domingo, 12 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




10 Fenómenos que la Ciencia no sabe explicar

Autor por Emilio Silvera    ~    Archivo Clasificado en Misterios sin resolver    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Imagen del universo capturada por el telescopio espacial Hubble.

Setas, gatos, el espacio exterior… Todo lo que nos rodea tiene aún mucho que explicar. Y en ello están los investigadores.

Noticia de Prensa en El Español
Resultado de imagen de lord Kelvin
 

El físico William Thomson, conocido como lord Kelvin, afirmó en un discurso pronunciado en 1900 ante la Asociación Británica para el Avance de la Ciencia que “no hay nada nuevo que descubrir en la física: todo lo que queda son medidas cada vez más precisas“. Aquella afirmación se realizó en un contexto que, heredero de la Ilustración, todavía mantenía una fe ciega en la ciencia, y el progreso se basaba en la creencia de que la razón y las evidencias empíricas eran más que suficientes para desentrañar todos los misterios que rodean nuestra existencia.

Hoy seguimos encontrando sucesos sobre los que los científicos no pueden explicarnos el porqué. Algunos de ellos son fenómenos asombrosos, como la aparición de formas humanas en fotografías; otros, en cambio, se relacionan con actos que hacemos cada día, como bostezar. Aquí presentamos un recopilatorio.

El ronroneo de los gatos

 

 

Resultado de imagen de El ronroneo de los gatos si les acaricia

 

Si te gusta rascar a un gato, ¿alguna vez te has preguntado a qué viene su ronroneo?

 

De todos es conocida la docilidad que muestran los gatos cuando se les acaricia el cuello o detrás de las orejas. Esa imagen fiera de león en miniatura se desvanece y deja paso a una especie de peluche que se acurruca para disfrutar. Un fenómeno que acompaña esta acción es el ronroneo, un sonido que indica que el gato está viviendo una especie de catarsis. A pesar de lo familiar que resulta, la realidad es que los científicos no se ponen de acuerdo sobre a qué se debe este peculiar sonido. Para algunos es una forma de mostrar felicidad; para otros, quitarse el estrés. Las explicaciones posibles son varias, pero todavía no se ha dado con una que sea cien por cien compartida.

Las causas de la desaparición de los dinosaurios

 

 

Resultado de imagen de Las causas de la desaparición de los dinosaurios

 

 

Durante casi 150 millones de años, los dinosaurios fueron los vertebrados terrestres que dominaron el planeta, entre el Triásico y el Cretácico. Sin embargo, desaparecieron dejando un montón de huesos, pisadas enormes y algunos descendientes con una imagen mucho menos feroz.

Los paleontólogos no se ponen de acuerdo sobre la causa de su extinción. Hay quien aboga por culpar a alguno de los muchos meteoritos que por aquella época caían sobre la tierra; otros prefieren responsabilizar a las erupciones volcánicas que contaminaron la atmósfera, y un tercer grupo se inclina por el cambio climático y la disminución de los alimentos disponibles. Una hipótesis reciente afirma que su desaparición se debió a que sus huevos debían ser incubados durante mucho tiempo, lo que, en ausencia de otros alimentos, los convertía en un buen objetivo de los depredadores.

Qué son los sueños

Resultado de imagen de Los sueños

 

                           Los científicos siguen investigando las razones de los sueños

 

Hay muchas cosas que compartimos todos los seres humanos. Una de ellas, tan cotidiana como misteriosa, es la capacidad de soñar. A pesar de que dormimos un tercio de nuestras vidas, solo soñamos unos pocos minutos. Cuando dormimos, solo deja de funcionar una parte de nuestro cerebro: su centro lógico. Por eso, los sueños suelen adquirir matices surrealistas.

Por tanto, parece que conocemos el proceso del sueño y qué partes de nuestro organismo se ven involucradas. Pero lo que no podemos asegurar es el motivo por el que soñamos. Algunas hipótesis defienden que es un intento del cerebro de solucionar algún problema. Otras, que es una representación simbólica de algo que tenemos en la mente, ya sea una preocupación, una alegría o un motivo de tristeza. En cualquier caso, lo único que tenemos claro es que los sueños, sueños son.

La materia oscura

 

Resultado de imagen de La materia oscuraLa materia oscura y la energía oscura del Universo - Grupo Marie Curie

 

 

La existencia y las características de la materia oscura son fuente de dudas para los expertos en, valga la redundancia, esta materia, especialmente los cosmólogos. Su existencia es bien conocida desde hace al menos casi un siglo. Sin embargo, nadie parece encontrar una respuesta a la pregunta sobre cuál es su origen y qué moléculas la componen.

Jan Oorts se dio cuenta en 1932 de su existencia, al observar que no había suficiente materia conocida en el universo para evitar que las estrellas salieran disparadas. A esa ausencia de materia la llamó materia negra y afirmó que debía haber cinco veces más materia oscura que materia visible. El problema es que no se ve, lo que es una dificultad añadida para analizarla. Sobre su composición, una hipótesis es que está compuesta de neutrinos, partículas elementales minúsculas con muy poca masa y sin carga eléctrica, que se originan a partir de las reacciones termonucleares de las estrellas.

Grupos sanguíneos: ¿un rasgo evolutivo?

 

 

Resultado de imagen de Grupos sanguíneos: ¿un rasgo evolutivo?

 

Los seres humanos tenemos sangre. Es una obviedad, pero lo que no resulta tan claro es que no todos tenemos la misma tipología de sangre. En 1901, Karl Landsteiner, premio Nobel de Medicina en 1930, descubrió que los humanos tienen diferentes grupos sanguíneos, con sus propias característicasEl sistema de clasificación ABO es el más extendido y se basa en los antígenos que posee (A, B, AB o O). Cuando se realiza una transfusión de sangre este factor debe contemplarse, dado que de ello depende que exista compatibilidad.

En cualquier caso, no se conoce con certeza el motivo de este fenómeno, aunque algunos estudios insinúan que puede deberse a factores genéticos o al proceso evolutivo que ha generado diversidad para proteger mejor la continuidad de la especie.

¿Por qué bostezamos?

 

Resultado de imagen de ¿Por qué bostezamos?Resultado de imagen de ¿Por qué bostezamos?

 

Antes de dormir, al levantarnos o durante el día, bostezar es algo muy común. A pesar de todo, los científicos todavía no están seguros de por qué.

Un reciente estudio sugiere que bostezar es un comportamiento termorregulador que enfría el cerebro, aunque no se puede afirmar cuál es su verdadera función. Por otra parte, tampoco han podido establecer el motivo por el que es contagioso entre los animales sociales, como los humanos. Otro estudio de 2005 afirmó que las redes cerebrales responsables de la empatía y las habilidades sociales se activan cuando ves a alguien bostezar.

