lunes, 23 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿La sustancia cósmica? ¡La semilla de la materia!

Autor por Emilio Silvera    ~    Archivo Clasificado en La ignorancia nos acompaña siempre    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Lo que no sabemos : Blog de Emilio Silvera V.

 

Debajo de ésta imagen se puede leer:

“Hallan indicios de materia oscura unida al Cosmos. La evidencia muestra nuevos fenómenos físicos que podrían ser la extraña y desconocida materia oscura o la energía que se origina de los pulsares. Un detector de rayos cósmicos de dos mil millones de dólares en la Estación Espacial Internacional halló la huella de algo que pudiera ser la materia oscura, la misteriosa sustancia que se cree mantiene unido al cosmos.”

“Pero los primeros resultados del Espectrómetro Magnético Alfa (AMS, por sus siglas en inglés) son casi tan enigmáticos como la materia oscura en sí, la cual nunca ha sido observada directamente. Muestran evidencia de nuevos fenómenos físicos que podrían ser la extraña y desconocida materia oscura o la energía que se origina de los pulsares, anunciaron un miércoles científicos en el laboratorio europeo de física de partículas cerca de Ginebra.”

 

Como no me canso de repetir, cualquiera de estas noticias nos vienen a decir que, de la “materia oscura”, nada sabemos. Sería conveniente, para que las cuentas cuadren, que exista esa dichosa clase de materia o lo que pueda ser, toda vez que, sin ella, no resulta fácil llegar a una conclusión lógica de cómo se pudieron formar las galaxias, o, de por qué se mueven las estrellas de la manera que lo hacen.

http://misteriosaldescubierto.files.wordpress.com/2012/07/detectan-el-primer-filamento-de-materia-oscura-entre-dos-clusteres-de-galaxias.jpg

hace treinta años, los astrofísicos se enfrentan a este dilema: o bien las galaxias tienen mucha materia que no vemos, pero que causa una fuerte atracción gravitatoria sobre las estrellas externas (que por ello orbitarían tan rápido) o bien ni la ley de la gravedad de Newton ni la de Einstein serían válidas esas regiones externas de las galaxias. Las dos opciones son revolucionarias para la física: la primera implica la existencia de materia oscura en el universo (materia que no vemos pero que sí afecta al movimiento de las estrellas y galaxias), y la segunda implica que una ley básica (la de Newton/Einstein de la gravitación) es incorrecta.

Foto: M. Zemp

En el momento actual, no sabemos cual de esas dos opciones es la buena (podrían incluso ser buenas las dos, es decir, que existiera materia oscura y además que la teoría de Newton/Einstein estuviera mal. No creo que sea ese el problema, debe haber una tercera opción desconocida que debemos encontrar). La gran mayoría de los astrofísicos prefieren explicarlo con la materia oscura (un camino cómodo y fácil) antes que dudar de las leyes de la gravitación de Newton/Einstein. Esto no es sólo cuestión de gustos, es que las leyes de la gravitación funcionan con una increíble exactitud en todos los demás casos donde las hemos puesto a prueba (en los laboratorios, en las naves espaciales y los interplanetarios, en la dinámica del Sistema Solar, etc.).

El problema de la materia oscura (si es que realmente existe y no es que las leyes de Newton/Einstein sean incompletas) es uno de los más importantes con los que se enfrenta la astrofísica hoy en día.

Cuando pienso en la existencia ineludible de esa “materia cósmica” primigenia, la primera y más sencilla clase de materia que se formó en las primeras fracciones del primer segundo del big bang, en la mente se me aparece una imagen llena de belleza creadora a partir de la cual, todo lo que ahora podemos contemplar es posible. La belleza de la idea es que toma dos problemas -la ventana del tiempo inadecuada para la fromación de las galaxias y la existencia de la “materia oscura”- y los une para conformar una solución al dilema central de la estructura del universo.

La “materia oscura”, por hipótesis, tiene una ventana de tiempo mucho más larga que la materia ordinaria, porque se desapareja más pronto en el Big Bang. Tiene mucho tiempo para acumularse antes de que la materia ordinaria sea libre para hacerlo y formar los átomos. La “materia oscura o sustancia cósmica primera, es de porte más sencillo y no tiene ni requiere la complejidad de la materia bariónica para formarse, es totalmente translúcida y se sitúa por todas partes, es decir, permea todo el universo invadiendo todas sus regiones a medida que este se expande más y más. Y fue esa “invisible” sustancia cósmica, la que realmente hizo posible que las galaxias se pudieran formar a pesar de la expansión de Hubble.

