenética actividad que sucede en el interior de los protones y neutrones, que como sabéis son las partículas que aportan casi la totalidad de la masa a la materia común. Estas dos partículas, protones y neutrones, se comportan como si en su interior, los quarksde los que están hechas ambas partículas, lucharan por escapar del confinamiento a que se ven sometidos por la fuerza nuclear fuerte por medio de los Gluones que forman un océano en el que se ven confinados sin remedio. De hecho, nunca nadie ha podido ver a un quark libre.
Así que, si estudiamos el vacío cuántico, parece que eso permitirá a los físicos someter a prueba a la Cromo Dinámica Cuántica y buscar sus efectos más allá de la física conocida. Por ahora, los cálculos demuestran que la QCD describe partículas basadas en quarks de forma precisa, y que la mayor parte de nuestra masa viene de quarks virtuales y gluones que burbujean en el vacío cuántico.
Se cree que el campo de Higgs hace también su pequeña contribución, dando masa a los quarksindividuales, así como a los electrones y a otras varias partículas. El campo de Higgs también crea masa a partir del vacío cuántico, en forma de bosones virtuales de Higgs. De modo que si el LHC confirma la existencia del bosón de Higgs, eso significará que toda la realidad es virtual, es menos virtual de lo que se pensaba. No creo que hasta el momento, y, a pesar de las declaraciones salidas desde el CERN, se tenga la seguridad de haber detectado el Bosón de Higgs.
De todo lo anterior, no podemos obtener una respuesta cierta y científicamente probada de que todo eso sea así, más bien, los resultados indican que todo eso “podría ser así”, lo que ocurre es que, los científicos, a veces se dejan llevar por las emociones. Al fin y al cabo, ellos como el común de los mortales, también son humanos.
Ya nos gustaría saber cómo es, ese vacío cuántico y qué pasa allí
Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e ineliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven. Hace un par de días que hablamos de ello.
Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas. En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita. En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales. Por debajo de 10-7 pascales se conoce como un vacío ultra.alto.
No puedo dejar de referirme al vaciotheta (vació θ) que, es el estado de vacío de un campo gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs). En el vacío theta hay un número infinito de estados degenerados con efecto túnel entre estos estados. Esto significa que el vacío theta es análogo a una funciónn de Bloch en un cristal.
Se puede derivar tanto como un resultado general o bien usando técnicas de instantón. Cuando hay un fermión sin masa, el efecto túnel entre estados queda completamente suprimido. Cuando hay campos fermiónicos con masa pequeña, el efecto túnel es mucho menor que para campos gauge puros, pero no está completamente suprimido.
¡Es tanto lo que hay pero que no podemos ver!
Si buscamos por ahí podremos leer explicaciones como esta: “En la Teoría cuántica de campos, el vacío cuántico (también llamado el vacío) es el estado cuántico con la menor energía posible. Generalmente no contiene partículas físicas. El término “Energía de punto cero” es usado ocasionalmente como sinónimo para el vacío cuántico de un determinado campo cuántico.
El vacío absoluto no existe. El espacio que se puede considerar vacío porque no se aprecia materia en él, está repleto de partículas energéticas que …
De acuerdo a lo que se entiende actualmente por vacío cuántico o “estado de vacío”, este “no es desde ningún punto de vista un simple espacio vacío” , y otra vez: “es un error pensar en cualquier vacío físico como un absoluto espacio vacío.” De acuerdo con la mecánica cuántica, el vacío cuántico no está verdaderamente vacío sino que contiene ondas electromagnéticas fluctuantes y partículas que saltan adentro y fuera de la existencia.
Según las modernas teorías de las partículas elementales, el vacío es un objeto físico, se puede cargar de energía y se puede convertir en varios estados distintos. Dentro de su terminología, los físicos hablan de vacíos diferentes. El tipo de partículas elementales, su masa y sus interacciones están determinados por el vacío subyacente. La relación entre las partículas y el vacío es similar a la relación entre las ondas del sonido y la materia por la que se propagan. Los tipos de ondas y la velocidad a la que viajan varía dependiendo del material.”
Como nos dicen en este anuncio del Kybalion, nada es estático en el Universo y, todo está en continuo movimiento o vibración. Habreis oido hablar de la energía de punto cero que permanerce en una sustancia en el cero absoluto (cero K). Está de acuerdo con la teoría cuántica, según la cual, una partícula oscilando con un movimiento armónico simple no tiene estado estacionario de energía cinética nula. Es más, el Principio de Incertidumbre no permite que esta partícula esté en reposo en el punto central exacto de sus oscilaciones. Del vacío surgen sin cesar partículas virtuales que desaparecen en fracciones de segundo, y, ya conoceis, por ejemplo, el Efecto Casimir en el que dos placas pueden producir energía negativa surgidas del vacío.
De todas las maneras, en este momento sabemos tanto de la espuma cuántica como de nuestra presencia en el Universo, es decir, nada. Todo son conjeturas, suposiciones e hipótesis que nos hacen imaginar lo que pueda existir a la distancia de Planck. Claro que en una longitud de 10-35 metros, sí que es fácil imaginar que lo que podamos ver allí sería simplemete una especie de espuma cuántica asociada a lo que estimamos que sería la gravedad cuántica.
emilio silvera
por Emilio Silvera ~ Clasificado en Noticias ~ Comments (0)
Robert Bigelow, magnate estadounidense y colaborador cercano de la NASA que posee una compañía aeroespacial, ha asegurado en el programa 60 Minutos de la cadena CBS que los “extraterrestes viven ya entre nosotros”, lo que ha causado bastante revuelo.