El Machu Picchu: un enclave misterioso

 

Resultado de imagen de El Machu Picchu: un enclave misteriosoResultado de imagen de El Machu Picchu: un enclave misteriosoResultado de imagen de El Machu Picchu: un enclave misteriosoResultado de imagen de El Machu Picchu: un enclave misterioso

 

 

Este poblado data de antes del siglo XV y se construyó sobre una cadena montañosa a 2430 metros sobre el nivel del mar. Se le considera una obra maestra de la ingeniería y la arquitectura. A pesar de ser uno de los yacimientos arqueológicos más famosos del mundo, es difícil saber qué llevó a los incas a construir una ciudad en una lugar tan escarpado e inaccesible.

Las hipótesis son variadas, aunque la que tiene un mayor apoyo por parte de la comunidad científica apunta a que era un lugar sagrado, en el que los habitantes rendían culto a los dioses. Otros creen que, además, cumplía las funciones propias de un observatorio astronómico.

Las luciérnagas sincronizadas de Great Smoky

 

 

Luciérnagas de Great Smoky

 

Luciérnagas de Great Smoky Smoky Mountains

 

La ciencia puede explicar sin problema alguno el proceso por el cual las luciérnagas emiten luz. Estos escarabajos con alas la generan en su abdomen, gracias a la combinación de la luciferina química, la enzima luciferasa y los iones de magnesio y oxígeno. La luz sirve para que los machos atraigan a las hembras, por lo que compiten para lograr el objetivo. Normalmente, cada individuo actúa de forma individual, sin tener en cuenta qué hacen sus adversarios.

Sin embargo, en los montes de Great Smoky (Tennessee, Estados Unidos), ocurre algo para lo que los científicos todavía no han encontrado ninguna explicación. Las luciérnagas macho actúan de forma coordinada para evitar el caos y que las hembras puedan detectar al macho adecuado. Al hacerlo de este modo, se crea un espectáculo único que se ha convertido en un importante reclamo turístico.

Un hongo texano y japonés

Chorioactis geaster

 

Chorioactis geaster Wikipedia

 

El Chorioactis geaster es una especie de hongo que tiene la peculiaridad de encontrarse solo en dos lugares del planeta: Texas y Japón. Los dos lugares están en la misma latitud, pero los micólogos no han podido averiguar por qué estos hongos crecen solo en estos dos puntos. Un estudio de 2004 sugirió que las poblaciones se separaron en dos linajes.

Ondas espaciales desconocidas

 

 

Resultado de imagen de Ondas espaciales desconocidas

 

 

Cada segundo recibimos en nuestro planeta señales ininteligibles que no hemos sido capaces de reconocer ni de saber de dónde vienen. Se les ha denominado “estallidos rápido de radio” y son breves y brillantes emisiones de luz de tal intensidad que liberan suficiente energía para alimentar 500 millones de soles. Aunque hasta el momento solo se han reconocido e identificado 30 de ellos, se producen de forma muy frecuente, varias veces en el plazo de un minuto.

FRB 121102 es una de las que se conocen mejor. Su origen se encuentra lejos de nuestra galaxia, y curiosamente es la única que ha aparecido más de una vez desde la misma ubicación. Los científicos suponen que se relaciona con una joven estrella de neutrones, uno de los objetos más densos del universo. Sin embargo, son muchas las incógnitas que rodean este fenómeno y sobre las que que no se tiene una explicación concluyente.

¿La Gravedad Cuántica? ¿Qués es eso?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (21)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los primeros 25 años de la gravedad cuántica de bucles contados por Carlo  Rovelli - La Ciencia de la Mula FrancisTeoría de cuerdas VS gravedad cuántica de bucles – Universo CuánticoQué es la gravedad cuántica de bucles? | UDGVirtual Formación Integral

“La gravedad cuántica es el campo de la física teórica que procura unificar la teoría cuántica de campos, que describe tres de las fuerzas fundamentales de la naturaleza, con la relatividad general, la teoría de la cuarta fuerza fundamental: la gravedad. La meta es lograr establecer una base matemática unificada que describa el comportamiento de todas las fuerzas de la Naturaleza, conocida como la teoría del campo unificado.”

Gravedad cuántica | •Ciencia• AminoPerspectivas de gravedad cuántica - PDF Free Download

Teoría de Cuerdas vs. Gravedad Cuántica de Bucles [Mega... en Taringa!Gravedad cuántica, pesando lo muy pequeño (Tercera parte) - Naukas

La física será incompleta y conceptualmente insatisfactoria en tanto no se disponga de una teoría adecuada de la gravedad cuántica, y, hasta el momento, no parece que se pueda lograr tal teoría. Sin embargo, al desarrollar las ecuaciones de campo de la Teoría de Cuerdas, allí aparecen las ecuaciones de Einstein de la Relatividad General, sin que nadie las llame, como por arte de magia emergen. ¿Qué significa eso? ¿No será que en la Teoría de cuerdas subyace la Teoría Cuántica de la Gravedad?

Espacio-Tiempo Curvo de la Gravedad Cuántica | Textos Científicos

Espacio-Tiempo Curvo: Gravedad Cuántica

Durante el siglo XX, la física se fundamentó, en general, sobre dos grandes pilares: la Mecánica Cuántica y la teoría de Relatividad. Sin embargo, a pesar de los enormes éxitos logrados por cada una de ellas, las dos aparecen ser incompatibles. Esta embarazosa contradicción, en el corazón mismo de física teórica, se ha transformado en uno de los grandes desafíos permanentes en la ciencia.

1 - Curso de Relatividad General - YouTubeLa Teoría de la Relatividad General en siete preguntas (y respuestas)

La teoría de la relatividad general da cuenta a la perfección de la gravitación. Por su parte, la aplicación a la gravedad de la mecánica cuántica requiere de un modelo específico de gravedad cuántica. A primera vista, parecería que la construcción de una teoría de gravedad cuántica no sería más problemático que lo que resultó la teoría de la electrodinámica cuántica (EDC), que ya lleva más de medio siglo con aplicaciones más que satisfactorias.

Electrodinamica y magnetismo (Powerpoint) - Monografias.comElectrodinámica cuántica de cavidades – Portal de Noticias Universidad del  Quindio

En lo medular, la EDC describe la fuerza electromagnética en términos de los cambios que experimentan las llamadas partículas virtuales, que son emitidas y rápidamente absorbidas de nuevo; el principio de incertidumbre de Heisenberg nos dice que ellas no tienen que conservar la energía y el movimiento. Así la repulsión electrostática entre dos electrones puede ser considerada como la emisión, por parte de un electrón, de fotones virtuales y que luego son absorbidos por el otro.

Partículas virtuales (y III)Nuestra Consciencia forma el Cosmos y la Ciencia: PARTICULAS VIRTUALES EN  EL VACIO

Partículas virtuales (I)Uncertainty and Virtual Particles

Aunque parece contrario a lo racional, ni siquiera el vacío absoluto equivale al concepto de la nada. De hecho, el vacío está repleto de diversas partículas que continuamente aparecen o dejan de existir. Estas partículas aparecen, existen durante un breve instante y luego vuelven a desaparecer.

