domingo, 12 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




De materiales y radiaciones (La imaginación del Ser Humano)

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Uranio-233 - Wikiwand

Uranio 233

Uranium-235 Chain ReactionEl uranio: el elemento más polémico - BBC News Mundo

Uranio 235

Qué es el uranio empobrecido? – Ciencia de Sofáuranio 238 | Moléculas a reacción

Uranio 238

PU 239 - Isótopo Radiactivo Del Plutonio Foto de archivo - Imagen de pared,  grunge: 110536822Plutonio - EcuRed

Plutonio 239

Al pensar en la desintegración me ha traído a la memoria otros materiales que también se desintegran de manera natural y que son materiales fértiles, o que sin serlo, se pueden transformar en otros que sí lo son.

Al hablar de material fértil me estoy refiriendo a núclidos que pueden absorber neutrones para formar material fisible. El uranio-238, por ejemplo, absorbe un neutrón para formar uranio-239, que se desintegra en plutonio-239. Este es el tipo de conversión que la imaginación del hombre hace que ocurra en un reactor reproductor.

Lo explicaré con más detalles:

Nuclear FissionUranium-235 Chain Reaction

Reacciones en la fisión del uranio-235Uranio-235 fisión nuclear energía nuclear energía, energía, ángulo, Fisión  nuclear png | PNGEgg

El uranio-235 es un combustible práctico, es decir, los neutrones lentos son capaces de hacer que el uranio-235 se fisione, o lo que es lo mismo, se rompan sus átomos en dos, produciendo neutrones lentos, que a su vez inducen otras fisiones atómicas. El uranio-233 y el plutonio-239 son también combustibles nucleares prácticos por las mismas razones.

Desgraciadamente, el uranio-233 y el plutonio-239 no existen en estado natural sino en trazas mínimas, y el uranio-235, aunque existe en cantidades apreciables, no deja de ser raro. En cualquier muestra de uranio natural, sólo siete de cada mil átomos son de uranio-235, el resto es uranio-238.

Leer más

Algún día sabremos lo que la Materia es

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

AVANCES DE LA HUMANIDAD

Sir William Crookes 1906.jpg

William Crookes, 1906

 Fue un químico inglés, uno de los científicos más importantes en Europa del siglo XIX,  tanto en el campo de la física como en el de la química. En 1863 ingresó en la Royal Society,  y fue nombrado Sir en 1910.

Tubo de rayos catódicos

Es conocido por ser el inventor del tubo de rayos catódicos, por el descubrimiento del elemento Talio, y por ser el primero en analizar el gas Helio en laboratorio.

Uranio X

“Diagrama de Segrè. El color indica el periodo de semidesintegración de los isótopos radiactivos conocidos, también llamado semivida. Obsérvese que un ligero exceso de neutrones favorece la estabilidad en átomos pesados.”

Productos de decaimiento intermedios de la cadena de desintegración desde plomo 212 hasta plomo 208.

{\displaystyle {\mbox{U 238}}\rightarrow \overbrace {\underbrace {\mbox{Th 234}} _{\mbox{hijo del U 238}}\rightarrow \underbrace {\mbox{Pa 234m}} _{\mbox{nieto del U 238}}\rightarrow \ldots \rightarrow {\mbox{Pb 206}}} ^{\begin{array}{c}{\mbox{Productos de decaimiento del U 238}}\end{array}}}

En este ejemplo:

  • 234Th, 234mPa,…,206Pb son los productos de decaimiento de 238U.
  • 234Th es el hijo del padre 238U.
  • 234mPa (234 metaestable) es el nieto de 238U.

A estos isótopos podría denominárseles también productos hijos de 238U.​

Los productos de decaimiento son importantes para comprender la desintegración radiactiva y la administración de rediduos radiactivos.

 

Producción y gestión de residuos en una central nuclear.

El Uranio X

Antigua denominación radioquímica del nucleido 234Th, de la serie radiactiva natural del uranio. Su símbolo era UX1

Ha pasado más de un siglo desde que se hicieron una serie de observaciones desconcertantes, que condujeron al esclarecimiento.  El inglés William Crookes (el del “tubo Crookes”) logró disociar del uranio una sustancia cuya ínfima cantidad resultó ser mucho más radiactiva que el propio uranio.  Apoyándose en su experimento, afirmó que el uranio no tenía radiactividad, y que esta procedía exclusivamente de dicha impureza, que él denomino “uranio X”.