“Estoy absolutamente convencido. Eso es todo al respecto. Ha habido y hay una presencia existente, una presencia extraterrestre. Y gasté millones y millones y millones, probablemente gasté más que cualquier otra persona en los Estados Unidos ha gastado en este tema”, ha declarado.
Preguntado sobre si considera arriesgado para su imagen decir en público que cree en los extraterrestres, Bigelow ha dicho que le “importa un bledo”. “No va a cambiar la realidad de lo que sé”, ha recogido Europa Press.
“No tienes que ir a ninguna parte. Están debajo de la nariz de la gente”, ha asegurado Bigelow al ser preguntado sobre la posibilidad de encontrar vida extraterrestre en un viaje espacial.
por Emilio Silvera ~ Clasificado en a otros mundos ~ Comments (0)
Noticia de Prensa
El pasado agosto, el Observatorio Austral Europeo (ESO) descubrió el planeta habitable más cercano a nuestro Sistema Solar. Está a apenas 4,25 años luz de nosotros, orbitando entorno a Próxima centauri, una estrella enana que no es visible a simple vista desde la Tierra, pero que también es la más cercana a nuestro Sistema Solar. Las primeras mediciones de su empuje gravitatorio mostraron que se trata de un planeta con una masa similar a la Tierra y que orbita en una zona potencialmente habitable. El hallazgo supone un salto de gigante, pues, hasta ahora, el planeta más parecido a la Tierra era Kepler-452b, a 1.400 años luz. La pregunta que muchos astrónomos e ingenieros se hacen ahora es si se puede llegar hasta allí y estudiar si hay vida e incluso una civilización inteligente.
Próxima Centauri y su planeta
Pete Worden, director del centro Ames de la NASA hasta 2015, cree que sí, y ya está trabajando en la primera misión espacial hacia el planeta Próxima b. Según sus planes, la primera nave que consiga alcanzar ese mundo será un chip de tamaño de una uña, lo suficiente para poder tomar mediciones del entorno de la estrella y su planeta y enviarlas de vuelta a la Tierra.
El problema es que ni siquiera nuestro astro más cercano está al alcance de la tecnología actual.“Para alcanzar Próxima b con un cohete convencional haría falta tanto combustible como masa tiene nuestra galaxia”, ha explicado esta semana Worden durante una ponencia en el Congreso Internacional de Astronáutica, que se ha celebrado en Guadalajara, México. Su alternativa es montar el chip en una vela espacial cuadrada de unos dos metros de lado. El combustible sería luz proyectada desde la Tierra desde un campo base repleto de fuentes de luz láser. Esta es la base del proyecto Breakthrough Starshot, dirigido por Worden y financiado por el multimillonario Yuri Milner, de cuyo bolsillo ya salen los premios científicos mejor dotados económicamente del mundo.
En el resplandor de Alfa Centauri, la estrella más brillante del conjunto vecino. Image Créditos & Copyrihht: Marco Lorenzi
“La luz deslumbrante de Alpha Centauri, una de las estrellas más brillantes en el cielo nocturno del planeta Tierra, inunda el lado izquierdo de este paisaje celeste del sur. A tan solo 4,3 años luz de distancia,Alfa Centauri es en realidad un sistema de dos estrellas de un tamaño similar al Sol trabadas en una órbita mutua. Mucho más pequeña y fría, hay una tercera componente, Próxima Centauri, que queda fuera de este campo de visión. Además, esta escena de telescopio revela varios habitantes del poblado plano galáctico de la Vía Láctea, habitualmente pasados por alto, que hay más allá del brillo de Alpha Centauri, como la nebulosa planetaria catalogada como Hen 2-111 que está a unos 7.800 años luz de distancia.
La cubierta gaseosa de una estrella moribunda, el núcleo más brillante de la nebulosa y el halo más débil de gas ionizado rojizo, a la derecha del centro de la imagen, cubren una región que tiene un diámetro de más de veinte años luz. Más a la derecha hay dos notables cúmulos abiertos de estrellas: el compacto Pismo 19, también a unos 8.000 años luz de distancia, la luz del cual se enrojece debido al polvo intermedio, y el más cercano NGC 5617 .
Apenas visible bajo la luz de Alpha Centauri, por encima y a la derecha del núcleo de la estrella más cercana del sistema, se ve la tenue luz de un remanente de supernova en forma de concha.”
No será nada fácil llegar a otros sistemas planetarios y visitar los mundos allí presente
“Para alcanzar Próxima b con un cohete convencional haría falta tanto combustible como masa tiene nuestra galaxia. Además, con las velocidades que podemos alcanzar de 56/60.000 km/h… ¡Tardaríamos 30.000 años en llegar y, aunque se llegara que es dudoso… ¿No habrían mutado las generaciones nacidas en el Espacio?
Existen cientos de miles de lugares a los que podríamos viajar pero,,, ?Cómo hacerlo?