Como su existencia es tan fugaz, generalmente se las llama partículas virtuales.


La misma mecánica, pero a través de los cambios de la partícula virtual de la gravedad el «gravitón» (el quantum del campo gravitacional), podría considerarse para estimar la atracción gravitacional entre dos cuerpos. Pero gravitones nunca se han visto. La gravedad es tan débil que puede obviarse a escala molecular, donde los efectos cuánticos son importantes. Ahora, si los cambios que podrían realizarse en los gravitones sólo se producen en la interacción entre dos puntos de masa, es posible, entonces, que en los cuerpos masivos se ignore los efectos cuánticos. El principio de incertidumbre de Heisenberg nos señala que no podemos medir simultáneamente la posición y la velocidad de una partícula subatómica, pero esta indeterminación es imperceptible para los planetas, las estrellas o las galaxias.

Leer más

Revelando secretos del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Pauli Exclusion PrinciplePauli Exclusion Principle

“El principio de exclusión de Pauli estipula que dos Fermiones no pueden ocupar el mismo estado cuántico dentro del mismo sistema al mismo tiempo, mientras que para el caso de los electrones estipula que es imposible para 2 electrones en un mismo átomo tener los mismos 4 valores para los números cuánticos, donde esos 4 números incluyen el número cuántico principal, el número cuántico de momento angular, el número cuántico magnético y por último, el número cuántico de espín. Como se ha dicho, el principio de exclusión de Pauli solo es aplicable a Fermiones , esto es, partículas que forman estados cuánticos antisimétricos y que tienen espín semientero.

Son Fermiones, por ejemplo, los electrones y los quarks (estos últimos son los que forman los protones y los neutrones). En cambio, partículas como el fotón, y el (hipotético) gravitón, no obedecen a este principio, ya que son bosones, esto es, forman estados cuánticos simétricos y tienen espín entero. Como consecuencia, una multitud de fotones puede estar en un mismo estado cuántico de partícula, como en los láseres.”

Los neutrinos

En 1930, el físico Wolfgang Pauli propuso la hipótesis de una nueva e invisible partícula denominada neutrino para dar cuenta de la energía pérdida en ciertos experimentos sobre radiactividad que parecían violar la conservación de la materia y la energía. Pauli comprendió, no obstante, que los neutrinos serían casi imposibles de observar experimentalmente, porque interaccionarían muy débilmente y, por consiguiente, muy raramente con la materia.

LA SAGA DES NEUTRINOSNeutrinosLos neutrinos - AstroAficion

Por ejemplo, si pudiéramos construir un bloque sólido de plomo de varios años-luz de extensión desde nuestro Sistema Solar hasta Alpha Centaury y lo pusiéramos en el camino de un haz de neutrinos, aun saldrían algunos por el extremo opuesto.  Pueden atravesar la Tierra como si ni siquiera existiese y, de hecho, billones de neutrinos emitidos por el Sol están atravesando continuamente nuestros cuerpos, tanto de día como de noche.  Pauli admitió: “He cometido el pecado más grave, he predicho la existencia de una partícula que nunca puede ser observada.”

NEUTRINO: LA PARTÍCULA FANTASMA QUE ESTÁ DE MODAEl haz de neutrinos más potente atravesará 1.300 kilómetros de la Tierra |  Ciencia | EL PAÍS

Plomo español de hace 2.000 años para descubrir los secretos del UniversoAgua para detectar neutrinos, el Premio Nobel de Física 2015 – Hidrología  Sostenible

       A la caza del neutrino en diferentes proyectos para saber de sus propiedades y su masa

Los neutrinos han sido objeto de grandes proyectos para su localización, y, escondidos en las profundidades de la Tierra, en minas abandonadas, han sido instalados grandes depósitos de agua pesada que, detectaban a los neutrinos que allí interaccionaban y que eran detectados por ordenador. Hay empresas que parecen descabelladas y, sin embargo, son las que nos traen los mayores éxitos.

Si repasamos la historia de la Ciencia, seguramente encontraremos muchos motivos para el optimismo.  Witten con su Teoría M,  está convencido de que la ciencia será algún día capaz de sondear hasta las energías de Planck.

Como ya he contado en otras ocasiones, él dijo:

Edward Witten is an American theoretical physicist with a focus on  mathematical physics who is a professor of mathematical physi… |  Physicists, Science guy, Physics

       Edward Witten autor de la Teoría M dijo:

“No siempre es tan fácil decir cuáles son las preguntas fáciles y cuáles las difíciles.  En el siglo XIX, la pregunta de por qué el agua hierve a 100 grados era desesperadamente inaccesible.  Si usted hubiera dicho a un físico del siglo XIX que hacia el siglo XX sería capaz de calcularlo, le habría parecido un cuento de hadas…  La teoría cuántica de campos es tan difícil que nadie la creyó completamente durante veinticinco años.”

Leer más

¿Tendrá memoria el Universo?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física de vacío    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

 Lo que pasó siempre deja un rastro que nos cuenta la historia del suceso. Las nebulosas son el resultado de la “muerte” de una estrella que, al final de su vida, si es masiva, explosiona como supernova sembrando el espacio de los materiales que conforma sus capas exteriores y que son expulsados al Espacio Interestelar. De esos materiales nacerán nuevas estrellas y nuevos mundos, y, ¿Quién sabe? si nuevas formas de vida. En las Nebulosas han sido halladas moléculas de materiales y aminoácidos necesarios para la vida.

                                      Todo lo que vemos en el Universo nos cuenta una historia

Así que, en cierta manera sí. El Universo tiene y conserva (como ocurre en la Tierra), las reliquias de su pasado. A lo largo y a la ancho del Cosmos podemos encontrar muestras de objetos que nos cuentan lo que antes pasó en el Universo. Una supernova es el momento de la explosión de una estrella masiva, debido a que la presión para mantener todos los átomos nucleares es insostenible. “La simetría es la armonía de posición de las partes o puntos similares unos respecto de otros, y con referencia a un punto, línea o plano determinado. Una estrella tiene forma esférica, por lo tanto se espera que si la explosión es en todas las direcciones, su remanente también presente la misma apariencia simétrica. Sin embargo los remanentes de las supernovas no son simétricos. Una posible causa de asimetría en remanentes de supernovas consiste en la variación de masas de los elementos de la estrella.

