jueves, 26 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Será el Universo igual en todas partes? Es lógico pensar que sí.

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »
Las nebulosas, esas bellezas difusasSabes dónde vives? Sagitario A*: El agujero negro supermasivo que está en  el centro de nuestra galaxia | RPP Noticias

Las estrellas de neutrones y quarks explicadas para todos los públicos: así  se forman dos de los objetos más asombrosos del universoLAS PROTOESTRELLA " Se... - Hermanos Del Cosmo, Ufo - Ovni. | Facebook

 

En una región podemos contemplar una Nebulosa molecular gigante, detectar un agujero negro, una estrella de neutrones, o, el nacimiento de una estrella… Pero, en todos esos lugares rigen las mismas fuerzas y las mismas constantes. En caso contrario, estaríamos en un Universo chapuza.

Bueno, independientemente de las cosas que en una región particular pueda estar ocurriendo, en el contexto general, sí es igual el Universo en cualquier lugar que podamos mirar. Las mismas fuerzas y constantes, la misma materia, las mismas transiciones de fase y, seguramente  la misma vida, se repite una y otra vez a lo lo largo y a lo ancho de todo el Universo. Las estrellas son siempre iguales en todas las galaxias y todas, tienen el mismo principio y el mismo fin. En sus hornos nucleares se transmutan materiales sencillos en otros más complejos. También las galaxias, dentro de su variedad (como pasa con las estrellas y los mundos), son todas iguales.
Una nave espacial rusa pierde el control y cae a la TierraMisterioso objeto cae a la Tierra tras mantener en alerta a científicos |  CNN

 

En el centro de vigilancia espacial detectan la caída de una nave extraterrestre

La vieron caer y corrieron hasta el lugar. La escena era la que se podía esperar después de la caída de una nave en plena montaña. Los pocos testigos que por el lugar estaban, llamaron a las autoridades que enviaron, de inmediato, a  especializado en este tipo de investigaciones.¡

– “Mira, un trazo de la nave caída, ¿de qué materiales estará hecha? Nunca he visto algo así! ¿De dónde vendrán estos seres, de qué estará conformado su mundo?”

Esto preguntaba uno de los investigadores al otro que con él recogía muestras de aquella extraña nave accidentada y que, según el seguimiento hecho en su acercamiento a la Tierra, venía de más allá de los confines del Sistema Solar y, quién sabe de dónde pudieron partir. Sin embargo, el material que recogían, debería ser el mismo que está repartido por todo el Universo.

Lo único que puede diferir, es la  en que se utilice, el tratamiento que se le pueda dar, y, sobre todo el poseer el conocimiento y la tecnología necesarios para poder obtener, el máximo resultado de las propiedades que dicha materia encierra. Porque, en última instancia ¿es en verdad inerte la materia?

Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Si, sabemos ponerles etiquetas , por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos  el Protactinio o el Torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos (elementos artificiales hallados en el laboratorio).

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (Einstenio, Fermio y Mendelevio), esto se convierte en el método más importante de ruptura, sobre pasando a la emisión de partículas alfa.

Partículas Alfa, Beta y Gamma: el gran descubrimiento de Rutherford y Soddy  | Rincón Educativo

                                                  ¡Parece que la materia está viva!

Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas. El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).

Historia de la ciencia: el descubrimiento del electrón | Los Avances de la  Química. Educación Científica (y algo de Historia …).Modelos atómicos timeline | Timetoast timelines

Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto.  Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico:  no se ha descubierto aún ninguna partícula que sea  cursiva que el electrón (o positrón) y que lleve  una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que  es la que se muestra en el electrón.

Lo cierto es que, el electrón, es una maravilla en sí mismo.  El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí  para poder construir conjuntos tan bellos como el que abajo podemos admirar.

Top 30 Atomo GIFs | Find the best GIF on Gfycat

                                                     ¡No por pequeño, se es insignificante!

Los electrones que orbitan al núcleo atómico tienen carga negativa que equilibra la carga positiva que tienen los nucleones y, de esa manera, el átomo alcanza la estabilidad. Todo lo que vemos está hecho de átomos y, de ahí, la importancia de estas infinitesimales partículas elemetales.

Recordémoslo, todo lo grande está hecho de cosas pequeñas. En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo).  Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones. Esta manifestación en  de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.

Se ha descubierto una quinta fuerza fundamental del universo? | EnterarseEl gravitón como un bosón de Goldstone para la ruptura espontánea de la  invarianza de Lorentz - La Ciencia de la Mula Francis

 

El Gravitón no se ja meter en el Modelo Estándar y se aparta de los otros

 

En física de altas energías y de partículas se dice que los bosones son los mediadores de fuerza o partículas portadoras de las interacciones fundamentales,  el Fotón, mediador de todas las radiaciones electromagnéticas. el Bosón Z y el Bosón W que intermedian la fuerza nuclear débil, el Gluon es el emisario de la fuerza nuclear fuerte, y, por último, el Gravitón que aún no se ha podido hallar, es el Bosón que interviene en la fuerza de Gravedad.

Quarks - Concepto, descubrimiento, modelo y características

 

En física de partículas, los quarks​​ son los fermiones elementales masivos que interactúan fuertemente formando la materia nuclear y ciertos tipos de partículas llamadas hadrones. Junto con los leptones, son los constituyentes fundamentales de la materia bariónica.

Modelo Estandar

 

Partículas elementales. En física, un leptón es una partícula con espín 1/2 en el caso de los neutrinos y +/- 1/2 en los demás leptones (un fermión) que no experimenta interacción fuerte. … Existen seis leptones y sus correspondientes antipartículas: el electrón, el muon, el tau y tres neutrinos asociados a cada uno de ellos.

 

e)- LOS FOTONES - 1- SÍNTESIS de la TEORÍA TIEMPO-ESPACIOEl fotón – AstrononuestraLa materia: El fotón. Onda, no corpúsculo – 2 - Historia de la Vida

Partículas y ondas a la vez que conforman la Luz

 

“El fotón tiene una masa de 1, una carga eléctrica de o, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín).  La única  que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.”

 

Qué son las ondas gravitacionales? – UNIVERSO Blog

 

Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales.  Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el  de gravitón.

Fuerza de gravedad fuerza gravitatoria gravitación universalcausa de la  gravedadMagnetic Field of the Earth

La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética.  Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin ) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón.  Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío.  Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.

Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de  simultánea.  En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias.  Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general).  Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.

El gravitón nexus de Stuart Marongwe - La Ciencia de la Mula Francis

De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria.  La masa del gravitón es o, su carga es o, y su espín de 2.   el fotón, no  antipartícula, ellos mismos hacen las dos versiones.

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros.  Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

Medir las ondas gravitacionales desde el espacio, el proyecto que la ESA  quiere lanzar en 2029 - INVDES

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones.

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo.  Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler,  es la escala de longitud por debajo de la cual el espacio tal  lo conocemos deja de existir y se convierte en espuma cuántica.  El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que  existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.

Me llama poderosamente la atención lo que conocemos  las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e ineliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.

       Andamos a la caza del vacío, del gravitón, de las ondas gravitatorias… (Ya halladas)

Ordinariamente, definimos el vacío  el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas.  En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita.  En un bajo vacío, la presión se reduce  10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales.  Por debajo de 10-7 pascales se conoce como un vacío ultra-alto.

De ese “vacío” nos queda muchísimo por aprender. Al parecer, todos los indicios nos dicen que está abarrotado de cosas, y, si es así, no es lo que podemos llamar con propiedad vacío, ese extraño lugar es otra cosa, pero, ¿Qué cosa es?

Antes se denominaba éter flamígero (creo) a toda esa inmensa región. Más tarde, nuevas teorías vinieron  a desechar su existencia. Pasó el tiempo y llegaron nuevas ideas y nuevos modelos, y, se llegó a la conclusión de que el Universo entero estaba permeado por “algo” que algunos llamaron los océanos de Higgs. Ahí, se tiene la esperanza de encontrar al esquivo Bosón (que dicen haber hallado pero que yo, no estoy muy seguro de que así sea) que le da la masa a las demás partículas, y, el LHC del CERN, es el encargado de la búsqueda  que el Modelo Estándar de la Física de Partículas se afiance más.

Cuando un modelo es estándar (1/3) | Cuentos Cuánticos

Andamos un poco a ciega, la niebla de nuestra ignorancia nos hace caminar alargando la mano para evitar darnos un mamporro. Pero a pesar de todo, seguimos adelante y, es más la fuerza que nos empuja, la curiosidad que nos aliente que, los posibles peligros que tales aventuras puedan conllevar.

El movimiento de la Galaxia: un gif. Página 1

En enero de 2002 невзрачная la variable de la estrella de nuestra Galaxia V838 Unicornio ha estallado y se ha convertido en 600 mil veces más brillante que el Sol. En algún momento estrella fue el más brillante en la Galaxia, pero rápidamente se ha apagado. Hemos sido testigos del inusual fenómeno denominado “de la luz en el eco”. Aunque nos parezca que el de la estrella se distribuye de la burbuja brillante de gas, en realidad, nos vemos el otro. Es la luz del flash sale la estrella de la velocidad de la luz y enciende los ya existentes anteriormente, pero invisibles en la oscuridad de la nube de polvo. Podemos observar el “pausada” la procesión de onda de la luz gracias a la distancia en 20 mil años luz de distancia.

 

Está claro que, dentro del Universo, existen “rincones” en los que no podemos sospechar las maravillas que esconden, ni nuestra avezada imaginación, puede hacerse una idea firme de lo que allí pueda existir. Incansables seguimos la búsqueda, a cada  descubrimiento nuestro corazón se acelera, nuestra curiosidad aumenta, nuestras ganas de seguir avanzando van creciendo y, no pocas veces, el físico que, apasionado está inmerso en uno de esos trabajos de búsqueda e investigación, pasa las horas sin sentir el paso del tiempo, ni como ni duerme y su mente, sólo tiene puesto los sentidos en ese final soñado en el que, al fín, aparece el tesoro perseguido que, en la mayor parte de las veces, es una nueva partícula, un parámetro hasta ahora desconocido en los comportamientos de la materia, un nuevo principio, o, en definitiva, un nuevo descubrimiento que nos llevará un poco más lejos.

Encontrar nuevas respuestas no dará la opción de plantear nuevas preguntas.

emilio silvera

Caos y complejidad, normalidad y sencillez: Las partes de un todo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Todos hemos oído hablar, con más o menos frecuencia, de “Sistemas Complejos”, aquí mismo en estas páginas, la palabra sale a relucir con cierta frecuencia y, no me extraña que “la palabreja” cree una barrera, dado que, que para muchas personas, “complejo” significa “complicado” y suponen automáticamente que, si un sistema es complicado, será difícil de comprender. La naturaleza posee una fuerte tendencia a estructurarse en forma de entes discretos excitables que interactúan y que se organizan en niveles jerárquicos de creciente complejidad, por ello, los sistemas complejos no son de ninguna manera casos raros ni curiosidades sino que dominan la estructura y función del universo.

Sistemas Complejos - Fernando Sancho Caparrini

          Todos juntos forman un sistema complejo que, por separado, es de lo más sencillo

Claro que, no siempre ese temor a lo difícil y complicado, está justificado y, tal suposición no es, necesariamente correcta. En realidad, un sistema complejo es tan solo un sistema que está formado por varios componentes más sencillos que ejercen entre sí una interacción mutua que, naturalmente, tiene sus consecuencias. Si miramos la imagen de arriba, vemos una inmensa y hermosa Nebulosa que está formada por una serie de “cosas” sencillas como lo son el gas hidrógeno y el polvo interestelar entre otros y, en presencia de energías, la gravedad y otros parámetros, ahí ocurren cosas tales como, el nacimiento de estrellas y la aparición de mundos…entre otras.