Para Worden la nueva gran pregunta no es si estamos solos en el universo, sino si podemos ir allí donde hay vida inteligente. El proyecto que dirige está dotado con 100 millones de dólares y ya ha puesto a funcionar a un comité de 30 expertos que están estudiando cómo desarrollar las tres tecnologías necesarias para construir el Starship, la primera nave interestelar.
“Estamos en la misma situación en la que se encontraban los científicos de ondas gravitacionales hace 30 o 40 años en cuanto a la tecnología necesaria”, explica Worden.
Su equipo sabrá en unos cinco años si se pueden desarrollar los nuevos materiales necesarios para la vela, la red de emisores láser y el chip. Dentro de 15 años podría estar listo el primer prototipo, que costaría entre 500 y 1.000 millones de dólares, la inmensa mayoría proporcionados por el propio Milner (que es físico teórico), según explicó Worden a Materia después de su charla.
El coste final de la misión, que se realizaría dentro de unos 30 años, sería de unos 10.000 millones de euros.
Fuera del texto del trabajo, como aclaración realista, tenemos que decir que dicha misión resulta totalmente descabellada, no podemos ni ir a Marte y lo que queremos hacer a Próxima Centauri, seguramenbte por crear titulares que llamen la atención y conseguir subvenciones,.
“Este año, como en ningún otro, la idea de que los seres humanos no estamos solos en el universo ha cobrado cada vez más fuerza. Al descubrimiento del planeta Próxima B, con unas condiciones muy parecidas a las que tiene el planeta Tierra, se le suma un nuevo descubrimiento: chorros de vapor de agua saliendo de la superficie helada de Europa, la luna de Júpiter. Este descubrimiento, que fue presentado el día de hoy por la NASA en Washington, sugeriría que este satélite, de un tamaño similar al de la Luna, es uno de los principales candidatos dentro del Sistema Solar que podría albergar vida.”
Vela solar para viajar a Próxima Centauri
“Esta nave debe viajar a 100 kilómetros por segundo, 10 veces más rápido que cualquiera de las actuales”, detalla el astrónomo. Una vez desarrollado “habría que iniciar un proyecto de colaboración con gobiernos” para desarrollar cientos de estas naves. “La idea es tener una nave nodriza orbitando la Tierra que enviase cientos de estas velas”, comenta Worden. El coste final de la misión, que se realizaría dentro de unos 30 años, sería de unos 10.000 millones de euros, un coste “equivalente”, dice, al acelerador de partículas LHC o el otro gran megaproyecto espacial presentado esta semana en Guadalajara para llevar a los 100 primeros colonos a Marte en 2024. “Elon Musk quiere construir un cohete del tamaño de un edificio para llegar a Marte y nosotros hacer el primer viaje interestelar a bordo de un chip”, bromea Worden.
Radiotescopios enfocado a las estrellas con el fin de la búsqueda de inteligencia extraterrestre.
La fundación en la que se engloba el proyecto también tiene un potente programa de búsqueda de vida extraterrestre, o SETI, impulsado económicamente por Milner después de que los Gobiernos de EE UU y otros países redujeran drásticamente sus esfuerzos en este campo. Con la potencia de observación actual que tiene el proyecto, ha explicado Worden, se puede hacer en un día lo que antes llevaba todo un año en cuanto a búsqueda de señales de radio que puedan indicar la existencia de vida inteligente en otros planetas. “El objetivo de este año será estudiar Próxima b al detalle en busca de alguna señal filtrada”, ha dicho Worden. Pero la hora de la verdad llegará en la próxima década, cuando comience a funcionar la nueva generación de los telescopios más grandes del mundo. El proyecto ya está negociando con los responsables del E-ELT europeo, o el mayor radiotelescopio del mundo, recién terminado en China, para que cedan parte de su tiempo a SETI y especialmente al entorno de Próxima Centauri y su planeta.
“Conseguir alcanzar otra estrella supone un enorme reto tecnológico pero esta es la única forma de hacerlo”, opina Bernard Foing, astrofísico de la ESA, sobre el proyecto apadrinado por Milner, Stephen Hawking y Mark Zuckerberg, entre otros. Aún existe una enorme incertidumbre sobre nuestro vecino planetario más cercano fuera del Sistema Solar. “Por ejemplo se ha detectado una radiación de rayos x y ultravioletas unas mil veces mayor que en la Tierra, lo que supondría un enorme obstáculo para la existencia de vida a no ser que haya una atmósfera”, explica.
La radiación ultravioleta es la mayor componente de la radiación solar y, si no hay una atmósfera….