El hecho de que la materia ordinaria caiga entonces en el agujero gravitatorio creado de este modo sirve para explicar por qué encontramos galaxias rodeadas por un halo de algo que hemos dado en llamar “materia oscura”. Tal hipótesis mata dos pájaros de un sólo tiro.

Lo que no sabemos : Blog de Emilio Silvera V.El Universo podría estar lleno de «grietas» en el espacio-tiempo, y los  científicos las están buscando

Pero debemos recordar que en este punto sólo tenemos una idea que puede funcionar, no una teoría bien construida. Para pasar de la idea a la teoría, tenemos que responder dos preguntas importantes y difíciles:

1. ¿Cómo explicamos la estructura de la materia oscura?

2. ¿Qué es la materia oscura?

Se habla de materia oscura caliente y fría. También, algunas veces me veo sorprendido por las ocurrencias que tienen algunos científicos de hoy que, como los antiguos, imaginan respuestas para acomodar las cuestiones que realmente desconocen y, buscan así, una salida airosa sin que se note la inmensa ignorancia que llevan consigo.

http://quantitos.files.wordpress.com/2010/12/materia-oscura-3-big.jpg

Podríamos comenzar a examinar estas cuestiones pensando en el modo en que la “materia oscura” pudo separarse de la nube caliente en expansión, de materiales que constituía el universo en sus comienzos. Por analogía de la discusión del desaparejamiento de la materia ordinaria después de la formación de los átomos, llamaremos también desaparejamiento a la separación de la “materia oscura” de aquella fuente “infinita” de energía primera. Una transformarción como la que condujo a la formación de los átomos es necesaria para que ocurra el desaparejamiento. Todo lo que tiene que suceder es que la fuerza de la interacción de las partículas que forman la “materia oscura” caigan por debajo del punto en que el resto del universo puede ejercer una presión razonable sobre él. Después de esto, la “materia oscura” continuará a su aire, indiferente a todo lo que la rodee.

Resulta que desde el punto de vista de la creación de la estructura observada del universo, la característica más importante del proceso de desaparejamiento para la “materia oscura” es la velocidad de las partículas cuando son libres. Si el desaparejamiento tiene lugar muy pronto en el Big Bang, la “materia oscura” puede salir con sus partículas moviéndose muy rápidamente, casi a la velocidad de la luz. Si es así, decimos que la “materia oscura” está caliente. Si el desaparejamiento tiene lugar cuando las partículas están moviéndose poco a poco -velocidad significativamente menor que la de la luz- decimos que la materia está fría.

Foto

De los tipos de “materia oscura” que los cosmólogos toman en consideración, los neutrinos serán el mejor ejemplo de “materia oscura” caliente. Los neutrinos han llamado la atención de los científicos en relación a la “materia oscura” durante mucho tiempo. Para tener una idea aproximada del número de neutrinos del universo, podríamos decir que existe actualmente un neutrino por cada reacción nuclear que tuvo lugar desde siempre. Los cálculos indican que hubo aproximadamente mil millones de neutrinos producidos durante el Big Bang por cada protón, neutrón o electrón. Cada volumen del espacio del tamaño de nuestro cuerpo contiene unos diez millones de estos neutrinos-reliquias y en ellos no se encuentran los que se produjeron más tarde en las estrellas. Está claro que toda partícula tan corriente como ésta podría tener en principio un efecto muy grande sobre la estructura del Cosmos, si tuviera una masa.

Qué es la materia oscura? ¿Y la energía oscura? - QuoraAbell 520 - Wikipedia, la enciclopedia libre

Pero resulta que la “materia oscura” caliente, actuando sola, casi con toda seguridad no podría explicar lo que observamos en el universo y que el escenario de “materia oscura-fria” debe modificarse por completo si queremos mantenerla como candidata a esa teoría última de la materia que “debe” existir en el universo pero, que no sabemos lo que es y la llamamos, precisamente por eso materia oscura”.