Los grandes triunfos de la Ciencia se han logrado, en gran medida, descomponiendo los sistemas complejos en sus componentes simples, es decir, estudiar por partes lo que allí está presente (en caso necesario, como primera aproximación, dando el paso suplementario de pretender que todos los componentes son más sencillos de lo que son en realidad) para llegar a comprender el todo.

En el ejemplo clásico del éxito que ha logrado este planteamiento para conocer el mundo que nos rodea, buena parte de la química puede entenderse mediante un modelo en el que los componentes simples son átomos, y para eso importa poco de qué están formados los núcleos. Ascendiendo un nivel, las leyes que describen el comportamiento del dióxido de Carbono encerrado en una caja pueden entenderse pensando en unas moléculas más o menos esféricas que rebotan unas contra otras y contra las paredes de su contenedor, y poco importa que cada una de estas moléculas esté formada por un átomo de Carbono y dos de Oxígeno unidos entre sí. Ambos sistemas son complejos, en sentido científico, pero fáciles de entender

No siempre sabemos ver el mundo que nos rodea. El que miremos no significa que estemos viendo lo que realmente hay delante de nuestros ojos y, muchas veces, no son los ojos los únicos que pueden “ver” lo que hay más allá de lo que la vista puede alcanzar. Anoche, hasta una hora avanzada, estuve releyendo el Libro “Así de Simple” de John Gribbin, y, pareciéndome interesante os saqué un pequeño resumen del comienzo. Aquí os lo dejo.

El mundo que nos rodea parece ser un lugar complicado. Aunque hay algunas verdades sencillas que parecen eternas (las manzanas caen siempre hacia el suelo y no hacia el cielo; el Sol se levanta por el este, nunca por el oeste), nuestras vidas, a pesar de las modernas tecnologías, están todavía, con demasiada frecuencia, a merced de los complicados procesos que producen cambios drásticos y repentinos. La predicción del tiempo atmosférico tiene todavía más de arte adivinatorio que de ciencia; los terremotos y las erupciones volcánicas se producen de manera impredecible y aparentemente aleatorias; las fluctuaciones de la economía siguen ocasionando la bancarrota de muchos y la fortuna de unos pocos.

Sobre la posición de la salida del sol

            Sobre la posición de la salida del sol

Desde la época de Galileo (más o menos, a comienzos del siglo XVII) la ciencia ha hecho progresos –enormes-, ignorando en gran medida estas complejidades y centrándose en cuestiones sencillas, intentando explicar por qué las manzanas caen al suelo y por qué el Sol se levanta por el este. Los avances fueron de hecho tan espectaculares que hacia mediados del siglo XX ya se había dado respuesta a todas las cuestiones sencillas. Conceptos tales como la teoría general de la relatividad y la mecánica cuántica explicaron el funcionamiento global del universo a escalas muy grandes y muy pequeñas respectivamente, mientras el descubrimiento de la estructura del ADN y el modo en que éste se copia de una generación a otra hizo que la propia vida, así como la evolución, parecieran sencillas a nivel molecular. Sin embargo, persistió la complejidad del mundo a nivel humano –al nivel de la vida-. La cuestión más interesante de todas, la que planteaba cómo la vida pudo haber surgido a partir de la materia inerte, siguió sin respuesta.

Un descubrimiento así no podía dejar al mundo indiferente. En unos años el mundo científico se puso al día y la revolución genética cambió los paradigmas establecidos. Mucha gente aún no está preparada para aceptar el comienzo de una era poderosa en la que el ser humano tiene un control de sí mismo mayor al habitual. Había nacido la Ingeniería genética.

No debe extrañarnos que sea precisamente a escala humana donde se den las características más complejas del universo. Las que se resisten más a rendirse ante los métodos tradicionales de la investigación científica. Realmente, es posible que seamos lo más complejo que existe en el universo. La razón es que, a escalas más reducidas, entidades tales como los átomos se comportan individualmente de un modo relativamente sencillo en sus interacciones mutuas, y que las cosas complicadas e interesantes surgen, cuando se unen muchos átomos de maneras complicadas e interesantes, para formar organismos tales como los seres humanos.

Pero este proceso no puede continuar indefinidamente, ya que, si se unen cada vez más átomos, su masa total aumenta hasta tal punto que la Gravedad aplasta toda la estructura importante y la aniquila. Un átomo, o incluso una molécula tan simple como la del agua, es algo más sencillo que un ser humano, porque tiene poca estructura interna; una estrella, o el interior de un planeta, es también algo más sencillo que un ser humano porque la gravedad aplasta cualquier estructura hasta aniquilarla. Esta es la razón por la cual la ciencia puede decirnos más sobre el comportamiento de los átomos y el funcionamiento interno de las estrellas o los planetas que sobre el modo en que las personas nos comportamos.

            Sí, hemos podido llegar a conocer lo que ocurre en el Sol, y sabemos de sus procesos interiores y exteriores, de las ráfagas de partículas que en sus épocas activas, nos envía continuamente hacía la superficie del planeta y, que no sólo provoca esas bonitas Auroras, sino que, su intensa radiación y magnetismo incide en todos los atilugios que tenemos para leer los datos de… ¡tantas cosas!

Cuando los problemas sencillos se rindieron ante el empuje de la investigación, fue algo natural que los científicos abordaran rompecabezas más complicados que iban asociados con sistemas complejos, para que por fin fuera posible comenzar a comprender el funcionamiento del mundo a una escala más humana compleja y, para ello, hubo que esperar hasta la década de 1960, que fue cuando aparecieron los poderosos y rápidos (para lo que se estilaba en aquella época) ordenadores electrónicos. Estos nuevos inventos empezaron a ser conocidos por un público más amplio entre mediados y finales de la década de 1980, primero con la publicación del libro, ahora convertido en un clásico, Order out of Chaos, de Ilya Prigogine e Isabelle Stergers, y luego, con Chaos, de James Gleick.

Las personas sencillas que, aunque tengan una educación aceptable, no están inmersas en el ámbito de la ciencia, cuando oyen hablar de Complejidad y Caos en esas áreas, sienten, de primeras, una especie de rechazo por aquello que (ellos creen) no van a comprender. Sin embargo, la cuestión no es tan difícil como a primera vista pudiera parecer, todo consiste en tener la posibilidad de que alguien, de manera “sencilla” (dentro de lo posible), nos explique las cosas dejando a un lado las matemáticas que, aunque describen de manera más amplia y pura aquellos conceptos que tratamos, también es verdad que, no siempre, están al alcance de todos. Un conocimiento básico de las cosas más complicadas, es posible. También la relatividad general y la mecánica cuántica, se consideraron, cuando eran nuevas, como unas ideas demasiado difíciles para que cualquiera las entendiera, salvo los expertos –pero ambas se basan en conceptos sencillos que son inteligibles para cualquier persona lega en la materia, siempre que esté dispuesta a aceptar su parte matemática con los ojos cerrados-. E la misma manera, el Caos y la Complejidad, también pueden ser entendidos y, si tenemos la suerte de tener un buen interlocutor que nos sepa explicar, aquellos conceptos básicos sobre los que se asientan tanto el Caos como la Complejidad, veremos maravillados como, de manera natural, la luz se hace en nosotros y podemos entender lo que antes nos parecía inalcanzable.

Galaxias irregulares: características, formación y clasificación |  Meteorología en Red

Se cree que las galaxias se han formado por la acumulación gravitacional de gas, algún tiempo después de la época de la recombinación. Las nubes de gas podrían haber comenzado a formar estrellas, quizás como resultado de las colisiones mutuas. El tipo de galaxia generado podría depender del ritmo al que el gas era transformado en estrellas, formándose las elípticas cuando el gas se convertía rápidamente en estrellas, y las espirales si la transformación de estrellas era lo suficientemente lenta como para permitir crecer de forma significativa un disco de gas.

http://apod.nasa.gov/apod/image/1003/m78_torregrosa.jpg

        Nubes moleculares en Orión que son los materiales primigenios para complejidades futuras

Las galaxias evolucionan al convertir progresivamente su gas remanente en estrellas, si bien no existe probablemente una evolución entre las diferentes tipos de la clasificación del conocido sistema de Hubble. No obstante, algunas galaxias elípticas pudieron haberse creado por la colisión y posterior fusión de dos galaxias espirales.

NGC 5426 y NGC 5427 son dos galaxias espirales de tamaños similares involucradas en una danza espectacular. No es seguro que esta interacción culmine en una colisión y a la larga en la fusión de las dos galaxias, aunque éstas ya han sido ya afectadas. Conocidas ambas con el nombre de Arp 271, su danza perdurará por decenas de millones de años, creando nuevas estrellas como resultado de la mutua atracción gravitacional entre las galaxias, un tirón observable en el borde de las estrellas que ya conectan a ambas. Ubicada a 90 millones de años-luz de distancia hacia la constelación de Virgo (la Virgen), el par Arp 271 tiene unos 130.000 años-luz de extensión. Fue descubierta originalmente en 1785 por William Herschel. Muy posiblemente nuestra Vía Láctea sufrirá una colisión similar en unos cinco mil millones de años más con la galaxia vecina Andrómeda, que ahora está ubicada a cerca de 2,6 millones de años-luz de la Vía Láctea.

COLISIONES GALÁCTICAS Y AGUJEROS NEGROS HAMBRIENTOS | Narices de Tycho

Sí, mirando las imágenes nos da la sensación de que está por llegar cierto Caos y Complejidad a la región del universo en la que se sitúan las dos galaxias.

Tenemos que entender que, algunos sistemas (“sistema” no es más que una palabra de la jerga científica para asignar cualquier cosa, como un péndulo que oscila, o el sistema solar, o el agua que gotea de un grifo) son muy sensibles a sus condiciones de partida, de tal modo que una diferencia mínima en el “impulso” inicial que les damos ocasiona una gran diferencia en cómo van a acabar, y existe una retroalimentación, de manera que lo que un sistema hace afecta a su propio comportamiento. Así, a primera vista, parece que la guía es sencilla y, nos puede parecer mentira que así sea. Sin embargo, esa es la premisa que debemos tener en cuenta. Nos podríamos preguntar: ¿Es realmente verdad, que todo este asunto del Caos y de la Complejidad se basaba en dos ideas sencillas –la sensibilidad de un sistema a sus condiciones de partida, y la retroalimentación-¿ La respuesta es que sí.

La mayor parte de los objetos que pueden verse en el cielo nocturno son estrellas, unos pocos centenares son visibles a simple vista. Una estrella es una bola caliente principalmente compuesta por hidrógeno gaseoso. El Sol es un ejemplo de una estrella típica y común. La gravedad impide que el gas se evapore en el espacio y la presión, debida a la alta temperatura de la estrella, y la densidad impiden que la bola encoja. En el corazón de la estrella, la temperatura y la densidad son lo suficientemente altas para sustentar a las reacciones de fusión nuclear, y la energía, producida por estas reacciones, hace su camino a la superficie y la irradia al espacio en forma de calor y luz. Cuando se agota el combustible de las reacciones de fusión, la estructura de la estrella cambia. El proceso de producir elementos, cada vez más pesados, a partir de los más livianos y de ajustar la estructura interna para balancear gravedad y presión, es llamado evolución estelar.