Otra gran pregunta es si Próxima b está anclado a su estrella, como la Luna a la Tierra, con una cara expuesta y la otra oculta. “Esto supone un nuevo obstáculo, la diferencia de temperaturas sería enorme, por ejemplo unos 220 grados en una cara y 170 bajo cero en la otra, aunque, si hubiera una atmósfera lo suficientemente gruesa, podría permitir que hubiese vida”, concluye. Averiguar si existe ese envoltorio de gases protector sí está al alcance de la tecnología actual, opina Foing, gracias a telescopios de ESO como el VLT.
por Emilio Silvera ~ Clasificado en Mecánica cuántica ~ Comments (0)
“La Teoría cuántica, una aproximación al Universo probable”
La teoría cuántica es un ejemplo de talento que debemos al físico alemán Max Planck (1.858 – 1.947) que, en el año 1.900 para explicar la emisión de radiación de cuerpo negro de cuerpos calientes, dijo que la energía se emite en cuantos, cada uno de los cuales tiene una energía igual a hv, donde h es la constante de Planck (E = hv o ħ = h/2π) y v es la frecuencia de la radiación. Esta teoría condujo a la teoría moderna de la interacción entre materia y radiación conocida como mecánica cuántica, que generaliza y reemplaza a la mecánica clásica y a la teoría electromagnética de Maxwell. En la teoría cuántica no relativista se supone que las partículas no son creadas ni destruidas, que se mueven despacio con respecto a la velocidad de la luz y que tienen una masa que no cambia con la velocidad. Estas suposiciones se aplican a los fenómenos atómicos y moleculares y a algunos aspectos de la física nuclear. La teoría cuántica relativista se aplica a partículas que viajan cerca de la velocidad de la luz, como por ejemplo, el fotón.
Por haberlo mencionado antes me veo obligado a explicar brevemente el significado de “cuerpo negro”, que está referido a un cuerpo hipotético que absorbe toda la radiación que incide sobre él. Tiene, por tanto, una absortancia y una emisividad de 1. Mientras que un auténtico cuerpo negro es un concepto imaginario, un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica.
La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la distribución de energía sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumento de temperaturas (ley de desplazamiento de Wien).
No puedo continuar adelante sin explicar aquí lo que son las partículas elementales como “constituyentes fundamentales” de toda la materia del universo.
Hasta el descubrimiento del electrón por J. J. Thomson en 1.897, se pensaba que los átomos eran los constituyentes fundamentales de la materia, como había postulado 400 años a. de C. Demócrito de Abdera. Pero el hallazgo de Thomson, junto al de Rutherford del núcleo atómico y del protón en 1.911, hizo evidente que los átomos no eran elementales, en el sentido de que tienen estructura interna. El descubrimiento de Chadwick del neutrón en 1.932 completó el modelo atómico basado en el núcleo atómico consistente en protones y neutrones rodeados de un número suficiente de electrones como para equilibrar la carga nuclear.
Sin embargo, no explicaba la gran estabilidad del núcleo, que claramente no podía mantenerse unido por una interacción electromagnética, pues el neutrón no tiene carga eléctrica. En 1.935, Yukawa sugirió que la fuerza de intercambio que lo mantenía junto estaba mediada por partículas de vida corta, llamadas mesones, que saltaban de un protón a un neutrón y hacia atrás de nuevo. Este concepto dio lugar al descubrimiento de las interacciones fuertes y de las interacciones débiles, dando un total de cuatro interacciones fundamentales.
También dio lugar al descubrimiento de unas 200 partículas “elementales” de vida corta, algunas de las cuales eran claramente más elementales que las otras. En la clasificación actual existen dos clases principales de partículas
Leptones: | Electrón, muón, tau y sus neutrinos, que interaccionan tanto con las interacciones electromagnéticas como con la interacción débil y que no tienen estructura interna aparente. | |
Hadrones: | Bariones: | Protones, neutrones, lambda, signa, omega. |
Mesones: | Piones, kaones, etc. |
que interaccionan con la interacción fuerte y tienen una estructura interna compleja.
La estructura hadrónica está basada ahora en el concepto de quarks de Murray Gell-Mann, introducido en 1.964. Este modelo nos dice que los hadrones están divididos en bariones (que se desintegran en protones) y mesones, que se desintegran en leptones y fotones.
Los bariones están formados por tres quarks y los mesones por dos quarks (un quark y un antiquark). En la teoría quark, por tanto, las únicas partículas elementales realmente, son los leptones y los quarks. Al contrario que los electrones y protones, que poseen cargas exactamente iguales en valor absoluto pero de signos opuestos (positiva el protón y negativa el electrón), los quark tienen cargas que son fracciones de la carga electrónica (+ 2/3 ó -1/3 de la carga electrónica).
Los quarks aparecen en seis variedades distintas que generalmente se escriben mediante las letras u, d, c, s, t y b que responden a los nombres de up, down, charmed, strange, top y bottom.
El protón, siendo un barión, está constituido por tres quarks, uud (2/3 + 2/3 – 1/3 = 1) y el neutrón por udd (2/3 – 1/3 -1/3 = 0), para cada variedad de quark existen los equivalentes antiquarks que se denotan , que tienen valores exactos al quark pero con signos opuestos en su carga eléctrica.
Para evitar conflictos con el principio de exclusión de Pauli, se han añadido conceptos de carga de color a las seis variedades de quarks, cuya explicación al resultar compleja obviamos por no ser fundamental en la meta que aquí perseguimos.
ña fuerza nuclear fuerte actúa al contrario de las otras fuerzas, es decir, aumenta con la distancia (como un muebçlle de acero que se estira), su misión es la de mantener a los Quarks juntos para dar estabilidad a los nucleones (protones y neutrones).
Las interacciones fuertes entre quarks se pueden entender por el intercambio de ocho partículas sin carga y sin masa en reposo, llamadas gluones (porque pegan a los quarks juntos). Aunque los gluones, como los fotones que realizan una función similar entre los leptones, no tienen carga eléctrica, sí que tienen una carga de color (también aquí nos paramos para no enredar demasiado y confundir al lector).