Dentro del remanente del Cangrejo, cuando profundizamos un poco, podemos decubrir con asombro, como un objeto de inmensa energía magnética, gira y gira de manera frenética. De hecho, en la Nebulosa del Cangrejo (también conocida como M1, NGC 1952, Taurus A … En su centro vive un púlsar, denominado PSR0531+121, que gira sobre sí …. entre 28 y 30 kilómetros; emite pulsos de radiación cada 33 milisegundos. … Se trata de uno de los escasos remanentes de supernova que pueden …

Resultado de imagen de El púlsar que habita en la Nebulosa del Cangrejo

                             El púlsar  PSR0531+121 que “vive” dentro del remanente del Cangrejo

Los restos de una estrella que explotó hace casi mil años forman la nebulosa del Cangrejo, una de los objetos más bellos del cielo y cuyos filamentos de plasma son estudiados por los Astronomos que, de esta manera, llegan a comprender la evolución de la materia a partir de los sucesos más energéticos del Universo.

Si observamos el Universo como un todo, podemos localizar que en él se manifiestan correlaciones bien afinadas que desafían todo lo que nos dicta nuestro sentido común. Unas de esas correlaciones pueden estar situadas en el nivel cuántico, donde, cada partícula que haya ocupado alguna vez el mismo nivel cuántico de otra partícula permanece relacionada con ella, de una misteriosa manera no energética.

Una nueva terapia molecular permite tratar el ictus | RTVE

Algunos creen que el cerebro estaría conectado con el cosmos a escala cuántica. Este vínculo podría explicar cómo de los procesos cerebrales físicos emerge la consciencia. Nos asombramos ante tan extraño y maravilloso hecho y nos preguntamos: ¿Cómo pueden los procesos cerebrales físicos far lugar a la consciencia, que es inmaterial? En la actividad entre la actividad neuronal y la escala cuántica del cosmos podría estar la respuesta. Sin embargo, ¿cómo poder comprender?

Resultado de imagen de conexiones cuánticas de la biología

 

Sabemos que, la teoría de la evolución post-darwiniana y la biología cuántica descubren enigmáticas correlaciones similares en el organismo y entre el organismo y su entorno. Todas las correlaciones que salen a la luz en las investigaciones más avanzadas sobre la conciencia vienen a resultar igual de extrañas: tienen la forma de conexiones temporales entre la conciencia de una persona y el cuerpo de otra. Al parecer, las redes de conexiones que constituyen un Cosmos Evolutivo Coherente, para el enmarañamiento cuántico, para la conexión instantánea entre organismos y entornos y entre las conciencias entre distintos e incluso distantes seres humanos, tienen una única explicación, que es la misma en todos los casos.

 

La mayor parte de las neuronas posee una estructura arbórea formada en su mayor parte por dendritas que, conectadas a otras neuronas, se encargan de recibir y enviar información mediante conexiones sin fin. Esta obra de la Naturaleza, no siempre tiene explicación para nosotros, los humanos, tan ignorantes aún. Muchas veces hemos dicho aquí que a partir de la “materia inerte” llegamos a los pensamientos.

¿Será posible que, además de materia y energía, en el Universo pueda existir algún otro elemento muy sutil, aunque no por eso menos real: información en forma de “in-formación” activa y efectiva que puede conectar todas las cosas presentes en el espacio-tiempo, de manera tal que, exista una especie de memoria en el Universo que, cuando ahondamos en la observación y el estudio, allí se nos aparece y la podemos “ver” tan real como podemos ver a las estrellas.

Algunos dicen que; “Las interacciones en los dominios de la Naturaleza, así como en los de la Mente, están medidas por un campo fundamental de información en el corazón del Universo”. Así, todo el Universo es un contenedor de información dinámico que evoluciona y acumula más información a medida que el tiempo transcurre y su dinámica “viva” no deja de crear para que nada permanezca y todo se transforme.

 

La Nebulosa de Orión (cuyo material una vez, formó parte de una estrella masiva) y, se trata de una enorme nube de turbulencia del gas, con una formación de hidrógeno, que es iluminada por brillantes estrellas jóvenes y calientes, incluyendo una estrella llamada Trapezium, que están en vías de desarrollo dentro de la nebulosa. Esa es la dinámica a que antes me refería y que, en el Universo está presente de mil formas distintas.

Pero claro, el Universo es grande y complejo, muchas son las cosas que de él desconocemos, y, si nos preguntamos, por ejemplo, ¿Qué es el vacío cuántico? podemos responder conforme a la información que actualmente tenemos pero, ¿es la respuesta la adecuada?

El concepto de espacio-tiempo como medio físico lleno de energía virtual fue emergiendo gradualmente a lo largo del siglo XX. Al comienzo del siglo se pensaba que el espacio estaba ocupado por un campo energético invisible que producía rozamiento cuando los cuerpos se movían a través de él y ralentizaba su movimiento. Todos conocemos eso como la Teoría del Éter Lumínico o Luminífero. Cuando ese rozamiento no se pudo detectar con el experimento de Michelson-Morley, el éter quedó rechazado de la imagen del mundo físico. Sin embargo, se cree que algo permea todo el espacio.

 

Sus genios quedaron atrás, ahora el mundo necesita nuevos caminos, nuevos conceptos, nuevas energías. ¿Podrán, algún día, las energías llamadas de Punto Cero,  suplir a estas otras de origen  fósil que se agotaran en unas pocas décadas? Claro que las cosas no siempre son lo que parecen y, lo único que necesitamos es la capacidad intelectual para saber “ver” lo que hay. Siempre ha pasado igual, hemos creado teorías que más tarde, cuando se adquirieron nuevos conocimientos, tuvieron que ser desechadas y tomar las nuevas que nos decían otra realidad de cómo funcionaba la Naturaleza.

                        El vacío perfecto no existe… ¡Siempre hay!

Hace tiempo que se llegó a demostrar que, el vacío cósmico estaba lejos de ser espacio vacío. En las Teorías de Gran Unificación (GUT) que fueron desarrolladas durante la segunda mitad de ese siglo XX, el concepto de vacío se transformó a partir del espacio vacío en el medio que transporta el campo de energías de punto cero que, son energías de campo que han demostrado estar presentes incluso cuando todaqs las formas clásicas de energía desaparecen: en el cero absoluto de temperatura. En las teorías unificadas subsiguientes, las raíces de todos los campos y las fuerzas quedan adscritas a ese mar de energía misterioso denominado “vacío unificado”.

Resultado de imagen de las fluctuaciones en los campos fermiónicos

“Los solitones son ondas que aparecen en medios no lineales y se comportan como “partículas” al mantener su forma y velocidad al propagarse, incluso tras interaccionar con otros. Los solitones brillantes (oscuros) son resultado de un exceso (defecto) en la densidad del medio; son muy robustos porque resultan del tira y afloja de dos efectos opuestos, la dispersión y la no linealidad. Se publica en Nature la observación de solitones oscuros en un gas cuántico ultrafrío de átomos de litio-6 (fermiones) con interacción fuerte. Lo sorprendente del nuevo trabajo de físicos del MIT (Cambridge, Massachusetts, EEUU) es que la velocidad de propagación de estos solitones oscuros difiere de las predicciones teóricas para superfluidos con interacción débil en un factor de hasta 20, lo que indica que aún no entendemos bien el régimen de interacción fuerte.”