Observar una estrella a través del telescopio permite conocer muchas de sus importantes propiedades. El color de una estrella es un indicador de su temperatura y ésta, a su vez, depende de una combinación entre la masa de la estrella y su fase evolutiva. Usualmente, las observaciones también permiten encontrar la luminosidad de la estrella o la tasa con la cual ella irradia energía, en forma de calor y luz.

Todas las estrellas visibles a simple vista forman parte de nuestra galaxia, la Vía Láctea. La Vía Láctea es un sistema compuesto por unos cien mil millones de estrellas, junto con una considerable cantidad de material interestelar. La galaxia tiene forma de un disco chato sumergido en un halo débil y esférico. La gravedad impide que las estrellas se escapen y, sus movimientos, hacen que el sistema no colapse. La Vía Láctea no posee un límite definido, la distribución de las estrellas decrece gradualmente con distancias crecientes del centro. El SDSS detecta estrellas más de un millón de veces más débiles que las que podemos ver a simple vista, lo suficientemente lejos para ver la estructura de la Vía Láctea.

De algún modo, esto es como decir que “todo lo que hay” sobre la teoría especial de la relatividad es que la velocidad de la luz es la misma para todos los observadores. Sin embargo, la complejidad de la estructura que se levanta sobre este hecho sencillo resulta asombrosa y requiere algunos conocimientos matemáticos para poder apreciarla plenamente. Claro que, eso no quita para que, un buen comunicador le pueda transmitir a otras personas mediante explicaciones sencillas lo esencial de la relatividad especial y general y también, sobre la esencia de la mecánica cuántica, y, de la misma manera, podríamos hablar del Caos y de la Complejidad. Debemos ser conscientes de que, el Caos, puede surgir a partir del Orden y que, la Complejidad, siempre llega a través de la sencillez de un comienzo. Podemos estar al borde del Caos y, de manera milagrosa ver que también a partir de él surge la normalidad y lo nuevo que no en pocas ocasiones pueden ser nuevas formas de vida. De la misma manera, las transformaciones de los elementos sencillos, bajo ciertas condiciones, llegan a adquirir una complejidad inusitada que, de alguna manera, es necesaria para que en este mundo que nos rodea, existan seres que como nosotros, sean el ejemplo más real y de más alto nivel que está presente en el Universo. Y, de la misma manera que nosotros estamos aquí, en un minúsculo sistema solar habitando un pequeño planeta que reúne todas las condiciones necesarias para la vida, de la misma forma digo, estarán poblados otros muchos planetas de otros muchos sistemas solares repartidos por nuestra Galaxia y por las otras que, a cientos de miles pululan por el Universo, y, todos esos seres “racionales”, se preguntaran las mismas cosas que nosotros y estarán interesados en descubrir los mismos misterios, los mismos secretos de la Naturaleza que, presintiendo que existen, tienen la intuición de que serán las respuestas esperadas para solucionar muchos de los problemas e inseguridades que ahora, en nuestro tiempo, nos aquejan.

Claro que, la mente nunca descansa. Acordaos de Aristarco de Samos que, en el siglo III a. C., ya anunció que la Tierra orbitaba alrededor del Sol y, Copérnico, que se llevó el premio, no lo dijo hasta el año 1543. Esto nos viene a demostrar que, a pesar de la complejidad del mundo, lo realmente complejo está en nosotros, en nuestras mentes que, presienten lo que pueda ser, intuyen el por qué de las cosas, fabrican pensamientos que, mucho más rápidos que la luz, llegan a las galaxias lejanas y, con los ojos de la mente pueden, atisbar aquellas cosas de las que, en silencio, ha oído hablar a su intuición dentro de su mente siempre atenta a todo aquello que puede ser una novedad, una explicación, un descubrimiento.

Vista De La Tierra Y El Sol De La Imagen Del Espacio órbita De La Tierra  Tomada Desde Http Visibleearth Nasa Gov Fotos, Retratos, Imágenes Y  Fotografía De Archivo Libres De Derecho.

Vista de la Tierra y el Sol de la órbita (la imagen de la tierra tomada de http://visibleearth.nasa.gov)

Ahora estamos centrados en el futuro aquí en la Tierra pero, sin dejar de la mano ese futuro que nos espera en el espacio exterior. Es pronto aún para que el hombre vaya a las estrellas pero, algún día, ese será su destino y, desde ya, debe ir preparándose para esa aventura que sólo está a la espera de tener los medios tecnológicos necesarios para hacerla posible. Mientras tanto, jugamos con las sondas espaciales que enviamos a planetas vecinos para que, nos vayan informando de lo que están hechos aquellos mundos –grandes y pequeños- que, en relativamente poco tiempo, serán visitados por nuestra especie para preparar el salto mayor.

emilio silvera

¡El Universo y la vida!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

2018 abril 27 : Blog de Emilio Silvera V.Biologia : Blog de Emilio Silvera V.

Científicos recrean las primeras protocélulas de la historiaEl Origen de la primera célula | La guía de Filosofía

La vida (a partir de su primer paso, y, un largo camino para llegar al primer individuo de cada especie) surgió en el Universo de manera espontanea por la evolución de la materia y (no sabemos si debido al Azar), bajo ciertas circunstancias muy especiales que estaban presentes en ciertos lugares del Universo, lo que dio lugar al surgir de la vida tal como la conocemos y, posiblemente, de muchas más formas desconocidas para nosotros. Y, todo eso amigos, es Entropía Negativa. Ahora, Las características de un ser vivo son siempre una recombinación de la información genética heredada. De todas las maneras, hay que aclarar que la vida existe porque el Universo es como lo observamos, sus características permiten su presencia. Hay vida en nuestro universo debido a que las cuatro fuerzas fundamentales y las constantes universales lo permiten.

CONSECUENCIA LOGICA: Las variaciones dentro de una misma especie son el resultado de una gran cantidad de información genética presente ya en sus antepasados y, como consecuencia de la lógica evolución, de la aparición espontánea de nueva información genética…

Aquí, en todo su esplendor, tenemos un trozo de Universo que, nos está hablando de la creación. Esas estrellas brillantes, azuladas y super-masivas que radian en el ultravioleta ionizando toda la región circundante, es un signo, inequívoco de que la vida está cerca. Elementos sencillos se transformaran en otros más complejos y, aparecerán aminoácidos y la química-biológica que hacer, mucho más tarde, que sea posible la aparición de la vida en algún mundo perdido en las profundidades de una Galaxia que, como la nuestra, tendrá otras “Tierras” y otros “Seres”.

Resultado de imagen de formas de vida fuera de la TierraCÓMOSURGIÓ LA VIDA EN LA TIERRA? #SCIENCETRUCK5 - YouTube

Cuántas veces se preguntó la Humanidad: ¿Hay vida en el Universo, además de la que existe en la Tierra? Las leyes de la Física, aplicables a toda la materia y la energía, tienen sin duda un papel fundamental en la comprensión del Universo y por ello la Astrofísica ha tenido un desarrollo espectacular en los últimos tiempos a pesar de la escasez de materia como la que conocemos.

Por otro lado, como el Universo es muy grande, las densidades medias son muy bajas y la materia se encuentra normalmente en estructuras muy simples, en forma de átomos y partículas individuales. La composición química del Universo y sus procesos son por ello también importantes para comprender su evolución, dando pie al uso más o menos extendido de astro-química.

Descubren etanolamina en el espacio, una molécula clave en el origen de la  vidaPodría existir vida que no esté basada en el carbono? – Ciencia de Sofá

Sin embargo, las moléculas complejas son relativamente raras y los organismos vivos muchísimo más. La parte Biológica del Universo que conocemos se reduce a nuestro propio planeta por lo que parece excesivo poder hablar de Astrobiología. Por qué tenemos que preocuparnos por una parte tan ínfima del Universo. Ciertamente porque los seres humanos pertenecemos a esta extraña componente y, ya que no podemos reproducir en el laboratorio el paso de la química a la biología, es en el contexto del Universo (el gran Laboratorio) y su evolución en el que podemos analizar los límites y las condiciones necesarias para que emerja la vida en cualquier sitio.

Fotos de nebulosas

En las Nebulosas nacen las estrellas, en sus hornos nucleares se producen las transiciones de fases necesarias para crear los elementos complejos necesarios para la vida. Si alrededor de las nuevas estrellas surgen nuevos mundos, ¿por qué tras miles de millones de años de evolución no puede surgir la vida en ellos, si como existe la posibilidad, están situados en la zona habitable? Las leyes del Universo son las mismas en todas partes y, todas las regiones del Cosmos, por muy alejadas que estén, están sometidas a ellas. Si en el planeta Tierra está presente el agua corriente, una atmósfera y la vida, ¿Por qué sería diferente en otros planetas similares que a millones pululan por nuestro Universo?

La Astrobiología es una ciencia que ha surgido en la frontera entre varias disciplinas clásicas: la Astronomía, la Biología, la Física, la Química o la Geología. Su objetivo final es comprender cómo surgió la vida en nuestro Universo, cómo se distribuye y cuál es su evolución primitiva, es decir, cómo pudo establecerse en su entorno.

Resultado de imagen de La Biología en el UniversoUn universo misterioso

La vista de la NASA del centro de la Vía Láctea parece un deslumbrante  fuegos artificiales psicodélicosUna nueva vista del centro galáctico | Sur Astronómico

En otras palabras, trata de comprender el papel de la componente biológica del Universo, conectando la astrofísica y la astro-química con la biología. Intenta para ello comprende el origen de la vida. : El paso de los procesos químicos prebióticos a los mecanismos bioquímicos y a la biología propiamente dicha.

Naturalmente, en Astrobiología nos planteamos preguntas fundamentales, como la propia definición de lo que entendemos como Vida, cómo y cuándo pudo surgir en la Tierra, su existencia actual o en el pasado en otros lugares o si es un hecho fortuito o una consecuencia de las leyes de la Física. Algunas de estas cuestiones se las viene formulando la humanidad desde el principio de los tiempos, pero ahora por primera vez en la historia, los avances de las ciencias biológicas y de la exploración mediante tecnología espacial, es posible atacarlas desde un punto de vista puramente científico. Para ello, la Astrobiología centra su atención en estudiar cuáles son los procesos físicos, químicos y biológicos involucrados en la aparición de la vida y su adaptabilidad, todo ello en el contexto de la evolución y estructuración, o auto-organización, del Universo.

Estamos solos en el Universo? - Monografias.com201 Fotos de Universo

AstrobiologiaDónde Estudiar en Argentina: ¿Qué es la astrobiología?

La astrobiología es una ciencia multidisciplinaria que se forma de la especialización y la unión de diversas disciplinas científicas como son la astronomía, la astrofísica, la biología, la química y la geología.

 

Muchos son los que postulan que, las galaxias espirales son auto-generadoras a través de las explosiones supernovas y, siembran el espacio interestelar de la semilla creadora de la vida, además, este proceso regenerativo crea entropía negativa  tratando de luchar contra el deterioro de la galaxia como sistema cerrado que de esta forma se mantiene y perdura. Nuevas y energéticas estrellas azuladas pueblan las regiones galácticas que se llenan de promesas futuras de nuevos mundos y nuevas formas de vida.

Como cualquier otra ciencia, la Astrobiología está sujeta a la utilización del método científico y por tanto a la observación y experimentación junto con la discusión y confrontación abierta de las ideas, el intercambio de datos y el sometimiento de los resultados al arbitraje científico. La clave de la metodología de esta nueva ciencia está en la explotación de las sinergias que se encuentran en las fronteras entre las disciplinas básicas mencionadas anteriormente, una región poco definida, cuyos límites se fijan más por la terminología que por criterios epistemológicos.