La teoría quark completamente elaborada esta ahora bien establecida por evidencias experimentales, pero como ni los quarks ni los gluones han sido identificados nunca en experimentos, la teoría no se puede decir que haya sido directamente verificada. Los quarks individuales pueden tener la curiosa propiedad de ser mucho más masivos que los hadrones que usualmente forman (debido a la enorme energía potencial que tendrían cuando se separan), y algunos teóricos creen que es, en consecuencia, imposible desde un punto de vista fundamental, que existan aislados. Sin embargo, algunos experimentales han anunciado resultados consistentes con la presencia de cargas fraccionarias, que tendrían los quarks no ligados y en estados libres.
emilio silvera
por Emilio Silvera ~ Clasificado en La Mente - Filosofía ~ Comments (0)
El viejo Einstein tenía razón, nuestra especie ha buscado el “truco” de destinar nuestros cerebros a cosas distintas, y, de esta manera, conseguimos conocimientos de distintas disciplinas que, más tarde podemos juntar en un todo del conocimiento del “mundo_” y de nosotros para poder llegar a conclusiones que, de otra manera, sería imposible.
Algunos dicen que todo surgió de la “nada” a partir de una fluctuación cuántica del vacío (?) Sin embargo, hay que pensar que, si surgió, es porque había. Hemos llegado a saber que la “NADA” no existe, siempre hay.
“En física cuántica, la fluctuación cuántica de la energía es un cambio temporal en la cantidad de energía en un punto en el espacio,1 como resultado del principio de indeterminación enunciado por Werner Heisenberg.
De acuerdo a una formulación de este principio, energía y tiempo se relacionan de la siguiente forma:
Las fluctuaciones cuánticas pudieron ser muy importantes de cara al origen de la estructura del universo: de acuerdo con el modelo de la inflación las fluctuaciones que tuvieron lugar antes del Big Bang fueron amplificadas creando lo que se convertiría en nuestro universo.”
Lo cierto es que, de eso que llamamos “vacío”, surgen pequeños objetos que desaparecen al momento y, en la transición, se producen pequeños picos de energía. ¿Qué son, de sonde salen, como se generan… ¿Qué dicen lso experimentos?
Esta pesadilla es solo un ejemplo para entender eso que llamamos “el vacío”.
Una parte de la ciencia estudia la estructura y la evolución del Universo: La cosmología.
La cosmología observacional se ocupa de las propiedades físicas del Universo, como su composición física referida a la química, la velocidad de expansión y su densidad, además de la distribución de Galaxias y cúmulos de galaxias. La cosmología física intenta comprender estas propiedades aplicando las leyes conocidas de la física y de la astrofísica. La cosmología teórica construye que dan una descripción matemática de las propiedades observadas del Universo basadas en esta comprensión física.
La cosmología también tiene aspectos filosóficos, o incluso teológicos, en el sentido de que trata de comprender por qué el Universo tiene las propiedades observadas. La cosmología teórica se basa en la teoría de la relatividad , la teoría de Einstein de la gravitación. De todas las fuerzas de la naturaleza, la gravedad es la que tiene efectos más intensos a escalas y domina el comportamiento del Universo en su conjunto.
El espacio-tiempo, la materia contenida en el Universo con la fuerza gravitatoria que , los posibles agujeros de gusano y, nuestras mentes que tienen conocimientos de que todo esto sucede o puede suceder. De manera que, nuestro consciente (sentimos, pensamos, queremos obrar con conocimiento de lo que hacemos), es el elemento racional de personalidad humana que controla y reprime los impulsos del inconsciente, para desarrollar la capacidad de adaptación al mundo exterior.
Sólo conocemos el Universo que nos ha dejado ver la luz, esa radiación electromagnética a la que es sensible el ojo humano, y, otras de ondas más cortas que …
Al ser conscientes, entendemos y aplicamos nuestra razón natural para clasificar los conocimientos que adquirimos mediante la experiencia y el estudio que aplicamos a la realidad del mundo que nos rodea. Claro que, no todos podemos percibir la realidad de la misma manera, las posibilidades existentes de que el conocimiento de esa realidad, responda exactamente a lo que ésta es en sí, no parece .
Descartes, Leibniz, Locke, Berkeley, Hume (que influyó decisivamente en Kant), entre otros, construyeron una base que tomó fuerza en Kant, para quien el conocimiento arranca o nace de nuestras experiencias sensoriales, es decir, de los datos que nos suministra nuestros cinco sentidos, pero no todo en él procede de esos datos. Hay en nosotros dos fuentes o potencias distintas que nos capacitan , y son la sensibilidad (los sentidos) y el entendimiento (inteligencia). Esta no puede elaborar ninguna idea sin los sentidos, pero éstos son inútiles sin el entendimiento.
A todo esto, para mí, el conocimiento está inducido por el . La falta y ausencia de interés aleja el conocimiento. El interés puede ser de distinta índole: científico, social, artístico, filosófico, etc. (La gama es tan amplia que existen conocimientos de todas las posibles vertientes o direcciones, hasta tal punto es así que, nunca nadie lo podrá saber todo sobre todo). Cada uno de nosotros puede elegir sobre los conocimientos que prefiere adquirir y la elección está adecuada a la conformación individual de la sensibilidad e inteligencia de cada cual.