El tema de la materia desconocida, invisible, oculta y misteriosa que hace que nuestro universo se comporte como la hace… ¿sigue siendo una gran incógnita! Nadie sabe el por qué las galaxias se alejan las unas de las otras, el motivo de que las estrellas en la periferia de las galaxias se muevan a mayor velocidad de lo que deberían y otros extraños sucesos que, al desconocer los motivos, son achacados a la “materia oscura”, una forma de evadirse y cerrar los ojos ante la inmensa ignorancia que tenemos que soportar en relación a muchos secretos del Universo a los que no podemos dar explicación.

Resultado de imagen de las GUT y teorías de supersimetría las que predicen la de cuerdas

Sí, las cuerdas son unas buenas candidatas para la “materia oscura

              Claro que otros, han imaginado cuestiones y motivos diferente para explicar las cosas

Aunque no todas si son muchas las GUT y teorías de supersimetría las que predicen la de cuerdas en la congelación del segundo 10-35 después del comienzo del tiempo, cuando la fuerza fuerte se congeló y el universo se infló. Las cuerdas se deben considerar un subproducto del proceso mismo de congelación. Es cierto que aunque las diversas teorías no predicen cuerdas idénticas, sí predicen cuerdas con las mismas propiedades generales. En primer lugar las cuerdas son extremadamente masivas y también extremadamente delgadas; la anchura de una cuerda es mucho menor que la anchura de un protón. Las cuerdas no llevan carga eléctrica, así que no interaccionan con la radiación como las partículas ordinarias. Aparecen en todas las formas; largas líneas ondulantes, lazos vibrantes, espirales tridimensionales, etc. Sí, con esas propiedades podrían ser un candidato perfecto para la “materia oscura”. Ejercen una atracción gravitatoria y no pueden ser rotas por la presión de la radiación en los inicios del Universo.

Resultado de imagen de La teoría de cuerdas y su espesor estimado

 El espesor estimado de una cuerda es de 10-30 centímetros, comparados con los 10-13 de un protón. Además de ser la más larga, y posiblemente la más vieja estructura del universo conocido, una cuerda cósmica sería la más delgada: su diámetro sería 100.000.000.000.000.000 veces más pequeño que el de un protón.. Y la cuerda sería terriblemente inquieta, algo así como un látigo agitándose por el espacio casi a la velocidad de la luz. Las curvas vibrarían como enloquecidas bandas de goma, emitiendo una corriente continua de ondas gravitacionales: rizos en la misma tela del espacio-tiempo. ¿Qué pasaría si una cuerda cósmica tropezara con un planeta? Al ser tan delgada, podría traspasarlo sin tropezar con un solo núcleo atómico. Pero de todos modos, su intenso campo gravitatorio causaría el caos.

El Universo está lleno de «grietas» en el espacio-tiempo?

Lo cierto es que todavía no se ha encontrado ninguna cuerda de este tipo. Si bien en los últimos años han surgido muchas candidatas a estar formadas por un efecto de lente de este tipo, la mayoría han resultado ser dos cuerpos distintos pero muy similares entre sí. Pese a ello, los astrofísicos y los teóricos de cuerdas no pierden la esperanza de encontrar en los próximos años, y gracias a telescopios cada vez más potentes, como el GTC y aceleradores como el LHC las evidencias directas de la existencia de este tipo de cuerdas; evidencias que no sólo nos indicarían que las teorías de cuerdas van por buen camino, sino que el modelo del Big Bang es un modelo acertado.

Resultado de imagen de Simulación del efecto de lente generado por una cuerda cósmica. Crédito: PhysicsWorld.com

Simulación del efecto de lente generado por una cuerda cósmica. Crédito: PhysicsWorld.com

Por tanto, cuando observásemos un objeto con una cuerda cósmica en la trayectoria de nuestra mirada, deberíamos ver este objeto dos veces, con una separación entre ambas del orden del defecto de ángulo del cono generado por la curvatura del espacio-tiempo. Esta doble imagen sería característica de la presencia de una cuerda cósmica, pues otros cuerpos, como estrellas o agujeros negros,  curvan el espacio-tiempo de manera distinta. Por tanto, una observación de este fenómeno no podría dar lugar a un falso positivo.