QUÉ ES LA ASTROBIOLOGÍA | grupoastrobioperu

Un aspecto importante de la investigación en el campo de la Astrobiología es la herramienta fundamental que representa el concepto de complejidad. La vida es un proceso de emergencia del orden a partir del caos que puede entenderse en medios no aislados y, por tanto libres de la restricción de la segunda ley de la termodinámica, como un proceso complejo. En este sentido, la emergencia de patrones y regularidades en el Universo, ligados a procesos no lineales, y el papel de la auto-organización representan aspectos esenciales para comprender el fenómeno de la vida. Transiciones de estado, intercambios de información, comportamientos fuera de equilibrio, cambios de fase, eventos puntuales, estructuras auto-replicantes, o el propio crecimiento de la complejidad, cobran así pleno sentido en Astrobiología.

Resultado de imagen de Un Universo lleno de mundos y criaturasAstrobiología, ventana para indagar el origen, la evolución y el destino de  la vida | MVS Noticias

El Universo es… ¡Demasiado grande para que estemos solos!

Solo en la Vía Láctea se calculan unos 30.000 millones de “soles”, es decir, estrellas medianas amarillas de la clase G2V (como nuestro Sol). Se calcula que el 75% de esas estrellas tienen planetas, y, al menos un 20% de esos planetas estarán situados en la zona habitable.

 

Muchos han sido, a lo largo de la historia de la Humanidad, los que visionaron el futuro que nos espera: “Yo puedo imaginar un infinito número de mundos parecidos a la Tierra, con un jardín del Edén en cada uno”. Lo afirmaba Giordano Bruno finales del siglo XVI, antes de ser quemado por orden de la Inquisición Romana. Y, sí, muchas veces nos hicimos esa pregunta…

¿Habrá vida en otros mundos?

Planetas inimaginables ¿Qué formas de vida acogerán? La pregunta que se plantea encima de la imagen de arriba tiene una fácil contestación: SÍ, hay otras formas de vida en el Universo, en planetas parecidos o iguales que la Tierra. Si no fuese así, la lógica y la estadística dejarían de tener sentido.

Características del PLANETA TIERRA que hacen posible la VIDACómo se formó el sistema solar?

Existen infinidad de planetas con las condiciones para la vida. Otra cuestión es poder llegar a ellos.

Un problema básico de esta ciencia, ya mencionado al principio, es la cantidad de datos disponibles, de sujetos de estudio. No conocemos más vida que la existente en la Tierra y ésta nos sirve de referencia para cualquier paso en la búsqueda de otras posibilidades. La astrobiología trata por ello de analizar la vida más primitiva que conocemos en nuestro planeta así como su comportamiento en los ambientes más extremos que encontremos para estudiar los límites de su supervivencia y adaptabilidad. Por otro lado, busca y analiza las condiciones necesarias para la aparición de entornos favorables a la vida, o habitables, en el Universo  mediante la aplicación de métodos astrofísicos y de astronomía planetaria. Naturalmente, si identificáramos sitios en nuestro sistema solar con condiciones de habitabilidad sería crucial la búsqueda de marcadores biológicos que nos indiquen la posible existencia de vida presente o pasada más allá de la distribución de la vida en el Universo o, en caso negativo, acotaríamos aún más los límites de la vida en él.

Cómo es Titán, el satélite de Saturno que es lo más parecido a la Tierra  que existe en el Sistema Solar - BBC News Mundo

     Titán, el pequeño mundo satélite de Saturno tiene las condiciones que tenía la Tierra en el pasado

Titán, más allá de los anillos. Ahí podríamos encontrar lo que con tanto afán buscamos: otras formas de vida que, de una vez por todas, nos ofrezca la certeza de que no estamos solos en tan vasto Universo y, dada la conformación y características de ese pequeño mundo, no podríamos extrañarnos de que, la vida, incluso pudiera estar basada en otro elemento distinto del Carbono.

Diferentes condiciones ambientales pueden haber dado lugar a la vida e incluso permitido la supervivencia de algunos organismos vivos generados de forma casual, como experimento de la naturaleza. La Astrobiología trata de elucidar el papel de la evolución del Universo, y especialmente de cuerpos planetarios, en la aparición de la vida. En esta búsqueda de ambientes favorables para la vida, y su caracterización, en el sistema solar, la exploración espacial se muestra como una componente esencial de la Astrobiología. La experimentación en el laboratorio y la simulación mediante ordenadores o en cámaras para reproducir ambientes distintos son una herramienta que ha de ser complementada por la exploración directa a través de la observación astronómica, ligada al estudio de planetas extrasolares, o mediante la investigación in situ de mundos similares en cierta forma al nuestro, como el planeta Marte o algunos satélites de los planetas gigantes Júpiter y Saturno, como Europa, Encelado o el de arriba, Titán.

 

Después de un viaje de siete años a través del sistema solar abordo de la nave Cassini, la sonda Huygens de la ESA, pudo con éxito, pasar a través de la atmósfera de Titán (la mayor luna de Saturno) tomar tierra a salvo en su superficie para poder enviarnos datos e imágenes que nos dejaron con la boca abierta por el asombro de lo que allí existe y , de lo que pueda estar presente… ¿Vida microbiana?

Cassini - Huygens, mision a Saturno y Titan (Mission to Saturn and Titan)Huygens: su Descenso a Titán – astronomia-iniciacion.com

Sonda Huygens en EL PAÍSConfirma NASA presencia de metano en lagos líquidos de Titán

veneastro3000. Blog educativo.: Ríos de metano.La luna Titán tiene un nivel del mar como la Tierra | Noticiero Universal

                        ¿Quién sabe, si en un futuro lejano no tendremos que refugiarnos allí?

La componente instrumental y espacial convierte a la Astrobiología en un ejemplo excelente de la conexión entre ciencia y tecnología. Los objetivos científicos de la Astrobiología, hemos visto, que requieren un tratamiento trans-disciplinar, conectando áreas como la física y la astronomía con la química y la biología. Esta metodología permite explotar sinergias y transferir conocimiento de unos campos a otros para beneficio del avance científico. Pero además, la Astrobiología está íntimamente ligada a la exploración espacial que requiere el desarrollo de instrumentación avanzada. Se necesitan tecnologías específicas como la robótica o los biosensores habilitadas para su empleo en condiciones espaciales y entornos hostiles muy diferentes al del laboratorio. Naturalmente la Astrobiología emplea estos desarrollos también para transferir conocimiento y tecnologías a otros campos de investigación científica y en particular, cuando es posible, incluso al sector productivo.

Episodio 44. Astrobiología, buscando vida en mundos lejanos

Pero repasemos, para avanzar, cuáles son las áreas científicas propias de la Astrobiología. Como se ha dicho, es una ciencia interdisciplinar para el estudio del origen, evolución y distribución de la vida en el Universo. Para ello requiere una comprensión completa e integrada de fenómenos cósmicos, planetarios y biológicos. La astrobiología incluye la búsqueda y la caracterización de ambientes habitables en nuestro sistema solar y otros planetas alrededor de estrellas más alejadas, la búsqueda y análisis de evidencias de química prebiótica o trazas de vida larvada o extinguida en cuerpos del sistema solar como Marte o en lunas de planetas gigantes como Júpiter y Saturno. Asimismo se ocupa de investigaciones sobre los orígenes y evolución de la vida primitiva en la Tierra analizando el comportamiento de micro organismos en ambientes extremos.

Anhidrobiosis “vida sin agua”

 Hidratación durante 3 h. ¿Qué no habrá por ahí fuera? Otros como los Acidófilos: Se desarrollan en ambientes de alta acidez, como el Picrophilus, los organismos de la cuenca del Río Tinto,  en Huelva o la arquea que habita en una mina californiana llamada Iron Mountain, que crece en PH negativo. Los Organismos radiófilos o radio-resistente es aquél capaz de sobrevivir y prosperar en ecosistemas con niveles muy altos de radiaciones ionizantes. Los Halófilos que se desarrollan en ambientes hipersalinos, como las del género Halobacterium, que viven en entornos como el Mar Muerto.

Halófilos - Imágenes y Fotografía de stock | agefotostock▷ ¿Que son los termófilos? en alimentos. Definiciín, tipos y características

Bacterias Actuaciencia: Pyrococcus furiosusCOSMOS-El UNIVERSO: los Tardígrados

Los Termófilos: Se desarrollan en ambientes a temperaturas superiores a 45 °C, algunos de ellos, los Hipertermófilos tienen su temperatura optima de crecimiento por encima de los 80 °C., como el  Pyrococcos furiosus, donde las chimeneas termales submarinas son testigos de ese asombroso hecho. Otros, como los Psicrófilos, que  se desarrollan en ambientes de temperatura muy fría, como la Polaromanas vacuaolata. También tenemos los tardígrados, que se deshidratan para quedar como muertos durante cientos de años en condiciones de criptobiosis y pueden resistir en el espacio. Otros viven sin oxígeno, los hay que habitan a muchos metros bajo la superficie, o, algunos que existen con un bajo índice de humedad. En fin, la gama es amplia y nos muestra una enorme lista de protagonistas que, em medios imposible pueden vivir sin el menor problema. Y, si eso es así (que lo es), ?qué problema puede existir para que exista vida en otros planetas?

Monografias.com

Los seres vivos surgen por todo el Universo y en las más extremas condiciones. Simplemente con observar lo que aquí tenemos, en nuestro planeta, nos podemos hacer una idea de lo que encontraremos por ahí fuera. Creo (aunque pudiera haber otras) que la vida en el Universo estará basada, como la nuestra, en el Carbono. El Carbono es el material más idóneo para ello por sus características especiales.

Monografias.com

Desde el punto de vista más astronómico, la Astrobiología estudia la evolución química del Universo, su contenido molecular en regiones de formación estelar, la formación y evolución de discos proto-planetarios y estrellas, incluyendo la formación de sistemas planetarios y la caracterización de planetas extrasolares. En este campo en particular se han producido avances recientes muy importantes con la obtención de imágenes directas de planetas extrasolares y la identificación de algunos de ellos como puntos aislados de su estrella central gracias a técnicas de interferometría.

Nube molecular Barnard 68

Con un diámetro de casi 250 millones de años luz,​ o un volumen de casi 236 000 Mpc3, el vacío de Bootes (el gran hueco oscuro sin estrellas) es uno de los vacíos más grandes conocidos en nuestro Universo.

Inmensas Nubes moleculares habitan en las galaxias y, dentro de ellas, al calor de las estrellas se producen transiciones de fase que nos traen la química-biológica para que la vida sea posible.

La caracterización de atmósferas de planetas extrasolares con tránsitos han permitido detectar CO₂ en la atmósfera de otros mundos y se ha descubierto el planeta más parecido a la Tierra por su tamaño y suelo rocoso aunque con un período demasiado corto para ser habitable. El lanzamiento de la misión Kepler de la NASA nos permite abrigar esperanzas de encontrar finalmente un planeta “hermano” del nuestro en la zona de habitabilidad de otra estrella.

El campo de la Astronomía planetaria, la Astrobiología estudia la evolución y caracterización de ambientes habitables en el sistema solar con el fin de elucidar los procesos planetarios fundamentales para producir cuerpos habitables.

Imágenes de Marte | Vectores, fotos de stock y PSD gratuitosPaisaje marciano: Recorre el desierto iraní que parece de Marte | VAMOS |  EL COMERCIO PERÚ

El río Tinto, el caudal marciano de España | Fundación AquaeSabes por qué el río Tinto es de color rojo?Sabes por qué el río Tinto es de color rojo?