Allá por los años sesenta, Paul Dirac demostró que las fluctuaciones en los campos fermiónicos producían una polarización de vacío, mediante la cual, el vacío afectaba a la masa de las partículas, a su carga, al spin o al momento angular. Esta es una idea revolucionaria, ya que, en este concepto el vacío es más que el continuo tetradimensional de la Teoría de la Relatividad: no es sólo la geometría del espacio-tiempo, sino un campo físico real que produce efectos físicos reales.


En la mecánica clásica la cantidad de acción, producto de energía por tiempo, puede expresarse de forma continua desde cero hasta infinito, 

La interpretación física del vacío en términos del campo de punto cero fue reforzada en los años 70 , cuando Paul Davis y William Unruth propusieron la hipótesis que diferenciaba entre el movimiento uniforme y el acelerado en los campos de energía de punto cero. El movimiento uniforme no perturbaría el ZPF, dejándolo isotrópico (igual en todas las direcciones), mientras que el movimiento acelerado produciría una radiación térmica que rompería la simetría en todas las direcciones del campo. Así quedó demostrado durante la década de los 90 mediante numerosas investigaciones que fueron mucho más allá de la “clásica” fuerza Casimir y del Desplazamiento de Lamb, que han sido investigados y reconocidos muy rigurosamente.

Resultado de imagen de algunos científicos han postulado que la fuerza inercial, la fuerza gravitatoria e incluso la masa eran consecuencia de interacción de partículas cargadas con el ZPF

De las Placas Casimir ¿Que podemos decir? es bien conocido por todos que dos placas de metal colocadas muy cerca, se excluyen algunas longitudes de onda de las energías del vacío. Este fenómeno, que parece cosa de magia, es conocido como la fuerza de Casimir. Ésta ha sido bien documentada por medio de experimentos. Su causa está en el corazón de la física cuántica: el espacio aparentemente vacío no lo está en realidad, sino que contiene partículas virtuales asociadas con las fluctuaciones de campos electromagnéticos. Estas partículas empujan las placas desde el exterior hacia el interior, y también desde el interior hacia el exterior. Sin embargo, sólo las partículas virtuales de las longitudes de onda más cortas pueden encajar en el espacio entre las placas, de manera que la presión hacia el exterior es ligeramente menor que la presión hacia el interior. El resultado es que las placas son forzadas a unirse.

Resultado de imagen de algunos científicos han postulado que la fuerza inercial, la fuerza gravitatoria e incluso la masa eran consecuencia de interacción de partículas cargadas con el ZPF

También aparecen otros efectos, algunos científicos han postulado que la fuerza inercial, la fuerza gravitatoria e incluso la masa eran consecuencia de interacción de partículas cargadas con el ZPF. Es todo tan misterioso.

Debido a que el Universo es finito, en los puntos críticos dimensionales, las ondas se superponen y crean ondas estacionarias duraderas. Las ondas determinan interacciones físicas fijando el valor de la fuerza Gravitatoria, la Electromagnética, y las fuerzas nucleares Débil y Fuerte. Estas son las responsables de la distribución de la materia a través del Cosmos pero, a quién o a qué responsabilizamos de esa otra clase (hipotética) de materia que, al parecer está por ahí oculta. ¿Tendrá, finalmente el vacío algo que ver con ella?

El Observatorio de rayos X Chandra, el tercero de los grandes observatorios de la NASA, ha descubierto un excepcional objeto según la página web de la propia NASA, y, de la misma manera, hay descubrimientos recientes que confirman la presencia de ondas de presión en el vacío. Utilizando el Observatorio de rayos X Chandra, los Astrónomos han encontrado una onda generada por el agujero negro super-masivo en Perseus, a 250 millones de años luz de la Tierra. Esta onda de presión se traduce en la onda musical Si menor. Se trata de una nota real, que ha estado viajando por el espacio durante los últimos 2.500 millones de años. Nuestro oído no puede percibirla, porque su frecuencia es 57 octavas más baja que el Do medio, más de un millón de veces más grande de lo que la audición del hombre puede percibir.

Los siete colores del Arco Iris: Rojo, Naranja, Amarillo, Verde, Azul, Añil y Violeta. El arco iris es un fenómeno óptico y meteorológico que produce la aparición de un espectro de frecuencias de luz continuo en el cielo cuando los rayos del sol atraviesan pequeñas gotas de agua contenidas en la atmósfera terrestre.

 

Recuerdos de la niñez y los Siete pecados capitales: Lujuria, Gula, Avaricia, Pereza, Ira, Envidia, Soberbia. Los siete pecados capitales son una clasificación de los vicios mencionados en las primeras enseñanzas del cristianismo para educar a sus seguidores acerca de la moral cristiana. En los colegios de entonces, nos predicaban estas cosas que, como suele ocurrir, cuando de niño te machacan una y otra vez con estos cánticos… ¡Set te quedan grabados!

CANCIÓN CON PICTOGRAMAS: Siete notas son. - YouTube

Las Siete notas musicales: Do, Re, Mi, Fa, Sol, La y Si Los nombres de las notas musicales se derivan del poema Ut queant laxis del monje benedictino friulano Pablo el Diácono, específicamente de las sílabas iniciales del Himno a San Juan Bautista. Las frases de este himno, en latín, son así: Ut queant laxis/Resonare…

Dios creó el mundo en 7 días by USA VERSUS DEBT, Inc

Se dijo que Dios creó el mundo en siete días: Lunes, Martes, Miércoles, Jueves, Viernes, Sábado y Domingo. Los siete cuerpos celestes que dieron lugar a estos nombres fueron la Luna, Marte, Mercurio, Júpiter, Venus, Saturno y el Sol. En español, sábado procede de la fiesta hebrea “Sabbat” y domingo de la palabra latina “Dominus”, el señor… Como podéis ver, el pasado siempre estará con nosotros. Incluso el nombre de algunas constelaciones provienen del pasado, de otras civilizaciones que dejaron señalado el camino. Siempre ha sido así y lo seguirá siendo.

Las caras opuestas de cada dado suman 7, ¿Cuánto vale la suma de P+Q+R+S+T?  - Brainly.latCuánto suman las caras opuestas de un dado? | Trivia Cibermitanios

          Las sumas de las caras opuestas de un Dado, siempre es igual a Siete: 1+6; 2+5; 3+4

Por qué se dice que los gatos tienen 7 vidas? | El Comercio

También decimos que un gato tiene Siete vidas: En el mundo hispano hablante se dice que los gatos tienen siete vidas. La creencia en las siete vidas del gato tiene un origen tanto supersticioso como esotérico. No cabe duda de que la excepcional resistencia del gato, su capacidad de salir indemne ante las situaciones más complicadas.