En este sentido, el nombre de cuerda cósmica está justificado debido a que son impresionantemente pesadas, pasando a ser objetos macroscópicos aun cuando su efecto es pequeño. Una cuerda de seis kilómetros de longitud cuya separación entre ambas geodésicas es de apenas 4 segundos de arco tendría ¡la masa de la Tierra!. Evidentemente, cuerdas de este calibre no se espera que existan en la naturaleza, por lo que los defectos de ángulo esperados son aún menores y, por tanto, muy difíciles de medir.

El Universo está lleno de «grietas» en el espacio-tiempo?El Universo está lleno de «grietas» en el espacio-tiempo?El Universo está lleno de «grietas» en el espacio-tiempo?El Universo está lleno de «grietas» en el espacio-tiempo?El Universo está lleno de «grietas» en el espacio-tiempo?El Universo está lleno de «grietas» en el espacio-tiempo?El Universo está lleno de «grietas» en el espacio-tiempo?El Universo está lleno de «grietas» en el espacio-tiempo?El Universo está lleno de «grietas» en el espacio-tiempo?

Una de las virtudes de la teoría es que puede detectarse por la observación. Aunque las cuerdas en sí son invisibles, sus efectos no tienen por qué serlo. La idea de las supercuerdas nació de la física de partículas, más que en el de la cosmología (a pesar de que, la cuerdas cósmicas, no tienen nada que ver con la teoría de las “supercuerdas”, que mantiene que las partículas elementales tienen forma de cuerda). Surgió en la década de los sesenta cuando los físicos comenzaron a entrelazar las tres fuerzas no gravitacionales – electromagnetismo y fuerzas nucleares fuertes y débiles – en una teoría unificada.

En 1976, el concepto de las cuerdas se había hecho un poco más tangible, gracias a Tom Kibble. Kibble estudiaba las consecuencias cosmológicas de las grande teorías unificadas. Estaba particularmente interesado en las del 10^-35 segundo después del Big Bang.

Resultado de imagen de Simulación del efecto de lente generado por una cuerda cósmica. Crédito: PhysicsWorld.com

                      Podrían estar por todas partes

Aunque no todas si son muchas las Grandes Teorías Unificadas y teorías de supersimetría las que predicen la formación de cuerdas en la congelación del segundo 10-35 despues del comienzo del tiempo, cuando la fuerza fuerte se congeló y el universo se infló. Las cuerdas se deben considerar un subproducto del proceso mismo de congelación. Es cierto que aunque las diversas teorías no predicen cuerdas idénticas, sí predicen cuerdas con las mismas propiedades generales. En primer lugar las cuerdas son extremadamente masivas y también extremadamente delgadas; la anchura de una cuerda es mucho menor que la anchura de un protón. Las cuerdas no llevan carga eléctrica, así que no interaccionan con la radiación como las partículas ordinarias. Aparecen en todas las formas; largas lineas ondulantes, lazos vibrantes, espirales tridimensionales, etc. Sí, con esas propiedades podrían un candidato perfecto la “materia oscura”. Ejercen una atracción gravitatoria, no pueden ser rotas por la presión de la radiación en los inicios del Universo.

Como habéis podido comprender, todas estas teorías están por demostrar y sólo son conjeturas derivadas de profundos pensamientos de lo que puso ser y de lo que podría ser. Nada relacionado con la materia oscura, las supercuerdas o las cuerdas cósmicas ha sido demostrado ni se han observado por medio alguno en nuestro Universo. Sin embargo, no descartar nada y hacer lo posible por demostrarlas, es la obligación de los científicos que tratan de buscar una explicación irrefutable de cómo es el Universo y por qué es así.

              El misterioso “universo” de los campos cuánticos que nadie sabe lo que esconde

A los cosmólogos les gusta visualizar esta revolucionaria transición como una especie de “cristalización”: el espacio, en un principio saturado de energía, cambió a la más vacía y más fría que rodea actualmente nuestro planeta. Pero la cristalización fue, probablemente, imperfecta. En el cosmos recién nacido podría haberse estropeado con defectos y grietas, a medida que se enfriaba rápidamente y se hinchaba. En fin, muchas elucubraciones y conjeturas que surgen siempre que no sabemos explicar esa verdad que la Naturaleza esconde y, mientras tanto nosotros, simples mortales de la especie Homo, seguimos dejando volar nuestra imaginación que trata, cargada siempre de curiosidad, de desvelar esos misterios insondables del Universo.