Las dos primeras imágenes de arriba, son de Marte, las otras cuatro de abajo de Riotinto, sólo están separados por las Temperaturas reinantes y la atmósfera. Parece que un día lejano fueron iguales en muchos aspectos.

La Cuenca Minera de Huelva: qué ver y hacer - Barceló Experiences

Esto incluye el análisis de ambientes extremos y análogos al de Marte en nuestro planeta, como resulta ser la cuenca del Río Tinto en Huelva, así como la exploración de otros cuerpos del sistema solar, Marte en particular. Y, a propósito de Marte, recuerdo la emoción que sentí cuando la NASA detectó un foco de CH4 en el planeta. Al igual que los eucariotas, muchas bacterias respiran oxígeno. Pero otras bacterias utilizan para la respiración nitrato disuelto (NO3) en lugar de Oxígeno, y aún otras usan iones sulfato (SO42-) u óxidos metálicos de hierro o manganeso. Unos pocos procariotas pueden incluso utilizar CO2, que hacen reaccionar con ácido acético en un proceso que genera gas natural, que es el gas metano CH4 detectado en Marte. Dado que el planeta no muestra actividad volcánica, la fuente de dicho metano, ¿por qué no? podría ser bacteriana.

Tema estructura bacteriana (2)(1)ESTRUCTURA Y MORFOLOGÍA BACTERIANA - ppt video online descargar

Estructura celular de una bacteria, típica célula procariota. El metabolismo de los procariotas es enormemente variado y resisten condiciones ambientales sorprendentes por lo extremas en parámetros como la temperatura y la acidez, entre otros,

El descubrimiento en Marte de agua en forma de hielo así como las claras evidencias de la existencia de agua líquida en su superficie en el pasado, proporcionadas por la observación de modificaciones de la componente mineralógica atribuidas al agua líquida en el subsuelo. Hoy por hoy, se considera que la presencia de agua líquida es una condición necesaria, aunque no suficiente, para la aparición de la vida ya que proporciona el caldo de cultivo para que las moléculas prebióticas se transformen en microorganismos biológicos.

En estas investigaciones el estudio del satélite Titán de Saturno mediante la sonda europea Huygens ha marcado un hito importante al acercarnos a un entorno prebiótico donde el metano ejerce un papel dominante.

En este sentido la posibilidad de explorar el satélite Europa, alrededor de Júpiter, es un claro objetivo de la Astrobiología dado que la espesa corteza de hielo que lo cubre puede esconder una gran masa de agua líquida.

ORIGEN DE LA VIDA, TEORIAS. EVOLUCION DE LA CELULA. - ppt video online  descargar

Finalmente, la Astrobiología también contempla una serie de actividades más próximas al laboratorio en el que se analiza la evolución molecular, desde la química prebiótica, pasando por la adaptación molecular, hasta los mecanismos bioquímicos de interacción y adaptación al entorno. En este campo son muy importantes los estudios centrados en los límites de la biología, como la virología, y herramientas para la comprensión de los mecanismos de transmisión de información, de supervivencia y adaptabilidad, como las cuasi-especies. Entre los últimos avances de la química prebiótica de interés para la Astrobiología se encuentra el análisis de la quiralidad, una preferencia de la química de los organismos vivos por una simetría específica que nos puede acercar al proceso de su formación durante el crecimiento de la complejidad y la jerarquización de los procesos. Naturalmente, los mecanismos de transferencia de información genética resultan críticos para comprender la adaptabilidad molecular y son otro objetivo prioritario de la Astrobiología.

Resultado de imagen de Aquellos primeros seres vivos en la TierraCalaméo - Evolucion de la Vida: De la célula al hombre

Está claro que la historia científica de la creación de la vida puede resultar una narración apasionante que, correctamente explicada en unión de los conocimientos que hoy poseemos del Universo, puede conseguir que comprendamos la inevitabilidad de la vida, no sólo ya en el planeta Tierra (único lugar -de momento-) en el que sabemos que está presente, sino por todos los confines del inmenso Universo. La diversidad biológica que podríamos contemplar de poder observar lo que por ahí fuera existe, nos llevaría más allá de un simple asombro.

Medusas | Medusa, Fotos azules, Uñas azulesMEDUSAS RARAS: Características, Qué come, Dónde vive...Medusa en Medusas - GIF Animado | REYGIF

                                             Son formas de vida complejas  de extrañas medusas

Si pudiéramos conocer todas las formas de vida que existen la Tierra….

Pero, ¿es realmente cierto que la ignorancia supera al conocimiento como camino más directo hacia el asombro? Bueno, lo que sí sabemos que es cierto es el hecho de que, cuanto más sabemos de las cosas, menos propensos somos al asombro. Y, siendo mucho lo que desconocemos de la historia de la vida y también de la del Universo, podemos decir que sabemos lo suficiente para “saber” que no estamos solos.

Algún día (espero que no demasiado lejano en el tiempo), encontraremos la prueba irrefutable de la existencia de la vida fuera de la Tierra. Espero que lo que hallemos no difiera exageradamente de lo que aquí existe y de lo que existió, seguramente, en esos otros lugares, el recorrido de la vida habrá sido muy similar al nuestro, y, la mayor diversidad de la vida será microbiana, esas formas primarias de vida que reconocemos como los verdaderos diminutos arquitectos de los ecosistemas terrestres.

Las mil y una noches | 365diasdesaudades

                        Las mil y una noches

Aquí en la Tierra, la historia completa de la vida abarca unos 4.000 millones de años, desde los extraños mundos de los océanos sulfurosos que se extendían bajo una atmósfera asfixiante, pasando por bacterias que respiraban hierro, hasta llegar por fin a nuestro familiar mundo de oxígeno y ozono, de valles boscosos, de animales que nadan, corren o vuelan. Ni Sherezade podría haber imaginado un cuento más fascinante.

Io. Sulfuric, acid oceans.

Hace poco NASA publicó esta foto de una de las lunas de Júpiter. Es volcánica, y genera océanos de lava y azufre. ¿Quién sabe lo que ahí pueda estar presente? Desde luego yo no puedo afirmar ni negar nada. Sin embargo, según lo descubierto aquí en la Tierra, mejor dejar la respuesta para más adelante.

Hemos alcanzado un nivel de desarrollo intelectual muy aceptable y, puesto que somos grandes animales, se nos puede perdonar que tengamos una visión del mundo que tiende a celebrar lo nuestro, pero la realidad es que nuestra perspectiva es errónea. Tenemos un concepto de nosotros mismos que, habiendo sido elaborado en nuestro cerebro tiende a ser tan irreal que, incluso llegamos a creernos especiales, y, la verdad es que, lo que tenemos de especial queda reducido al ámbito familiar, social y poco más. En el contexto del Universo, ¿Qué somos?

Resultado de imagen de El Universo infinitHemos llegado al límite del conocimiento?No hemos sido los únicos en la galaxia, pero ahora estamos solosSeñales extraterrestres SETI podrían estar llegando a la Tierra ahora, pero  los humanos no las entienden, estima científico | Internacional | Noticias  | El Universo

Creer que en un Universo “infinito” sólo existen unos seres que habitan un minúsculo objeto redondo, un grano de tierra de una simple Galaxia de entre cien millones…Parece, al menos, pretencioso. Dejemos que la Astrobiología nos indique el camino a seguir, que nuestros ingenios espaciales nos abran el camino y, cuando llegue el momento, partamos a conocer a nuestros hermanos.

La Fuente:

Volumen 23, número 3 de 2009 de la Revista Española de Física, donde se publicó un magnifico trabajo de  D. Álvaro Giménez,  del Centro de Astrobiología INTA-CSIC. También tiene su parte aquí Andrew H. Knoll, reconocido paleontólogo que, en su libro La vida en un planeta joven, nos ofrece una apasionante narración sobre la vida, y, finalmente, lo poco que por mi parte he podido aportar.

Publica: emilio silvera

No hubo explosión en el “nacimiento” del Universo

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

No hubo ninguna explosión en el inicio del cosmos

EMILIO ELIZALDE

Emilio Elizalde

En este artículo se intenta describir, de manera fácilmente inteligible y siempre de acuerdo con la física actual, el denominado Big Bang: qué fue lo que en realidad pudo ocurrir cuando se originó nuestro universo.

El Big Bang podría haber generado dos futuros diferentes y no ser el origen  del tiempo, según la hipótesis de un físico | Marca

Y Dios dijo: “Hágase la luz”. Y se hizo la luz. Y Dios vio que la luz era buena, y la separó de la oscuridad. Y a la luz Dios la llamó “Día”, y a la oscuridad “Noche”. Y hubo un atardecer y una mañana, el primer día. Del libro del Génesis. L a idea, que hoy sabemos que es errónea, de que hubo un gran estallido en el origen del cosmos sigue tan arraigada en la conciencia popular que resulta extraordinariamente difícil cambiarla. Aunque los físicos/as debemos intentarlo. Y eso es precisamente lo que se pretende en este breve artículo. Contiene una descripción actualizada, incorporando todos los conocimientos científicos que poseemos hoy en día, sobre lo que realmente pudo ocurrir cuando se originó nuestro universo. Introducción Sea cual sea la lectura que se haga de ellos, resulta difícil no dejarse cautivar por la extraordinaria belleza de los versículos del Génesis. No importa que los eruditos hayan descubierto que fueron adaptados de descripciones mucho más antiguas de la mitología mesopotámica; ni que podamos objetar que esta narrativa no se sostiene de ninguna manera con los conocimientos que se enseñan actualmente en las escuelas y universidades.

Big Bang Theory Fotografías e imágenes de stock - Getty ImagesOrigen del Universo

El origen del Universo y de la Tierra. Vídeos educativos para niños -  YouTube

De hecho, hay muchísimos libros escritos, con orientaciones muy diversas, donde se establecen estas comparaciones, en las que aquí no voy a entrar (haré sólo una, eso sí). Para escoger un par, de libros, daré las referencias de los de Brooke [1] y Suau [2]. ¿Quién no ha oído a estas alturas hablar del Big Bang? Esas dos palabras, en inglés, son las que de alguna manera han sustituido en nuestro bagaje cultural al relato del Génesis sobre la creación del cosmos. Otra cosa es la parte de la misma narración bíblica que se refiere a la creación de los seres vivos, y del hombre y de la mujer. De ello se han hecho cargo las teorías darwinianas. Al Big Bang me he referido ya numerosas veces. He abordado el tema en diversas conferencias, artículos y presentaciones y éste fue precisamente el título de mi primera contribución al blog que tengo en Divulcat [3]. Pero, día a día me doy cuenta, hablando incluso con compañeros/as de profesión, de que aún me he ocupado demasiado poco del tema. La idea (completamente errónea con arreglo a lo que ahora sabemos) de que hubo un gran estallido en los inicios del cosmos sigue tan arraigada que cuesta mucho cambiarla. Está claro que a ello contribuye especialmente el significado literal del término Big Bang. Antes de dar, una vez más (esperando que sea la definitiva), la descripción científica actual de lo que sucedió en el origen del universo, la que está de acuerdo con nuestros conocimientos actuales (habiendo entrado ya en el año vigesimoprimero del nuevo milenio) repetiré el relato que encontramos aún en todas partes y que los científicos hemos visto que no se corresponde con los hechos. Corresponde a la ciencia de hace la friolera de noventa años, la de los años treinta del siglo xx, y mucho ha llovido desde entonces en todos los campos del conocimiento, y en éste en particular.