Protactinio ← Uranio → Neptunio
  Orthorhombic.svg Capa electrónica 092 Uranio.svg
92 U y Ur
 
               
               
                                   
                                   
                                                               
                                                               
Tabla completa • Tabla ampliada

U,92.jpg

Metal blanco plateado

HEUraniumC.jpg UraniumUSGOV.jpg

“El uranio es un elemento químico metálico de color plateado-grisáceo de la serie de los actínidos, su símbolo químico es U y su número atómico es 92. Por ello posee 92 protones y 92 electrones, con una valencia de 6. Su núcleo puede contener entre 142 y 146 neutrones, sus isótopos más abundantes son el 238U que posee 146 neutrones y el 235U con 143 neutrones. El uranio tiene el mayor peso atómico de entre todos los elementos que se encuentran en la naturaleza. El uranio es aproximadamente un 70 % más denso que el plomo, aunque menos denso que el oro o el wolframio. Es levemente radiactivo. Fue descubierto como óxido en 1789 por M. H. Klaproth que lo llamó así en el honor del planeta Urano que acababa de ser descubierto en 1781.”

Portrait of Antoine-Henri Becquerel.jpg

        Antoine Henri Becquerel

Por otra parte, Henri Becquerel descubrió que el uranio purificado y ligeramente radiactivo adquiría mayor radiactividad con el tiempo, por causas desconocidas.  Si se dejan reposar durante algún tiempo, se podía extraer de él repetidas veces uranio activo X. Para decirlo de otra manera: por su propia radiactividad, el uranio se convertía en el uranio X, más activo aún.

Ernest Rutherford - WikiquotePartículas Alfa, Beta y Gamma: el gran descubrimiento de Rutherford y Soddy  | Rincón Educativo

Rutherford

Por entonces, Rutherford, a su vez, separó del torio un “torio X” muy radiactivo, y comprobó también que el torio seguía produciendo más torio X. Hacia aquellas fechas se sabía ya que el más famoso de los elementos radiactivos, el radio, emitía un gas radiactivo, denominado radón.  Por tanto, Rutherford y su ayudante, el químico Frederick Soddy, dedujeron que, durante la emisión de sus partículas, los átomos radiactivos de transformaban en otras variedades de átomos radiactivos.

El actinio | Bienvenidos a DescubrirlaquimicaTorio ≫ Características, propiedades y usos

                    Actinio                                                                                 Torio

Varios químicos, que investigaron tales transformaciones, lograron obtener un surtido muy variado de nuevas sustancias, a los que dieron nombres tales como radio A, radio B, mesotorio I, mesotorio II y Actinio C.  Luego los agruparon todos en tres series, de acuerdo con sus historiales atómicos. Una serie de originó del uranio disociado; otra, del torio, y la tercera, del actinio (si bien más tarde se encontró un predecesor del actinio, llamado “protactinio”).

Leer más

¿Donde estamos?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Imaginando la décima dimensión – Ceci de ViajePrzydałby nam się dziś nowy Einstein | Potyczki z kwantową grawitacją -  Polityka.pl

Tratamos de escenificar la décima dimensión… ¡Con escaso acierto!

Estamos en un nivel de sabiduría aceptable pero insuficiente; es mucho el camino que nos queda por recorrer y, como dice Freund, la energía necesaria para explorar la décima dimensión es mil billones de veces mayor que la energía que puede producirse en nuestros mayores colisionadores de átomos. La empresa resulta difícil para seres que, como nosotros, apenas tenemos medios seguros para escapar del débil campo gravitatorio del planeta Tierra.

Qué pasó antes del Big Bang? - Quo

Energías de tal calibre, que sepamos sólo han estado disponibles en el instante de la creación del universo, en su nacimiento, en eso que llamamos Big Bang. Solamente allí estuvo presente la energía del hiperespacio de diez dimensiones, y por eso se suele decir que cuando llegue la teoría de cuerdas sabremos y podremos desvelar el secreto del origen del universo. A los físicos teóricos siempre les resultó provechoso introducir dimensiones más altas para fisgar libremente en secretos celosamente escondidos.

QUE HABÍA ANTES DEL BIG BANG? - YouTubeEn busca de los orígenes del Big Bang

Según esa nueva teoría, antes del Big Bang nuestro cosmos era realmente un universo perfecto de diez dimensiones, deca-dimensional, un mundo en el que el viaje inter-dimensional era posible. Sin embargo, ese mundo deca-dimensional era inestable, y eventualmente se “rompió” en dos, dando lugar a dos universos separados: un universo de cuatro y otro universo de seis dimensiones.

El universo en el que vivimos nació de ese cataclismo cósmico. Nuestro universo tetradimensional se expandió de forma explosiva, mientras que nuestro universo gemelo hexa-dimensional se contrajo violentamente hasta que se redujo a un tamaño casi infinitesimal.

 

Cosmología : Blog de Emilio Silvera V.