Lo que ocurría allá arriba, siempre despertó en nosotros y curiosidad
También se da el caso de personas que prácticamente, por cuestiones genéticas o de otra índole, carecen de cualquier por el conocimiento del mundo que les rodea, sus atributos sensoriales y de inteligencia funcionan a tan bajo rendimiento que, sus comportamientos son casi-animales (en el sentido de la falta de racionalidad), son guiados por la costumbre y las necesidades primarias: comer, dormir…
El polo opuesto lo encontramos en múltiples ejemplos de la historia de la ciencia, donde personajes como Newton, Einstein, Riemann, Ramanujan y tantos otros (cada uno en su ámbito del conocimiento), dejaron la muestra al mundo de su genio .
Pero toda la realidad está encerrada en una enorme burbuja a la que llamamos Universo y que encierra todos los misterios y secretos que nosotros, seres racionales y conscientes, persiguen.
La conciencia nos grita. Siempre hay un momento en que nos quedamos a solas con nosotros mismos. Entonces, delante del espejo de nuestra propia conciencia, nos quitamos lentamente esa careta que utilizamos ante la Sociedad y… ¡No siempre nos gusta lo que vemos!
Todo el mundo sabe lo que es la conciencia; es lo que nos abandona cada noche cuando nos dormimos y reaparece a la mañana siguiente cuando nos despertamos. Esta engañosa simplicidad me recuerda lo que William James escribió a finales del siglo XIX sobre la atención:”Todo el mundo sabe lo que es la atención; es la toma de posesión por la mente, de una forma clara e intensa, de un hilo de pensamiento de entre simultáneamente posibles”. Más de cien años más tarde somos muchos los que creemos que seguimos sin tener una comprensión de fondo ni de la atención, ni de la conciencia que, desde luego, no creo que se marche cuando dormimos, ella no nos deja nunca.
¿Vivir sin filosofía? Sería vivir con los ojos cerrados.
La falta de comprensión ciertamente no se debe a una falta de atención en los círculos filosóficos o científicos. Desde que René Descartes se ocupara del problema, pocos han los temas que hayan preocuado a los filósofos tan persistentemente como el enigma de la conciencia.
Para Descartes, como para más de dos siglos después, ser consciente era sinónimo de “pensar”: el hilo de pensamiento de James no era otra cosa que una corriente de pensamiento. El cogito ergo sum, “pienso, luego existo”, que formuló Descartes como fundamento de su filosofía en Meditaciones de prima philosophía, era un reconocimiento explícito del papel central que representaba la conciencia con respecto a la ontología (qué es) y la epistemología (qué conocemos y cómo le conocemos).
Claro que tomado a pie juntillas, “soy consciente, luego existo”, nos conduce a la creencia de que nada existe más allá o fuera de la propia conciencia y, por mi parte, no estoy de acuerdo. Existen muchísimas cosas y hechos que no están al alcance de mi conciencia. Unas veces por imposibilidad física y otras por imposibilidad intelectual, lo es que son muchas las cuestiones y las cosas que están ahí y, sin embargo, se escapan a mi limitada conciencia.
Todo el entramado existente alrededor de la conciencia es de una complejidad enorme, de hecho, conocemos mejor el funcionamiento del Universo que el de nuestros propios cerebros. ¿Cómo surge la conciencia como resultado de procesos neuronales particulares y de las interacciones entre el cerebro, el cuerpo y el mundo? ¿Cómo pueden explicar estos procesos neuronales las propiedades esenciales de la experiencia consciente ?
Cada uno de los estados conscientes es unitario e indivisible, pero al mismo tiempo cada persona puede elegir entre un ingente de estados conscientes distintos.
Sherrington
Bertrand Russell
Muchos han los que han querido explicar lo que es la conciencia. En 1.940, el gran neurofisiólogo Charles Sherrington lo intento y puso un ejemplo de lo que él pensaba sobre el problema de la conciencia. Unos pocos años más tarde también lo intentaron otros y, antes, el mismo Bertrand Russell hizo lo propio, y, en todos los casos, con más o menos acierto, el resultado no fue satisfactorio, por una sencilla razón: nadie sabe a ciencia cierta lo que en verdad es la conciencia y cuales son sus verdaderos mecanismos; de hecho, Russell expresó su escepticismo sobre la capacidad de los filósofos para alcanzar una respuesta:
“Suponemos que un proceso fisico da comienzo en un objeto visible, viaja hasta el ojo, donde se convierte en otro proceso físico en el nervio óptico y, finalmente, produce algún efecto en el cerebro al mismo tiempo que vemos el objeto donde se inició el proceso; pero este proceso de ver es algo “mental”, de naturaleza totalmente distinta a la de los procesos físicos que lo preceden y acompañan. Esta concepción es tan extraña que los metafísicos han inventado toda suerte de teorías con el fin de sustituirla con algo menos increíble”.
Está claro que en lo más profundo de ésta consciencia que no conocemos, se encuentran todas las planteadas o requeridas mediante preguntas que nadie ha contestado.