 El Mito del Huevo Cósmico ⋆

El relato del gran estallido (que jamás tuvo lugar) Iré directamente al grano y no repetiré lo que ya he explicado en otras ocasiones con mayor detalle (véase, en particular, mi libro [4]). La descripción (falsa), extraordinariamente popular y que se vende como si tuviera una base científica sólida, es la que sigue (Fig. 1). Todo el universo se reducía, en el principio de los tiempos, a un “átomo primigenio” o “huevo cósmico” (enormemente pequeño, con respecto al universo actual, pero muy grande en comparación a un átomo de verdad). Tenía, por supuesto, una densidad y una temperatura mucho mayores de lo que podamos imaginar. En el origen del tiempo, este átomo estalló con gran estruendo, esparciéndose la materia y la energía que contenía por todo el universo y dando origen además a la expansión que todavía ahora detectamos los cosmólogos.

Esta explosión descomunal recibe el nombre de Big Bang, palabras que literalmente significan en inglés “gran explosión”. ¡Y eso es todo! Tal descripción se debe a Georges Lemaître; se remonta, repito, a la década de 1930 y tiene muy poco que ver con lo que sabemos ahora. Sin embargo, al ser tan simple, algo misteriosa, desde luego, pero creíble, y como el modelo cosmológico sigue recibiendo el nombre de modelo de Big Bang y, como es bien cierto que Big Bang significa de hecho gran explosión, resulta que no hay manera humana de borrar esta caricatura inverosímil y totalmente equivocada de lo que ocurrió en el origen del cosmos. Y la seguimos encontrando en libros, enciclopedias, artículos, páginas web y blogs por doquier. Ni siquiera los especialistas se atreven a desmontarla, a veces cuando hablan para el gran público, según yo mismo he podido comprobar en diversas ocasiones; bien sea por no ir contra corriente o por falta del tiempo necesario para embarcarse en una descripción detallada sobre este punto, cosa que no resulta sencilla. Y la burda simplificación se sigue imponiendo. Todo ello me entristece mucho y hace que considere mi deber perentorio insistir una vez más sobre esta importante cuestión. Para empezar, disfrazándome del genial Dalí e imitando su voz engolada me atrevo a formular la pregunta: ¿De dónde salió la gallina que puso aquel “huevo cósmico”? Ahora más en serio, pocos años después de la formulación de este modelo, los físicos nucleares se dieron cuenta ya de que no había por donde cogerlo. Era imposible que toda la materia-energía del cosmos pudiera haber estado concentrada (yo prefiero decir jibarizada) en un átomo primigenio, por muy diversas razones que aquí no detallaré1 . Y, para terminar este apartado, es bueno saber que ya cuando Fred Hoyle, el mismísimo autor de la expresión “Big Bang”, pronunció estas palabras por primera vez, expresó muy claramente que no se refería en absoluto a un estallido de la materia en el sentido anterior (lo que pretendía precisamente era burlarse del modelo de Lemaître), sino a una gigantesca dilatación del espacio que debería ser capaz de “crear”, a partir de la propia geometría del espacio, “toda la materia y energía del universo” (fueron sus palabras textuales). Pero es que esto resulta ya muchísimo más difícil de comprender. ¡El propio Hoyle creía que tal fenómeno era de hecho del todo imposible! Pero Alan Guth, con su teoría de la inflación cósmica, demostró treinta años más tarde que sí se podía conseguir, cuando menos en teoría. La dificultad de comprender tal procedimiento y teoría es la razón por la que tantos/as retoman la versión caricaturesca y errónea, que puede entender hasta un niño o una niña bastante pequeños.

Qué es la Relatividad General? | El Cultural105 años de la teoría de la relatividad general, de Albert Einstein | UNAM  Global

Como he explicado en uno de mis artículos [5], se ha descubierto recientemente que el primero en intentar crear materia y energía a partir del mismísimo espacio fue el propio Albert Einstein, el autor de la Teoría de la Relatividad General. De hecho, tal posibilidad se hallaba ya implícita en las ecuaciones de su teoría [4]. Lo hizo a principios de 1931 pero, desgraciadamente, no logró su propósito, ya que no fue capaz de encontrar un mecanismo específico para llevarlo a cabo en la práctica. Pretendía conseguirlo con ayuda de la constante cosmológica y vio que no era posible. No cayó en la cuenta de que debía haber involucrado un campo cuántico de creación de materia (como sí hicieron Hoyle, Bondi y Gold diecisiete años más tarde). Y el manuscrito con sus cálculos lo dejó abandonado para siempre en un cajón de su escritorio. Pero no seguiré por aquí, pues he prometido ser muy conciso e ir directamente al grano, a diferencia de otras ocasiones, en que puede que me hayan perdido los detalles. Haré, en lo que sigue, una narración muy breve y convenientemente actualizada sobre lo que sí que pudo suceder en el origen de nuestro universo. Debo advertir que no es esta la única descripción aceptada, ya que hay otras que son igualmente posibles. Por otra parte, no todo lo que voy a contar ha sido estrictamente comprobado experimental u observacionalmente (lo concretaré luego). El Génesis, de acuerdo con los conocimientos científicos del año 2021 En el principio no había casi nada: una pizca de materia en un espacio-tiempo minúsculo, que acababa de aparecer de una “espuma cuántica” previa en la que aún no se distinguían ni el espacio ni el tiempo. Y también había un campo cuántico, el de Higgs, y otro, el inflatón, listos para actuar.

Científicos ponen en duda la existencia del inflatónPartículas hipotéticas: el inflatón - YouTube

Una chispa (la naturaleza precisa de la cual todavía no hemos fijado) creó las condiciones para que el inflatón produjese, de repente y durante un infinitésimo de tiempo, una expansión gigantesca (que llamamos inflación cósmica) del tejido de ese espacio minúsculo (Fig. 2). Y que fue creando más y más espacio, e hizo que el universo, que era al principio poco mayor que un átomo ordinario, pasara a tener ya el tamaño de un guisante, o de un pomelo, más o menos. Y que se continuó expandiendo todavía, aunque a un ritmo cada vez más lento. Al frenarse la tremenda expansión inflacionaria, casi toda aquella energía colosal del propio espacio se transformó en los componentes elementales de la materia y energía actuales: quarks, gluones, leptones, fotones, etc., que llenaron uniformemente el aún muy pequeño universo. Aunque una parte de dicha energía se empleó en calentarlos (lo que llamamos reheating). Todos aquellos constituyentes elementales formaron una sopa primigenia enormemente caliente, que recibe el nombre de plasma primordial (o plasma de quarks y gluones). Un plasma, eso sí, absolutamente oscuro, dado que los fotones permanecían confinados: cuando alguno lograba salir de una partícula material, no podía dar dos pasos sin ser ya atrapado por otra, que lo absorbía. Y así una y otra vez.

 Oscilaciones Acústicas de Bariones

Era un universo completamente oscuro, sin luz. Y aquel plasma latía al unísono, como si fuese todo él un corazón universal (a los latidos se les llama oscilaciones acústicas de los bariones, BAO). Los cambios que se fueron produciendo en el plasma durante los primeros segundos y minutos del universo se hallan magníficamente descritos en libros como el de Weinberg [6] y también en Wikipedia [7]. Las condiciones del plasma primordial que constituía el universo, cuando éste tenía tan solo unas pocas milbillonésimas de segundo de vida se han podido reproducir con enorme precisión en laboratorios de física de partículas como el LHC del CERN, en Ginebra. Cuando el cosmos tenía ya una cienmilésima de segundo, se formaron los protones y neutrones, y cuando alcanzó el segundo de vida los neutrinos se desacoplaron del plasma y pudieron ya viajar por todo él. No así los fotones, todavía.

Francis en LFDLC: Los neutrinos - La Ciencia de la Mula Francis

Actualmente se está intentando obtener información sobre esta etapa del universo a partir de neutrinos primordiales, que comienzan a detectarse en ciertos experimentos. Desde los diez segundos hasta los tres minutos, aproximadamente, protones y neutrones constituyeron los núcleos atómicos más ligeros (de hidrógeno, deuterio, helio, etc.), proceso que recibe el nombre de nucleosíntesis primordial [6]. Tomó muchísimo más tiempo, hasta que se pudieron formar los primeros átomos. Gran parte de la física de partículas conocida está involucrada en el estudio de estos procesos, que aquí he simplificado mucho [7]. Es un campo de estudio fascinante. Y el universo continuó expandiéndose, a un ritmo ya normal, muy parecido al que ahora detectamos. Y era por ello cada vez menos caliente, ya que la propia expansión lo iba enfriando, poco a poco. Hasta que, cuando tenía entre 370 y 380 mil años, ocurrió lo que se describe de manera magistral en el primer versículo del Génesis. Súbitamente ¡se hizo la luz! La temperatura había bajado por debajo del umbral de ionización del átomo más ligero, el de hidrógeno. Súbitamente, estos átomos precipitaron a gran escala, y aquel plasma tan oscuro, el universo entero, se hizo de pronto transparente a los fotones, que pudieran viajar, por vez primera, de extremo a extremo del aún muy joven cosmos (Fig. 3)2. 2

 Fondo Cósmico de Microondas

Fig. 3 Mapa de la radiación cósmica de fondo (CMB) observada por el satélite Planck de la Agencia Europea del Espacio (ESA). Se trata de la primera luz del cosmos, que fue emitida cuando tenía entre 370 y 380 mil años y que sigue viajando por todo el universo. Lleva impresas las huellas del último latido del plasma primordial, así como las huellas amplificas de las fluctuaciones cuánticas de la época preinflacionaria, y las huellas, en definitiva, de todas las vicisitudes ocurridas en las épocas pasadas de la historia del universo, y que cada vez somos más capaces de descifrar.

 Átomo de Bohr y Saltos cuánticos Absorción – La Químicaweb

Es preciso recordar que los átomos están prácticamente vacíos. El de hidrógeno lo podemos esquematizar a escala (muy rudimentariamente) así: si el átomo fuera del tamaño de un campo de fútbol, el núcleo (protón) tendría el tamaño de un guisante colocado en el centro del campo, y el diminuto electrón, casi invisible, menor que una pequeña mota de polvo. Esta fue la primerísima luz del universo, una luz maravillosa, radiación de cuerpo negro homogénea e isotrópica que ahora hemos observado con los satélites COBE, WMAP y Planck: la que denominamos radiación cósmica de fondo (CMB), y que a muchos nos cautiva sin remedio. Es, repito, la primera luz del cosmos, la del primer día del Génesis; la que nunca se apaga y continúa viajando por todo el universo actual. Y además lleva grabadas las huellas indelebles del último latido del plasma primigenio. Y las huellas amplificadas de las fluctuaciones cuánticas de la época preinflacionaria.

Hermosos GIFs del espacio y el universo. 100 imágenes animadas

Y las huellas, en resumen, de todas las vicisitudes ocurridas en las épocas pasadas de la historia del universo, mientras la luz ha ido viajando hasta nosotros, y que cada vez somos más capaces de descifrar. Decidme pues ahora si esta maravilla que hemos descubierto no es mil veces más impresionante que una simple explosión, por fuerte que hubiese sido el estallido. De todo lo que antecede tengo escritas sendas narraciones en forma poética: Big Bang inflacionario [8] y La primera luz del Cosmos [9]. Comentarios Tal como había prometido, he hecho un relato actualizado con bien pocas palabras. Mi descripción es sólo a muy grandes rasgos3, pero contiene lo esencial de todo lo que sabemos hoy en día. Deja abiertos aún muchos interrogantes, pero así es la Ciencia: nunca esperemos de ella una verdad absoluta, definitiva. El que la busque deberá acudir a otras fuentes.