Leer más

El significado de algunos conceptos

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Glosario letras I – J

Indeterminación, principio de

Principio de indeterminación de Heisenberg; principio de incertidumbre, en virtud del cual no es posible conocer con precisión ilimitada tanto la posición como el momento de una partícula.

Este principio, descubierto en 1.927 por Werner Heisemberg (1.901-1.976), se formula actualmente en la forma ΔxΔpx ≥ h/4π, donde Δx es la determinación en la coordenada x, Δpx es la indeterminación en la componente x del momento de partícula y h es la constante de Planck.

Una explicación de la indeterminación es que con el fin de localizar la partícula exactamente, un observador debe ser capaz de hacer rebotar sobre ella un fotón de radiación; este acto de localización altera la posición de la partícula de una forma impredecible.

Para localizar la posición con precisión se deben usar fotones de corta longitud de onda. El alto momento de dichos fotones causarían un gran efecto sobre la posición. Por el contrario, utilizando fotones de menor momento, se causará un menor efecto sobre la posición de la partícula, pero su localización será menos precisa debido a la longitud de onda más larga.

Schrödinger realizó un trabajo muy preciso y de formulación casi mágica (la ecuación de Schrödinger) que con su función de onda (Ψ), daba la enorme posibilidad de saber, con bastante aproximación, la situación de la partícula.

De todos modos, y dicho de otra manera, el principio de incertidumbre de Heisenberg nos obligó a poner los pies en el suelo; nada en el universo que nos ha tocado vivir es seguro al 100 por 100, ya que todo puede variar en función de lo que hagamos. Todo incide en lo que será. Es la causalidad:

Si nos comportamos correctamente y tenemos atenciones y respeto, la persona amada nos querrá. Si leemos mucho conoceremos cosas nuevas cada día. Si salimos a la calle con lluvia y no estamos bien abrigados, resfriado seguro… y así son las cosas.

Leer más

Agujeros Negros Gigantes fenómenos astronómicos

Autor por Emilio Silvera    ~    Archivo Clasificado en AIA-IYA2009    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Este enorme agujero negro es 34.000 millones de veces más masivo que el Sol  y uno de los que más rápido crecen del UniversoAgujero negro más grande del universo consume un Sol cada día

Agujero Negro: Guía sencilla para entender la foto del agujero negro |  PúblicoAgujeros negros, ¿por qué son tan fascinantes para la ciencia? | EL  ESPECTADOR

AGUJEROS NEGROS GIGANTES

La idea de que Agujeros negros gigantes podían activar los cuásares y las radio-galaxias fue concebida por Edwin Salpeter y Yakov Borisovich Zel´dovich en 1964. Esta idea era una aplicación obvia del descubrimiento de dichos personajes de que las corrientes de gas, cayendo hacia un agujero negro, colisionarían y radiarían.

Así se ven los vientos ultra veloces en un agujero negro super-masivo

Una descripción más completa y realista de la caída de corriente de gas hacia un agujero negro fue imaginada en 1969 por Donald Lynden-Bell, un astrofísico británico en Cambridge. Él argumentó convincentemente, que tras la colisión de las corrientes de gas, estas se fundirían, y entonces las fuerzas centrífugas las harían moverse en espiral dando muchas vueltas en torno al agujero antes de caer dentro; y a medida que se movieran en espiral, formarían un objeto en forma de disco, muy parecidos a los anillos que rodean el planeta Saturno: Un disco de Acreción lo llamó Lynden-Bell puesto que el agujero está acreciendo (todos hemos visto la recreación de figuras de agujeros negros con su disco de acreción).

Agujero negro de Cygnus-X1. Les... - Astronomía en tu bolsillo | Facebookcygnus x1 - Google-Suche | Schwarzes loch, Weltall, Weltraum und astronomie

En Cygnus X-1, en el centro galáctico, tenemos un Agujero Negro modesto que, sin embargo, nos envía sus ondas electromagnéticas de rayos X. En el disco de acreción, las corrientes de gas adyacentes rozarán entre sí, y la intensa fricción de dicho roce calentará el disco a altas temperaturas.

En los años ochenta, los astrofísicos advirtieron que el objeto emisor de luz brillante en el centro de 3C273, el objeto de un tamaño de 1 mes-luz o menor, era probablemente el disco de acreción calentado por la fricción de Lynden-Bell.

Normalmente pensamos que la fricción es una pobre fuente de calor. Sin embargo, puesto que la energía gravitatoria es enorme, mucho mayor que la energía nuclear, la fricción puede realizar fácilmente la tarea de calentar el disco y hacer que brille con un brillo 100 veces mayor que la galaxia más luminosa.

Leer más