Finalmente sabremos sobre esa sustancia cósmica que impregna todo el universo pero, no será la materia oscurade la que todos hablan, será otra cosa muy diferente e inimaginable en estos momentos en los que, nuestra ignorancia, echa mano de cualquier cosa para poder ocultarla… ¡materia oscura! ¿Qué es eso?

emilio silvera

«La cara humana ya está cambiando»

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

ABC Ciencia

Timothy Bromage, paleo-antropólogo

El paleoantropólogo Timothy Bromage describe cómo ha evolucionado nuestro rostro al tiempo que lo ha hecho el cerebro

Timothy Bromage, paleoantropólogo de la Universidad de Nueva York

 

                               Timothy Bromage, paleo-antropólogo de la Universidad de Nueva York

Resultado de imagen de Una cara humana perfecta
Todo evoluciona en función del medio y las necesidades

 

«La cara humana es única», dice Timothy Bromage, paleo-antropólogo de la Universidad de Nueva York. El científico participó en un simposio internacional organizado por la Fundación Ramón Areces hace algún tiempo en Madrid para explicar cómo esta parte del cuerpo, capaz de expresar un sin fin de emociones, se ha transformado a medida que lo hacía el cerebro.

-¿Cuándo podemos hablar de la aparición de un rostro que parece humano?

Resultado de imagen de homo antecessor caracteristicas

-Si miramos en el registro fósil, encontramos al Homo antecesor (900.00 años), descubierto en la Gran Dolina, en el yacimiento de Atapuerca (Burgos), que tiene aspectos de desarrollo facial que, curiosamente, son muy parecidos a los de los humanos modernos. La forma en la que está organizada la cara en relación con el cerebro se parece más a la nuestra que a la de otros homínidos hallados en la cercana Sima de los Huesos, más similares a los neandertales, como el heidelbergensis.

Resultado de imagen de heidelbergensis

                            Heidelbergensis

-¿Y la cara moderna, la nuestra?

-Las raíces de la cara que tenemos ahora comenzaron hace unos 100.000 años, probablemente un poco más. Si miras esa cara no es exactamente como la nuestra actual, pero las raíces se retraen a entonces. La cara humana moderna tiene entre 35.000 y 25.000 años. Su primer dueño fue, con toda seguridad, un africano. Es curioso, porque puedes ver algunos de esos rasgos humanos en homínidos tempranos y no en otros más tardíos, como los neandertales.

Resultado de imagen de La cara de un africano de hace 100.000 años

Neandertales y sapiens se hibridaron hace más de 100.000 años

-¿Cuál es la característica más distintiva de la cara humana?

-La estructura de nuestra cara ha crecido debajo del cerebro (en vertical) en vez de por delante. De hecho, y en realidad no es sorprendente, la cara humana moderna crece de esta forma (señala su cara de delante hacia atrás). Podemos estudiar esa evidencia en los fósiles.

-Y, aparte del antecesor, ¿es completamente diferente de la del resto de homos?

Homo erectus: por qué los antiguos humanos sobrevivieron más de lo que  pensábamos - BBC News MundoAntropología: Preguntas sin respuesta que deja 'Homo naledi' sobre el origen  de la humanidad

Homo erectus

-Las primeras especies de homo, en sus orígenes, tenían caras muy pronunciadas, mandíbulas salientes, dientes más grandes… Pero luego hubo una reducción de la cara y, al mismo tiempo, un agrandamiento del cerebro, así que esas dos cosas están conectadas.

-¿El desarrollo del cerebro es lo que da forma a la cara?

Resultado de imagen de El tamaño del cerebro evolucionóDesarrollo del cerebro

-El tamaño del cerebro está inversamente relacionado con el tamaño de la cara. Cerebro más grande, cara más pequeña. Ambas cosas están unidas y nadie sabe la razón. Algunos creen que es por una cuestión mecánica, para organizar la masa de la cabeza de una forma más eficiente. Si miras a todos los primates, se cumple la misma relación, da igual que no sean homos.

-¿Y ocurre lo mismo con otros animales?

-Nadie lo ha investigado. Hay mucho que averiguar aquí.

-Los neandertales también eran inteligentes, pero tenían una cara muy diferente de la nuestra.