Al comienzo mencionaba el cosmos y la gravedad junto con la consciencia y, en realidad, con más o menos acierto, de lo que estaba tratando era de hacer ver que todo ello, es la misma cosa. Universo-Galaxia-Mente. Nada es independiente en un sentido global, sino que son de un todo y están estrechamente relacionados.
Una Galaxia es simplemente una parte pequeña del Universo, nuestro planeta es, una mínima fracción infinitesimal de esa Galaxia, y, nosotros mismos, podríamos ser comparados (en a la inmensidad del cosmos) con una colonia de bacterias pensantes e inteligentes. Sin embargo, todo forma parte de lo mismo y, aunque pueda dar la sensación engañosa de una cierta autonomía, en realidad todo está interconectado y el funcionamiento de una cosa incide directamente en las otras.
Pocas dudas pueden caber a estas alturas de que, el hecho de que podamos estar hablando de estas cuestiones, es un milagro en sí .
Se puede apreciar en la anterior gráfica de resonancia como la neorocientífica nos muestra la evolución de la zona del córtex según la edad, desde la primera infancia va evolucionando y no se detiene dentro de la escala evolutiva. Explica que el neocortex nos capacita para adquirir conocimientos, desarrollar sociedades, culturas y tecnologías.
Después de millones y millones de años de evolución, se formaron las conciencias primarias que surgieron en los animales conciertas estructuras cerebrales de cierta (aunque limitadas) complejidad que, podían ser capaces de construir una escena mental, pero con capacidad semántica o simbólica muy limitada y careciendo de un verdadero lenguaje.
La conciencia de orden (que floreció en los humanos y presupone la coexistencia de una conciencia primaria) viene acompañada de un sentido de la propia identidad y de la capacidad explícita de construir en los estados de vigilia escenas pasadas y futuras. Como mínimo, requiere una capacidad semántica y, en su forma más desarrollada, una capacidad lingüística.
Los procesos neuronales que subyacen en nuestro cerebro son en realidad desconocidos y, aunque son muchos los y experimentos que se están realizando, su complejidad es tal que, de momento, los avances son muy limitados. Estamos tratando de conocer la máquina más compleja y perfecta que existe en el Universo.
Si eso es así, resultará que después de todo, no somos tan insignificantes como en un principio podría parecer, y solo se trata da tiempo. En su momento y evolucionadas, nuestras mentes tendrán un nivel de conciencia que estará más allá de las percepciones físicas tan limitadas. Para entonces, sí estaremos totalmente integrados y formando parte, como un todo, del Universo que ahora presentimos.
El carácter de la conciencia me hace adoptar una posición que me lleva a decidir que no es un objeto, sino un proceso y que, desde este punto de , puede considerarse un ente digno del estudio científico perfectamente legítimo.
La conciencia plantea un problema especial que no se encuentra en otros dominios de la ciencia. En la Física y en la Química se suele explicar unas entidades determinadas en función de otras entidades y leyes. Podemos describir el agua con el lenguaje ordinario, pero podemos igualmente describir el agua, al menos en principio, en términos de átomos y de leyes de la mecánica cuántica. Lo que hacemos es conectar dos niveles de descripción de la misma entidad externa (uno común y otro científico de extraordinario poder explicativo y predictivo. Ambos niveles de descripción) el agua líquida, o una disposición particular de átomos que se comportan de acuerdo con las leyes de la mecánica cuántica (se refiere a una entidad que está fuera de nosotros y que supuestamente existe independientemente de la existencia de un observador consciente.
Somos conscientes de lo que realmente estamos viendo, o, por el contrario, sólo vemos la fachada
No pocas veces, al profundizar en lo que no se ve, nos llevamos sorpresas desagradables, el interior profundo no siempre coincide con la superficie.
En el caso de la conciencia, sin embargo, nos encontramos con una simetría. Lo que intentamos no es simplemente comprender de qué manera se puede explicar las conductas o las operaciones cognitivas de otro ser humano en términos del funcionamiento de su cerebro, por difícil que esto parezca. No queremos simplemente conectar una descripción de algo externo a nosotros con una descripción científica más sofisticada.
Lo que realmente queremos hacer es conectar una descripción de algo externo a nosotros (el cerebro), con algo de nuestro interior: una experiencia, nuestra propia experiencia individual, que nos acontece en tanto que observadores conscientes. Intentamos meternos en el interior o, en la atinada ocurrencia del filósofo Tomas Negel, qué se siente al ser un murciélago. Ya sabemos qué se siente al ser nosotros mismos, qué significa ser nosotros mismos, pero queremos explicar por qué somos conscientes, saber qué es ese “algo” que no s hace ser como somos, explicar, en fin, cómo se generan las cualidades subjetivas experienciales. En suma, deseamos explicar ese “Pienso, luego existo” que Descartes postuló como evidencia primera e indiscutible sobre la cual edificar toda la filosofía.
Ninguna descripción, por prolija que sea, logrará nunca explicar cabalmente la experiencia subjetiva. Muchos filósofos han utilizado el ejemplo del color para explicar este punto. Ninguna explicación científica de los mecanismos neuronales de la discriminación del color, aunque sea enteramente satisfactorio, bastaría para comprender cómo se siente el proceso de percepción de un color. Ninguna descripción, ninguna teoría, científica o de otro tipo, bastará nunca para que una daltónica consiga experimentar un color.