Muchas más serían las cosas relacionadas con el Número Siete. De todas las maneras, ¡cómo somos los humanos! a todo le tenemos que sacar punta… Lo dicho, nuestra curiosidad que nos lleva en volandas hacia la Casa de la Sabiduría que, ¡está en tantos lugares!

¡AH! Yo tengo Siete Hijos

emilio silvera

¡Los grandes Números del Universo!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Cuando los físicos empezaron a apreciar el papel de las constantes en el dominio cuántico y explotar la nueva teoría de la gravedad de Einstein para describir el universo en su conjunto, las circunstancias eran las adecuadas para que alguien tratara de casarlas.

Así entró en escena Arthur Stanley Eddington: un extraordinario científico que había sido el primero en descubrir cómo se alimentaban las estrellas a partir de reacciones nucleares. También  hizo importantes contribuciones a nuestra comprensión de las galaxias, escribió la primera exposición sistemática de la teoría de la relatividad general de Einstein y fue el responsable de la expedición que durante un eclipse de Sol, pudo confirmar con certeza la predicción de la relatividad general que debería desviar la luz estelar que venía hacia la Tierra en aproximadamente 1’75 segundos de arco cuando pasaba cerca de la superficie solar, cuyo espacio estaría curvado debido a la gravedad generada por la masa del Sol. En aquella expedición, el equipo de Eddington hizo una exitosa medición del fenómeno desde la isla Príncipe, que confirmó que Einstein tenía razón y que su teoría predecía de manera exacta la medida de curvatura del espacio en función de la masa del objeto estelar que genera la gravitación distorsionando el espaciotiempo a su alrededor.

                        Eddintong

Entre los números que Eddington consideraba de importancia primordial estaba al que ahora conocemos como número de Eddington, que es igual al número de protones en el universo visible. Eddington calculó (a mano) este número con enorme precisión en un crucero trasatlántico, sentado en cubierta, con libreta y lápiz en la mano, tras calcular concienzudamente durante un tiempo, finalizó escibiendo:

“Creo que el Universo hay:

 

15.747.724.136.275.002.577.605.653.961.181.555.468.044.717.914.527.116.709.366.231.425.076.185.631.031.296

de protones y el mismo número de electrones”.

 

Este número enorme, normalmente escrito NEdd, es aproximadamente igual a 1080.  Lo que atrajo la atención de Eddington hacia él era el hecho de que debe ser un número entero, y por eso en principio puede ser calculado exactamente. A Eddington siempre le llamó la atención esos números invariantes que llamaron constantes de la Naturaleza y que tenían que ver con el electromagnetismo, la gravedad, la velocidad de la luz y otros fenómenos naturales invariantes. Por ejemplo:

La constante de estructura fina de  (símbolo \alpha) es la constante fundamental que caracteriza la fuerza de la interacción electromagnética. Es una cantidad sin dimensiones, por lo que su valor numérico es independiente del sistema de unidades usado.

La expresión que la define y el valor recomendado  es:

   \alpha =   \frac{e^2}{\hbar c \ 4 \pi \epsilon_0} =   7,297 352 568 \times 10^{-3} =   \frac{1}{137,035 999 11}.

donde:

  • e es la carga elemental.
  • \hbar = h/(2 \pi) es la constante racionalizada o reducida de Planck,
  • c es la velocidad de la luz en el vacío, y
  •  \epsilon_0 es la permitividad del vacío.

Ligth Knight: Fuerza Nuclear FuerteDefinición y ejemplos de fuerzas nucleares débiles

Durante la década de 1.920, cuando Eddington empezó su búsqueda para explicar las constantes de la naturaleza, no se conocían bien las fuerzas débil y fuerte. Las únicas constantes dimensionales de la física que sí se conocían e interpretaban con confianza eran las que definían la gravedad y las fuerzas electromagnéticas. Eddington las dispuso en tres puros números adimensionales. Utilizando los valores experimentales de la época, tomó la razón entre las masas del protón y del electrón:

mpr/me ≈ 1840

La inversa de la constante de estructura fina

2πhc/e2  ≈ 137

Y la razón entre la fuerza gravitatoria y la fuerza electromagnética entre un electrón y un protón,

e2/Gmpr me ≈ 1040

Estas constantes últimas que hacen posible la vida en nuestro universo

A estas añadió su número cosmológico, NEdd ≈ 1080. A estos cuatro números los llamó “las constantes últimas”, y la explicación de sus valores era el mayor desafío de la ciencia teórica:

 “¿Son estas cuatro constantes irreducibles, o una unificación posterior de la física que pueda demostrar que una o todas ellas podrían ser prescindibles? ¿Podrían haber sido diferentes de lo que realmente son?…  Surge la pregunta de si las razones anteriores pueden ser asignadas arbitrariamente o si son inevitables.  En el primer caso, sólo podemos aprender sus valores por medida; en el segundo caso es posible encontrarlos por la teoría…  Creo que ahora domina ampliamente la opinión de que las (cuatro anteriores) constantes… no son arbitrarias, sino que finalmente se les encontrará una explicación teórica; aunque también he oído expresar lo contrario.”

 

 

      Medida una y mil veces, α parece que no cambia a pesar de todo

Siguiendo con su especulación Eddington pensaba que el número de constantes inexplicadas era un indicio útil del hueco que había que cerrar antes de que se descubriese una teoría verdaderamente unificada de todas las fuerzas de la naturaleza.  En cuanto a si esta teoría final contenía una constante o ninguna, tendríamos que esperar y ver:

 “Nuestro conocimiento actual de 4 constantes en lugar de 1 indica meramente la cantidad de unificación de la teoría que aún queda por conseguir. Quizá resulte que la constante que permanezca no sea arbitraria, pero de eso no tengo conocimiento.”

 

Eddington, como Max Planck, Einstein y Galileo, y Newton antes que ellos, era simplemente un adelantado a su tiempo; comprendía y veía cosas que sus coetáneos no podían percibir.

Hay una anécdota que se cuenta sobre esto y que ilustra la dificultad de muchos para reconciliar el trabajo de Eddington sobre las constantes fundamentales con sus monumentales contribuciones a la relatividad general y la astrofísica. La historia la contaba Sam Goudsmit referente a él mismo y al físico holandés Kramers:

                          Samuel Abraham Goudsmit, George Uhlenbeck y Hendrik Kramers

“El gran Arthur Eddington dio una conferencia sobre su derivación de la constante de estructura fina a partir de una teoría fundamental. Goudsmit y Kramers estaban entre la audiencia.  Goudsmit entendió poco pero reconoció que era un absurdo inverosímil. Kramers entendió mucho y reconoció que era un completo absurdo. Tras la discusión, Goudsmit se acercó a su viejo amigo y mentor Kramers y le preguntó: ¿Todos los físicos se vuelven locos cuando se hacen mayores? Tengo miedo. Kramers respondió, “No Sam, no tienes que asustarte. Un genio como Eddington quizá puede volverse loco pero un tipo como tú sólo se hace cada vez más tonto”.