Resultado de imagen de Los neandertales

Recreación de grupo de Neandertales en la península Ibérica

-Sí. La diferencia fundamental se encuentra en el medio de la cara. La cavidad para la nariz era más grande y la respiración mucho más expandida. Una explicación para ello es el intento de humidificar y hacer más cálido el aire, para adaptarse a condiciones ambientales frías y secas. Esto incrementaba al capacidad respiratoria de los neandertales. Es una adaptación interesante.

-¿Por qué tenemos la cara que tenemos?

Resultado de imagen de La cara actual del Homo SapiensLa ciencia ya sabe cómo será el rostro humano del futuro | Noticias de  Sierras Chicas

                                        La Evolución es imparable, nada permanece y todo cambia

-La cara incorpora la mayoría de los sentidos del cuerpo, la vista, el sabor, el olor… necesarios para vivir, y eso es importante. Pero también es importante para comer y muchos científicos hablan del sistema masticatorio. Tenemos la cara que tenemos por el tamaño de los dientes, por los músculos que usamos para masticar… todo eso tiene un gran impacto.

-Y sonreímos, guiñamos el ojo, fruncimos la nariz…

-En efecto. Otro factor muy importante es que los humanos tenemos una cara terriblemente expresiva para dar información a otra gente, de forma que puedan leer nuestra mente. Está claro que la cara también tiene un alto significado social, no solo biológico

-¿Somos la única especie que tiene esa habilidad?

El origen del planeta de los simios dirigida por Rupert WyattAiNoGo: En Cine: El Amanecer del Planeta de los Simios (2014)ZBrush] Cesar: planet of the apes

Ellos también reflejan en sus caras el estado de ánimo

-No. Incluso Charles Darwin escribió sobre este fenómeno. Es una habilidad que los humanos tenemos particularmente, pero también los simios pueden obtener información de otros miembros del grupo por la expresión facial. Incluso los monos son expresivos, hacen gestos y tienen su comunicación no verbal. Pero el rango de sentimientos que los humanos podemos expresar con nuestra cara es incomparable. Los humanos somos particularmente sensibles a las expresiones de la cara de otras personas.

-¿Y los únicos que nos reconocemos unos a otros por la cara?

-No, no. Estoy seguro de que los grandes simios pueden hacerlo. Hay buenos estudios sobre ello.

-¿Puede la cara humana cambiar en el futuro?

Resultado de imagen de La cara humana cambia en el futuroLa ciencia ya sabe cómo será el rostro humano del futuro

-Lo está haciendo ya. Todos los sistemas evolutivos, como lo es la cara, tienen un propósito y funciones. Si cambias las condiciones de esos propósitos y de esas funciones, entonces la cara cambiará.

-¿Cómo lo está haciendo?

-El mejor ejemplo son los problemas de salud que la gente tiene en la actualidad. Nuestra mandíbula y dientes estaban adaptados a comer comida dura, pero en las sociedades industrializadas hemos dejado de hacerlo. Comemos comida blanda y los huesos no se desarrollan como deben, así que lo que está pasando es que a mucha gente tienen que quitarle los dientes porque no tienen espacio. La función y el propósito cambian por comer un tipo diferente de comida pero no tienes tiempo para evolucionar una nueva cara porque es demasiado rápido.

-¿Hay más consecuencias?

-Otro problema es la apnea del sueño. El espacio para respirar es más pequeño y tienes más riesgo de que no llegue suficiente oxígeno. La apnea del sueño es la consecuencia directa de una reducción innatural de la cara de una persona.

-¿Cómo imagina la cara humana en el futuro?

Resultado de imagen de La cara humana cambia en el futuro

El aspecto que ofrecerán los humanos dentro de 100 mil años será una frente ancha, ojos grandes y piel pigmentada.

-Ya hay un número cada vez más alto de personas en el mundo que nacen sin el tercer molar (las muelas del juicio), lo que contribuye a una continua reducción en el tamaño de la cara. Es adaptativo, si comes comida blanda, con dos molares basta. Por otro lado, no hay evidencias de que el cerebro esté creciendo. Probablemente haya una reducción en el tamaño de la cara, pero eso será todo lo que veremos en el futuro. Y solo ocurrirá en el mundo industrializado, en el resto, donde todavía comen alimentos duros, no hay estos problemas y sus caras no tienen que cambiar. Todo dependerá de cuánta gente empiece a comportarse como nosotros.