Cómo usar el universo para estudiar lo más pequeño: espuma cuántica y  cuásaresTelescopios de la NASA delimitan la espuma del espacio-tiempo

Al igual que antes he inquirido sobre dónde estaba la gallina que había puesto el huevo cósmico, ahora se me podría preguntar: ¿De dónde salieron la espuma de espacio-tiempo preprimigenia, y la brizna de materia inicial, el campo de Higgs, el inflatón, vo, iria girando por encima de las gradas alrededor del campo. Todo lo demás es absoluto vacío. Al formarse los átomos de hidrógeno de manera simultánea en todo el universo, este se volvió prácticamente transparente. 3 Y no he mencionado nada de las importantes etapas posteriores, como la de recombinación, la formación de las primeras galaxias, ni de la nucleosíntesis estelar, de la que Hoyle fue pionero y que dio origen a los elementos pesados [4]. Tanto el principio como la conformación posterior del universo es muchísimo más rica y compleja que un banal gran estallido etc.?

La primera imagen de un agujero negro confirma la teoría de la relatividad  | El ImparcialQué es la espuma cuántica? | Muy Interesante

Pero, dejémoslo bien claro, por favor; una cosa es ya meter todo el universo jibarizado, escondido en el sombrero de copa, y otra muy distinta introducir tan sólo unos pequeñísimos elementos, que ni con los microscopios más potentes imaginables seríamos jamás capaces de ver. Nuestra chistera está muchísimo más vacía que la que nos muestra el mago Pop. Y a partir de ellos, de estos elementos nimios, y con un “simple” gran soplido del globo del espacio, hemos sido capaces de crear un universo enorme y todo su contenido material y energético. Y a coste cero, aunque este punto no tengo ahora tiempo de explicarlo. Quien quiera saber más, puede leer mi nuevo libro, recientemente publicado:

Dinosaurios | Últimas Noticias de Dinosaurios | Temas en La Voz del InteriorDel "Bing Bang" al "Big Bounce"Cosmología, la ciencia que estudia TODO el Universo

Cosmología moderna: desde sus orígenes [4]. Obsérvese que mi descripción se sitúa en la frontera más lejana de la física fundamental que conocemos. No se puede afirmar aún que la inflación cósmica haya sido comprobada del todo. Pero se tienen muchos y muy importantes indicios de que ocurrió. Y las teorías alternativas (de un universo pulsante, en cosmología de lazos, etc.) lo que hacen es intentar recrear en esencia sus mismos efectos, aunque partiendo de otros principios. Quede claro que lo que sí hemos comprobado sin lugar a duda alguna es que, del átomo primigenio y del gran estallido que muchos mal informados siguen afirmando que se produjo, no hay ni el menor rastro; eso sí que es cien por cien seguro que no sucedió jamás. Otra observación, esta para las lectoras y lectores avanzados, es que no he mencionado en ningún lugar los multiversos. No queda excluida, ni mucho menos, la posibilidad de que el universo total sea infinito y que todo lo que he descrito hasta aquí sucediera simplemente en una pequeñísima región de un grandioso espacio-tiempo multidimensional; que sólo un pequeño puntito del mismo inflacionase, etc. En otras palabras, que mi descripción se refiera únicamente a nuestro universo. Y que, como el nuestro, pueda haber toda una multitud ingente de otros universos, creándose y desapareciendo por todas partes. Las teorías de supercuerdas y branas admiten de hecho estas posibilidades, incluso las favorecen. Pero, de prueba física, real, no hay ninguna, hasta ahora.

Gravedad Cuántica, pesando lo muy pequeño (Primera parte) - NaukasObstinados navegantes en océanos de incertidumbre: APROXIMACIÓN A LA TEORÍA  DE LA GRAVEDAD CUÁNTICA DE LAZOS

Como siempre, tengo que terminar recordando que nos queda aún mucho camino por recorrer, antes de poder llegar a responder las preguntas anteriores que he planteado. No tenemos una teoría que unifique la física cuántica con la gravedad. Pero ya he mencionado otras veces que es muy posible que esa teoría tan deseada, aunque la encontráramos, quizá todavía no sería suficiente para llegar al mismísimo punto inicial, t=0, a la singularidad del Big Bang, que aparece en las teorías de gravitación actuales (y por la que, entre otras cosas, a Roger Penrose le concedieron el Premio Nobel de Física 2020). Lejos de desanimarnos, ello nos empuja a seguir investigando. Por último, es muy saludable de vez en cuando echar la vista atrás, y observar, pausadamente, de dónde venimos y todo lo que hemos conseguido entender hasta ahora. Lo que vamos avanzando, paso a paso, año tras año, siglo tras siglo. Y no obcecarse, una y otra vez, en las mismas cuestiones de respuesta muy difícil y que es bien posible (como muestra nuestra experiencia de descubrimientos pasados) que aún se tarde cien o doscientos años, si no más, en poder llegar a contestarlas. Y es completamente seguro que, para entonces, habrán aparecido nuevas preguntas en busca de respuestas.

 Emilio Elizalde

Bibliografía [1] John Headley Brooke, Ciencia y religión. Perspectivas históricas (Santander, Sal Terrae, José Pérez Escobar [trad.], 2016, 1991 [ed. original]). [2] Teodor Suau, Del caos al cosmos: lectura de Gènesi 1-11 (Publicacions de l’Abadia de Montserrat, isbn: 9788484156116). [3] https://www.enciclopedia.cat/divulcat/big-bang. [4] Emilio Elizalde, Cosmología moderna: desde sus orígenes (Ed. Catarata, Madrid, 2020). [5]

 

 

El Tiempo pasa y todo cambia

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Formación de galaxias tempranas | ALMAEl orden que emerge del caos: así se forman las galaxias
Los cosmólogos no saben explicar cómo se pudieron formar las galaxias a pesar de la expansión de Hubble. El Universo se estaba expandiendo y, toda la materia estaba dispersa moviéndose a velocidad alucinante en ese Espacio que se expandía. Si eso es así (como parece que fue), que la pudo retener para que las galaxias se pudieran formar… ¿Sería el Ylem (Ylem o hylem (forma aumentativa de la palabra griega ὑλη [hylé] = materia) es el nombre dado por Aristóteles a la que consideraba sustancia fundamental del Universo).
El Big Bang podría haber generado dos futuros diferentes y no ser el origen  del tiempo, según la hipótesis de un físico | Marca
           Se supone que todo se expandió isotrópicamente
 En realidad, las Galaxias no debenrían existir
Cómo la física cuántica ha afectado nuestra experiencia en el mundo? |  TechceteraSorprendente relación entre dos fenómenos cuánticos | Universo Doppler

La mecánica cuántica - YouTubeLa metáfora cuántica del amor a distancia (o por qué esa conexión con el  que está lejos se siente tan real)

El lugar donde ocurren cosas tan extrañas a nuestro “mundo” cotidiano que nos parecen de fantasía

 

  

 

 

 

¿Es posible atravesar una pared? | El EFECTO TÚNEL video urano repulsión protones partículas particula onda nucleo mecánica cuántica física fenómeno electrones electron electrica dualidad cuantico barrera de potencial atomos alfa Efecto tunel GIFNew trending GIF tagged animated trippy psychedelic drugs… | Trending Gifs

 

El efecto túnel explica que se den en el espacio reacciones químicas que no se producen en condiciones normale.Un fotón energético que viaja a la velocidad de la luz, choca con un electrón orbital de un átomo. El electrón absorbe la energía del fotón y, de inmediato, desaparece del lugar que ocupaba en el átomo y, de manera simultánea, sin saber por donde ha cogido y sin recorrer el camino que le separa, aparece en otro orbital diferente. Ese es, un ejemplo del efecto túnel.

 

  

 

 

 En el interior del Sol se producen reacciones de fusión en las que los átomos de hidrógeno se transforman en helio, produciéndose la energía que irradia. Actualmente, el Sol se encuentra en plena secuencia principal, fase en la que seguirá unos 5000 millones de años más fusionando hidrógeno de manera estable.

 

 

Esquema de una estrella tipo Sol

 

 

Que es la Gravedad Cuántica de Bucles? - CuriosaMente 129 - YouTubeObstinados navegantes en océanos de incertidumbre: APROXIMACIÓN A LA TEORÍA  DE LA GRAVEDAD CUÁNTICA DE LAZOS
Juntar lo grande y lo pequeño….
Cuando se ha tratado de juntar las dos teorías, la de Planck de la mecánica cuántica, con la de Einstein de la Relatividad General… Aunque la formulación esté bien planteada, el resultado es inaudito… ¡Los infinitos sin sentido aparecen y no se pueden renor-malizar!

 

Laboratorio estelar, la cuna de los mundos.

 

Cuando me sumerjo en los misterios y maravillas que encierra el Universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, y, esa presencia invisible que permea todo el espacio y que se ha dado en denominar océano y campos de Higgs, allí donde reside esa clase de energía exótica, ese “éter” que, en definitiva hace que el Universo funcione tal como lo podemos ver. Existen muchos parámetros del Cosmos que aún no podemos comprender y de los que sólo podemos presentir, es como si pudiéramos ver la sombra de algo que no sabemos lo que es.

 

Por qué existe el Universo? - Ambientum Portal Lider Medioambiente

 

Todo el Universo conocido nos ofrece una ingente cantidad de objetos que se nos presentan en formas de estrellas y planetas, extensas nebulosas formadas por explosiones de supernovas y que dan lugar al nacimiento de nuevas estrellas, un sin fin de galaxias de múltiples formas y colores, extraños cuerpos que giran a velocidades inusitadas y que alumbran el espacio como si de un faro cósmico se tratara, y, objetos de enormes masas y densidades “infinitas” que no dejan escapar ni la luz que es atrapada por la fuerza de gravedad que generan.

 

Celestial Objects In Space - When Your BoredPillars Of Creation Free Stock Photo - Public Domain PicturesAtrasta dar viena Saulės sistema? | KaunoDiena.ltUniverse Quotes And Angels. QuotesGram

 

Cualquier cosa que podamos imaginar… ¡Ahí estará!

 

APOD: 2012 July 29 - Star Cluster R136 Bursts OutR136 Fotografía por Germaneart | Artmajeur

Conozca el objeto más extraño de nuestro universo - RTObjetos extraños orbitan cerca del enorme agujero negro de la galaxia

Ya nos gustaría saber qué es todo lo que observamos en nuestro Universo

 

Sin embargo, todo eso, está formado por minúsculos e infinitesimales objetos que llamamos quarks y leptones, partículas elementales que se unen para formar toda esa materia que podemos ver y que llamamos Bariónica pudiendo ser detectada porque emite radiación. Al contrario ocurre con esa otra supuesta materia que llamamos oscura y que, al parecer, impregna todo el universo conocido, pero ni emite radiación ni sabemos a ciencia cierta de qué podrá estar formada, y, al mismo tiempo, existe una especie de energía presente también en todas partes de la que tampoco podemos explicar mucho.

Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetro. En los sólidos y líquidos ordinarios los átomos están muy juntos. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.

Isaac Asimov en uno de sus libros nos explicó que,  los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3. Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.