 

“La historia es la ciencia de las cosas que no se repiten”.

Paul Valéry

         Aquí también están algunas de esas constantes

Los campos magnéticos están presentes por todo el Universo. Hasta un diminuto (no por ello menos importante) electrón crea, con su oscilación, su propio campo magnético, y,  aunque pequeño,  se le supone un tamaño no nulo con un radio ro, llamado el radio clásico del electrón, dado por r= e2/(mc2) = 2,82 x 10-13 cm, donde e y m son la carga y la masa, respectivamente del electrón y c es la velocidad de la luz.

         Nuestro universo es como lo podemos observar gracias a esos números

El mayor misterio que rodea a los valores de las constantes de la naturaleza es sin duda la ubicuidad de algunos números enormes que aparecen en una variedad de consideraciones aparentemente inconexas. El número de Eddington es un ejemplo notable. El número total de protones que hay     dentro del alcance del universo observable esta próximo al número

1080

Si preguntamos ahora por la razón entre las intensidades de las fuerzas electromagnéticas y gravitatoria entre dos protones, la respuesta no depende de su separación, sino que es aproximadamente igual a

1040

En un misterio. Es bastante habitual que los números puros que incluyen las constantes de la naturaleza difieran de 1 en un factor del orden de 102, ¡pero 1040, y su cuadrado 1080, es rarísimo! Y esto no es todo. Si seguimos a Max Planck y calculamos en valor estimado para la “acción” del universo observable en unidades fundamentales de Planck para la acción, obtenemos.

10120

      Supernovas, Nebulosas, Estrellas… ¡Fuerzas y Constantes fundamentales!

Algunos llegan a afirmar que, el Universo es plano e indican que la energía oscura es probablemente la constante cosmológica de Einstein…¡Vivir para ver! El maestro llegó a decir que incluir la constante cosmológica en su ecuación había sido el mayor error de su vida y, sin embargo ahora… resulta que sí estaba en lo cierto. ¡Ya veremos!

Ya hemos visto que Eddington se inclinaba a relacionar el número de partículas del universo observable con alguna cantidad que incluyera la constante cosmológica. Esta cantidad ha tenido una historia muy tranquila desde esa época, reemergiendo ocasionalmente cuando los cosmólogos teóricos necesitan encontrar una manera de acomodar nuevas observaciones incómodas.  Recientemente se ha repetido este escenario. Nuevas observaciones de alcance y precisión sin precedentes, posibilitadas por el telescopio espacial Hubble trabajando en cooperación con telescopios sensibles en tierra, han detectado supernovas en galaxias muy lejanas. Su pauta de brillo y atenuación característica permite deducir su distancia a partir de su brillo aparente. Y, sorprendentemente, resulta que están alejándose de nosotros mucho más rápido de lo que cualquiera esperaba. La expansión del universo ha pasado de ser un estado de deceleración a uno de aceleración. Estas observaciones implican la existencia de una constante cosmológica positiva (Λ+). Si expresamos su valor numérico como número puro adimensional medido en unidades del cuadrado de la longitud de Planck, entonces obtenemos un número muy próximo a

10-120

                                                            Nunca se ha encontrado un número más pequeño en una investigación física real. Podemos decir que es el más grande de los pequeños números.

Hablar del Universo en todo su conjunto…, no es nada fácil. Podemos hablar de parcelas, de elementos por separado y también de sucesos, objetos y de la mecánica celeste de manera individualizada para tratar de comprenderlos mejor y, más tarde, juntarlos para tener una perspectiva de su conjunto que… No siempre podemos llegar a comprender. ¡Es tanto lo que esas constantes nos quieren decir! que comprenderlas y entenderlo todo…, nos llevará algún tiempo.

¿Qué vamos a hacer con todos estos grandes números? ¿Hay algo cósmicamente significativo en 1040 y sus cuadrados y cubos?

http://upload.wikimedia.org/wikipedia/commons/7/78/Hermann_Weyl_ETH-Bib_Portr_00890.jpg

                                                            Hermann Weyl

La aparición de algunos de estos grandes números ha sido una fuente de sorpresas desde que fue advertida por vez primera por Hermann Weyl en 1.919. Eddington había tratado de construir una teoría que hiciera comprensible su aparición, pero no logró convencer a un número significativo de cosmólogos de que estaba en la vía correcta. Pero sí convenció a la gente de que había algo que necesitaba explicación. De forma inesperada, fue precisamente uno de sus famosos vecinos de Cambridge quien escribió a la revista Nature la carta que consiguió avivar el interés por el problema con una idea que sigue siendo una posibilidad viable incluso hoy.

                                 Paul Dirac

Paul Dirac ocupó la cátedra lucaciana de matemáticas en Cambridge durante parte del tiempo en que Eddington estuvo viviendo en los observatorios. Las historias que se cuentan de Paul Dirac dejan muy claro que era un tipo con un carácter peculiar, y ejercía de matemático las 24 h. del día. Se pudo saber que su inesperada incursión en los grandes números fue escrita durante su viaje de novios (Luna de miel), en febrero de 1937.

Aunque no muy convencido de las explicaciones de Eddington, escribió que era muy poco probable que números adimensionales muy grandes, que toman valores como 1040 y 1080, sean accidentes independientes y no relacionados: debe existir alguna fórmula matemática no descubierta que liga las cantidades implicadas. Deben ser consecuencias más que coincidencias.

Esta es la hipótesis de los grandes números según Dirac:

“Dos cualesquiera de los números adimensionales muy grandes que ocurren en la naturaleza están conectados por una sencilla relación matemática, en la que los coeficientes son del orden de la unidad”.

 

 

Las dos imágenes nos hablan por sí mismas, y, sin indicaciones sobre ellas, ¿cuál es el universo y cuál el cerebro humano? Nos puede parecer mentira pero… Los verdaderos grandes números están en ¡La Mente!

Los grandes números de que se valía Dirac para formular esta atrevida hipótesis salían del trabajo de Eddington y eran tres:

N1 = (tamaño del universo observable) / (radio del electrón)

= ct (e2/mec2) ≈ 1040

N2 = Razón fuerza electromagnética-a-gravitatoria entre protón y electrón

= e2/Gmmp ≈ 1040

N = número de protones en el universo observable

= c3t/Gmp ≈ 1080

Aquí t es la edad actual del universo, me es la masa de un electrón, mp es la masa de un protón, G la constante de gravitación, c la velocidad de la luz y e la carga del electrón.