En un experimento mental filosófico, Mary, una neurocientífica del futuro que era daltónica, lo sabe todo acerca del visual y el cerebro, y en particular, la fisiología de la discriminación del color. Sin embargo, cuando por fin logra recuperar la visión del color, todo aquel conocimiento se revela totalmente insuficiente comparado con la auténtica experiencia del color, comparado con la sensación de percibir el color. John locke vio claramente este problema hace mucho tiempo.
No será fácil explicar estos paisajes a un invidente que nunca vio la luz, los colores, y, la belleza que la Naturaleza nos ofrece en múltiples rincones de nuestro mundo.
Pensemos por un momento que tenemos un amigo ciego al que contamos lo que estamos viendo un día soleado del mes de abril: El cielo despejado, limpio y celeste, el Sol allí arriba esplendoroso y cegador que nos envía su luz y su calor, los árabes y los arbustos llenos de flores de mil colores que son asediados por las abejas, el aroma y el rumor del río,,,
Cuyas aguas cantarinas no cesan de correr transparentes, los pajarillos de distintos plumajes que lanzan alegres trinos en sus vuelos por el ramaje que se mece movido por una brisa suave, todo esto lo contamos a nuestro amigo ciego que, si de pudiera ver, comprobaría que la experiencia directa de sus sentidos ante tales maravillas, nada tiene que ver con la pobreza de aquello que le contamos, por muy hermosas palabras que para hacer la descripción empleáramos.
Esa complejidad nos llevará muy lejos. Sin embargo, ¿Cómo podríamos saber todo lo que corre por la mente Humana? Sus intrincados laberintos y sus cien mil millones de neuronas, tantas como estrellas tiene la Vía Láctea. Nuestras mentes son los recintos que guardan el universo entero y, aún no hemos tenido tiempo evolutivo para comprender, que en ese recinto nuestro, están todas las respuestas que incansables buscamos.
La mente humana es tan compleja que, no todos ante la misma cosa, vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugiere. De entre personas solo coinciden tres, los otro siete divergen en la apreciación de lo que el dibujo o la figura les sugiere.
A veces los pensamientos parecen tener vida propia y surgen en la mente de imprevisto. En ocasiones son ideasque, hasta a nosotros mismos (sus portadores) nos sorprenden. a Mente parece, a veces, que está situada en un “universo” aparte de nuestro Universo y, de ella surgen ideas y pensamientos que… ¡No parecen de este mundo!
Esto nos viene a demostrar la individualidad de pensamiento, el libre albedrío para decidir. Sin embargo, la misma , realizada en grupos de conocimientos científicos similares y específicos: Físicos, matemáticos, químicos, etc. hace que el número de coincidencias sea más elevada, más personas ven la misma respuesta al problema planteado. Esto nos sugiere que, la mente, está en un estado virgen que cuenta con todos los elementos necesarios para dar respuestas pero que necesita experiencias y aprendizaje para desarrollarse.
¿ Debemos concluir entonces que una explicación científica satisfactoria de la conciencia queda para siempre fuera de nuestro alcance? ¿O es de manera posible romper esa barrera, tanto teórica como experimental, para resolver las paradojas de la conciencia?
Todavía no sabemos encajar las piezas
La respuesta a estas y otras preguntas, en mi opinión, radica en reconocer nuestras limitaciones actuales en este del conocimiento complejo de la mente, y, como en la Física cuántica, existe un principio de incertidumbre que, al menos de momento (y creo que en muchos cientos de años), nos impide saberlo todo sobre los mecanismos de la conciencia y, aunque podremos ir contestando a preguntas parciales, alcanzar la plenitud del conocimiento total de la mente no será nada sencillo, entre otras razones está el serio inconveniente que su nosotros mismos, ya que, con nuestro que hacer podemos, en cualquier momento, provocar la propia destrucción.
Una cosa si está clara: ninguna explicación científica de la mente podrá nunca sustituir al fenómeno real de lo que la propia mente pueda hacernos sentir a traves de los sentimientos que allí se crean.
¿ Cómo se podría comparar la descripción de un gran Amor con sentirlo, vivirlo física y sensorialmente hablando ? Llegar a esta situación de arriba es todo un privilegio que no todos pueden alcanzar y, como se dice algunas veces: “Me gustaría que nos hiciéramos viejos juntos”… Cuando sucede, es Hermoso. Es la prueba de una gran compenetración y de un gran respeto mutuo, de haberlo dado todo el uno por el otro y saber perdonar.
Aquí reside la verdad, lo más auténtico de nuestro mundo
Hay cosas que no pueden ser sustituidas, por mucho que los analistas y especialistas de publicidad y marketing o márquetin se empeñen, lo auténtico siempre será único. Es curioso cómo funciona la Naturaleza. Si miramos unos millones de protones, electrones o neutrones, no podemos ver ninguna diferencia en ninguno de ellos, todos son exactamente iguales. Sin embargo, nosotros los Humanos, somos siete mil millones y, aunque parecidos, nunca podremos encontrar a dos seres iguales, ni físicamente ni mentalmente tampoco, Cada uno de nosotros tiene su propio mundo en su Mente.
emilio silvera