 

Dying star creates fantasy-like sculpture of gas and dust | ESA/HubbleGlowing Eye Nebula: Space Gallery on Sea and Sky

 

The Cat’s Eye Nebula: Dying Star Creates Fantasy-like Sculpture of Gas and Dust

 

 

Qué pasaría si una estrella de neutrones se chocara con un agujero negro de  la mitad de tamaño? - Quora

El agujero negro se “come” la estrella de neutrones

 

Ese puntito blanco del centro de la Nebulosa planetaria, es mucho más denso que el osmio, es una enana blanca, y, sin embargo, no es lo más denso que en el Universo podemos encontrar. Cualquier estrella de neutrones es mucho más densa y, no hablemos de los agujeros negros, de su singularidad.

los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

 

 

El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos al desnud0, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original. De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos  obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.

El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero los núcleos atómicos se mueven de un lado a otro sin impedimento alguno, el material sigue siendo un gas.  Hay estrellas que se componen casi por entero de tales átomos destrozados.  La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.

 

 

Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho que todos los protones tienen carga eléctrica positiva y se repelen, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en adecuadas pueden estar juntos y empaquetados un número enorme de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.

Estas estrellas se forman las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera tan increíble que se degeneran (como consecuencia de que son fermiones y están afectados por el principio de exclusión de Pauli) y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.

El Cielo de Canarias » Procesado de imágenes de Gran Telescopio CANARIAS  (GTC)

El Gran Telescopio Canarias (GTC), instalado en el Observatorio del Roque de los Muchachos (La Palma), ha obtenido imágenes de una profundidad “sin precedentes” de una estrella de neutrones del magnetar, de las que se conocen pocos ejemplares. Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.

La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad!

 

 

Imagen captada por el telescopio Hubble de la galaxia NGC 3393. El núcleo de la galaxia, donde se encuentra la pareja de agujeros negros se ven encuadrado (NASA). Está claro que lo que se dice ver a los agujeros negros… Nadie los ha podido ver y, sólo hemos podido captar su presencia por los fenómenos que a su alrededor ocurren en la emisión inusual de radiación y el comportamiento de la materia circundante.

 

El primer agujero negro captado en imagen se tambalea | Ciencia |  Tecnología Y Ciencia | La Prensa PeruPrimera foto de un agujero negro: así son los alrededores de la imagen que  le da la vuelta al mundo - BBC News Mundo

 

Una animación que muestra la consistencia del diámetro del anillo medido y las incertidumbres de la medición de orientación. (Foto: M. WIELGUS AND THE EHT COLLABORATION /Europa Press)

 

Evolución De Las Estrellas: Origen, Nacimiento, Evolución Y Muerte

 

 

Podemos decir que objetos tan fascinantes (estrellas enanas blancas, de neutrones y agujeros negros), son los que nos muestran estados de la materia más densos que hemos podido llegar a conocer y que se forjan en la propia Naturaleza mediante transiciones de fase que se producen mediante los mecanismos de las fuerzas que todo lo rigen. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿ cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envíe luz y calor que la haga posible tal como la conocemos. Cuando agote su combustible nuclear de fusión, su vida se apagará y se convertirá en gigante roja primero y enana blanca después.

Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: segundo tienen que fusionarse 654.600.000 toneladas de hidrógeno en 650.000.000 toneladas de helio  (las 4.600.000 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de energía que incide sobre la Tierra basta mantener toda la vida en nuestro planeta).

 

 

 

 

Los rayos del Sol que envían al planeta Tierra su luz y su calor para hacer posible la vida en un planeta maravilloso que es el hábitat de millones de especies, unas más inteligentes que otras en relación al roll que, a cada una, le tocó desempañar en el escenario de este gran teatro que llamaos mundo.

Nadie diría que con consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene en cuenta el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.

Para completar diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado –, el Sol es hidrógeno en un 80 por ciento.

Este podría ser nuestro Sol en el pasado sólo era una proto-estrella que se estaba formando

 

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654 mil toneladas  por segundo y que lo seguirá haciendo hasta el final, se calcula que ha radiando hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más. Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás.  Así pues, la materia prima del Sol contenía ya mucho helio el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

Por otra , el Sol no continuará radiando exactamente al mismo ritmo que . El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo. Cuando el Sol se convierta en gigante roja… Nosotros tendremos que haber podido buscar la manera de salir de la Tierra ubicarnos en otros mundos, dado que, dicha fase del Sol, no permitirá la vida en nuestro planeta.

 

 

 

 

Los planetas interiores (Mercurio y Venus) serán engullidos por nuestro Sol y, la Tierra, quedará calcinada, sus océanos se evaporarán y toda la vida, desaparecerá.

Como decía v Lovecraft: “Que no está muerto lo que duerme eternamente, y, con el paso de los eones, hasta la misma muerte tiene que morir.”

Las estrellas, y todo en nuestro universo, tienen un principio y un final. La que en la imagen de arriba podemos contemplar, ha llegado al final de su ciclo, y, agotado su combustible nuclear, quedará a merced de la fuerza de la Gravedad que la convertirá en un objeto distinto del que fue durante su larga vida. Dependiendo de su masa,  las estrellas se convierten en enanas blancas -el caso del Sol-, estrella de neutrones o Agujeros negros.

 

 

 

La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a , estos dos bultos – de los cuales uno mira la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra. Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo mil años.

Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).

 

 

 

La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, periodos de rotación iguales, mucho menor.

Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación.  Hace seguramente muchos millones de años debió de decelerarse el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara el planeta Tierra.

Esto, a su vez, congela los abultamientos en un aposición fija. Unos de ellos miran hacia la Tierra el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento.

 

 

 

 

Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercano al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.

Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? Continuemos pues aprendiendo cosas nuevas.

Qué es la entropía en termodinámica? - TermodinámicaLa Vida y el Segundo Principio de la Termodinámica

 

A mayor entropía mayor desorden. En los sistemas cerrados (como el Universo o nosotros mismos, siempre aumenta, el desorden, con el paso del Tiempo, está garantizado.)

En alguna ocasión dejé una reseña de lo que se entiende por entropía y así sabemos que la energía sólo ser convertida en trabajo cuando    dentro del sistema concreto que se esté utilizando, la concentración de energía no es uniforme. La energía tiende entonces a fluir desde el punto de mayor concentración al de menor concentración, hasta establecer la uniformidad. La obtención de trabajo a partir de energía consiste precisamente en aprovechar este flujo.

 

 

 

 

El agua de un río está más alta y tiene más energía gravitatoria en el manantial del que mana en lo alto de la montaña y energía en el llano en la desembocadura, donde fluye suave y tranquila. Por eso fluye el agua río abajo el mar (si no fuese por la lluvia, todas las aguas continentales fluirían montaña abajo el mar y el nivel del océano subiría ligeramente. La energía gravitatoria total permanecería igual, pero estaría distribuida con mayor uniformidad).

 

 

 

Una rueda hidráulica gira gracias al agua que corre ladera abajo: ese agua realizar un trabajo porque crea energía . El agua sobre una superficie horizontal no puede realizar , aunque esté sobre una meseta muy alta y posea una energía gravitatoria excepcional. El factor crucial es la diferencia en la concentración de energía y el flujo hacia la uniformidad.

Y lo mismo reza para cualquier clase de energía. En las máquinas de vapor hay un de calor que convierte el agua en vapor, y otro depósito frío que vuelve a condensar el vapor en agua. El factor decisivo es esta diferencia de temperatura. Trabajando a un mismo y único nivel de temperatura no se puede extraer ningún , por muy alta que sea aquella.

 

 

 

En realidad, la Entropía no debe resultarnos tan extraña como esa imagen de arriba, la Entropía está presente en nuestras vidas cotidianas y por todo el Universo, es algo que nació con el Tiempo al que acompaña y, cuando éste transcurre, aquella deja sentir sus efectos. Nos dice que nada es Eterno, que lo que nace muere, que todo cambia.

El término “entropía” lo introdujo el físico alemán Rudolf J. E. Clausius en 1.849 representar el grado de uniformidad con que está distribuida la energía, sea de la clase que sea. Cuanto más uniforme, mayor la entropía. Cuando la energía está distribuida de manera perfectamente uniforme, la entropía es máxima para el sistema en cuestión. El Tiempo, podríamos decir que es el portador de una compañera que, como él mismo, es inexorable. La entropía lo cambia todo y, en un Sistema cerrado (pongamos el Universo), la entropía siempre crece mientras que la energía es vez menor. Todo se deteriora con el paso del tiempo.

 

 

 

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters.

 

 

Marzo de 2009, Carolina del Sur, Estados Unidos. Lo que vemos son los desechos de cenizas de carbón en una planta generadora de electricidad. Foto: J. Henry Fair/Cortesía: Galería Gerald Peters. De la misma manera, en el Universo, se producen transiciones de fase que desembocan en el deterioro de los objetos que lo pueblan. Nunca será lo mismo una estrella de 1ª generación que una de 3ª y, el material del que están compuestas las últimas serán más complejos y cada vez, tendrán menor posibilidad de convertirse en Nebulosas que sean capaces de crear nuevas estrellas.

Clausius observó que cualquier diferencia de energía dentro de un sistema tiende siempre a igualarse por sí sola. Si colocamos un objeto caliente junto a otro frío, el calor fluye de manera que se transmite del caliente al frío que se igualan las temperaturas de ambos cuerpos. Si tenemos dos depósitos de agua comunicados sí y el nivel de uno de ellos es más alto que el otro, la atracción gravitatoria hará que el primero baje y el segundo suba, hasta que ambos niveles se igualen y la energía gravitatoria quede distribuida uniformemente.

 

 

 

Considerado Sistema Cerrado, la Entropía no deja de aumentar en nuestro Universo a medida que el Tiempo transcurre

 

Clausius afirmó, por tanto, que en la naturaleza era regla general que las diferencias en las concentraciones de energía tendían a igualarse. O dicho de otra manera: que la entropía aumenta con el tiempo. El estudio del flujo de energía puntos de alta concentración a otros de baja concentración se llevó a cabo de modo especialmente complejo en relación con la energía térmica. Por eso, el estudio del flujo de energía y de los intercambios de energía y recibió el de “termodinámica”, que en griego significa “movimiento de calor”.

Con anterioridad se había llegado ya a la conclusión de que la energía no podía ser destruida ni creada. regla es tan fundamental que se la denomina “primer principio de la termodinámica”. Sin embargo, cuando la entropía ataca, la energía quedar congelada e inservible. La idea sugerida por Clausius de que la entropía aumenta con el tiempo es una regla general no básica, y que denomina “segundo principio de la termodinámica.”

Según segundo principio, la entropía aumenta constantemente, lo cual significa que las diferencias en la concentración de energía también van despareciendo. Cuando todas las diferencias en la concentración de energía se han igualado por completo, no se puede extraer más , ni pueden producirse cambios.

¿Está degradándose el universo?

 

 

 

 

Bueno, todos sabemos que el Universo evoluciona y, como todo, con el paso del tiempo cambia. Lo que hoy es, mañana no será. Existe una pequeña ecuación:   S = k log W que, aunque pequeña y sencilla, es la mayor aportación de Boltzmann y una de las ecuaciones más importantes de la Física. El significado de las tres letras que aparecen (aparte la notación el logaritmo es el siguiente: S es la entropía de un Sistema; W el de microestados posibles de sus partículas elementales y k una constante de proporcionalidad que hoy día recibe el de constante de Boltzmann y cuyo valor es k = 1,3805 x 10-23 J(K (si el logaritmo se toma en base natural). En esta breve ecuación se encierra la conexión del micro-mundo y el macro-mundo, y por ella se reconoce a Boltzmann como el padre de la rama de la Física conocida como Mecánica Estadística.

Pero esa, es otra historia.

emilio silvera