     El Universo es todo lo que existe: Materia, Tiempo y Espacio inmenrsos en un océano de fuerzas y constantes

Según la hipótesis de Dirac, los números N1, N2y raizN eran realmente iguales salvo pequeños factores numéricos del orden de la unidad. Con esto quería decir que debe haber leyes de la naturaleza que exijan fórmulas como N1 = N2, o incluso N1 = 2N2. Un número como 2 ó 3, no terriblemente diferente de 1 está permitido porque es mucho más pequeño que los grandes números implicados en la fórmula; esto es lo que él quería decir por “coeficientes….  del orden de la unidad”.

Esta hipótesis de igualdad entre grandes números no era en sí misma original de Dirac. Eddington y otros habían escrito antes relaciones muy semejantes, pero Eddington no había distinguido entre el número de partículas del universo observable, que se define como una esfera centrada en nosotros con un radio igual a la velocidad de la luz multiplicada por la edad actual del universo, o lo que es lo mismo:

 

 

 “El último de estos mapas se ha dado a conocer ahora. Corresponde a la parte del Universo más cercana a la Vía Láctea: hasta 380 millones de años luz de ella. El mapa digital que lleva el nombre de 2MASS Redshift Survey ha sido posible gracias a la colaboración de un nutrido grupo de astrofísicos. Y el resultado llama la atención: un huso moteado de puntos de colores que representan hasta las 45.000 galaxias situadas en el vecindario galáctico. Sólo un 5 por ciento de esa vecindad cósmica queda ausente en el mapa: el cinturón oscuro central, que se aprecia en una las imágenes, y que corresponde al plano de la Vía Láctea. Las estrellas y el polvo de nuestra galaxia impiden contemplar los objetos lejanos situados en esa dirección. En la otra imagen sí se ha insertado la Vía Láctea en esa región oscura central.”

 

                               Sí, demasiado grande para que lo podamos tomar en una sola imagen

clip_image001

Incluso con la tecnología más avanzada, sólo alcanzamos a ver una pequeña parte del Universo. Se llama Universo observable, y es la parte del Cosmos cuya luz ha tenido tiempo de llegar hasta nosotros.

La trayectoria del llamado Universo Observable (y del cual somos su centro al recorrer su geodésica en la geometría espacio-temporal) tiene la forma perimetral de una gota (forma de media lemniscata; cosa curiosa, lemniscata: figura curva ∞ usada como el símbolo de infinito ¿?) que al girarla 45 ° y desarrollar un cuerpo de revolución, se obtienen dos campos toroidales cual si fuesen imágenes antagónicas (una reflejada) de una fuente (surtidor – sumidero cada uno), correspondiendo uno al campo material y el otro al anti-material.

poderes unidos - trayectoria del universo observable poderes unidos - trayectoria del universo observable_02

                     Trayectoria del Universo observable.

Lo están ocupando en su totalidad, se retroalimentan a sí mismos en la Hipersingularidad (punto de contacto de los dos campos, principio y fin de ambos flujos donde reacciona la materia y la antimateria con la finalidad de mantener separados ambos universos con el adicional resultado de impulsar nuevamente a los fluidos universales de ambos campos a recorrer la finita trayectoria cerrada (geodésica) siendo el motor propulsor universal de dos volúmenes dinámicos, finitos pero continuos).

Universo observable: R = 300.000 × 13.500.000.000

La propuesta de Dirac provocó un revuelo entre un grupo de científicos vociferantes que inundaron las páginas de las revistas especializadas de cartas y artículos a favor y en contra. Dirac, mientras tanto, mantenía su calma y sus tranquilas costumbres, pero escribió sobre su creencia en los grandes números cuya importancia encerraba la comprensión del universo con palabras que podrían haber sido de Eddington, pues reflejan muy estrechamente la filosofía de la fracasada “teoría fundamental”.

“¿No cabría la posibilidad de que todos los grandes sucesos presentes correspondan a propiedades de este Gran Número [1040] y, generalizando aún más, que la historia entera del universo corresponda a propiedades de la serie entera de los números naturales…? Hay así una posibilidad de que el viejo sueño de los filósofos de conectar la naturaleza con las propiedades de los números enteros se realice algún día”.

 

Cuando hablamos del Universo, de inmediato, surgen las polémicas y los desacuerdos y las nuevas ideas y teorías modernas que quieren ir más allá de lo que “se sabe”, nunca han gustado en los centros de poder de la Ciencia que ven peligrar sus estatus con ideas para ellos “peregrinas” y que, en realidad, vienen a señalar nuevos posibles caminos para salir del atolladero o callejón sin salida en el que actualmente estamos inmersos: Mecánica cuántica y Relatividad que llevan cien años marcando la pauta en los “mundos” de  lo muy pequeño y de lo muy  grande sin que nada, las haya podido desplazar.

 

Mientras tanto, continuamos hablando de materia y energía oscura que delata la “oscuridad” presente en nuestras mentes, creamos modelos incompletos en el que no sabemos incluir a todas las fuerzas y en las que (para cuadrar las cuentas), hemos metido con calzador y un poco a la fuerza, parámetros que no hemos sabido explicar (como el Bosón de Higgs en el Modelo Estándar que…, a pesar de todo ¡No está muy claro que esté ahí!).  Sin embargo y a pesar de todo, el conocimiento avanza, el saber del mundo aumenta poco a poco y, aunque despacio, el conocimiento no deja de avanzar y, esperemos que las ideas surjan y la imaginación en la misma medida para que, algún día en el futuro, podamos decir que sabemos, aunque sea de manera aproximada, lo que el Universo es.

No debemos dejar de lado, las Unidades de Planck, esos pequeños números que, como Tiempo de Planck…

Imagen relacionada

                     En este ámbito hablamos de las cosas muy pequeñas, las que no se ven

Es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck.  Está dado por , donde G es la constante gravitacional (6, 672 59 (85) x 10-11 N m2 kg-2), ħ es la constante de Planck racionalizada (ħ = h/2л = 1,054589 x 10-34 Julios segundo), c, es la velocidad de la luz (299.792.458 m/s).

El valor del tiempo del Planck es del orden de 10-44 segundos.  En la cosmología del Big Bang, hasta un tiempo Tp después del instante inicial, es necesaria usar una teoría cuántica de la gravedad para describir la evolución del Universo. Todo, desde Einstein, es relativo.  Depende de la pregunta que se formule y de quién nos de la respuesta.

Hay cosas que no cambian, siempre haremos preguntas.

¿Os dais cuenta? Siempre tendremos que estar haciendo preguntas, y, desde luego, nunca podremos saberlo todo. No tener preguntas que formular, o secretos que desvelar… ¡Sería la decadencia del Ser Humano!

No debemos olvidar que: “La creciente distancia entre la imaginación del mundo físico y el mundo de los sentidos no significa otra cosa que una aproximación progresiva al mundo real.” Nosotros vivimos en nuestro propio mundo, el que forja nuestros sentidos en simbiosis con el cerebro. Sin embargo, ese otro mundo, el que no podemos “ver”, no siempre coincide con “nuestro mundo”.

emilio silvera