miércoles, 25 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡Aquellos primeros momentos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Descubrir y aprender    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

 

Antes de que la imagen de arriba fuese una realidad tuvieron que pasar muchos miles y millones de años. Hasta donde sabemos, y ,el origen más aceptado para nuestro Universo, es el de una inmensa explosión proveniente de una singularidad en la que la densidad y la energía eran “infinitas” y a partir de ahí, comenzó la gran aventura:

¡El Universo!

 

Big Bang - Wikipedia, la enciclopedia libreEl Big Bang explicado: la teoría sobre el origen de todo | Enterarse

 

Antes de alrededor de un minuto y cuarenta segundos desde el comienzo del tiempo,  no hay núcleos atómicos estables.  El nivel de energía en el ambiente es mayor que la energía de unión nuclear. Por consiguiente, todos los núcleos que se forman, se destruyen de rápidamente.

Alrededor de un segundo desde el comienzo del tiempo, llegamos a la época de desacoplamiento de los neutrinos.  Aunque en esa época el Universo es más denso que las orcas (y tan caliente como la explosión de una bomba de hidrógeno), ya ha empezado a parecer vacío a los neutrinos.  Puesto que los neutrinos sólo reaccionan a la fuerza débil, que tiene un alcance extremadamente corto, pueden escapar de sus garras y volar indefinidamente sin experimentar ninguna otra interacción.

 

Aunque parezca mentira, al día de hoy no sabemos, a ciencia cierta, como se formaron las galaxias

 

Así, emancipados, en lo sucesivo son libres de vagar por el Universo a su manera indiferente, volando a través de la materia, como sino existiese. (Diez trillones de neutrinos atravesarán sin causar daños el cerebro y el cuerpo del lector en el tiempo que le lleve leer esta frase.  Y en el tiempo en que usted haya leído esta frase estarán más lejos que la Luna).

MINOS obtiene la medida más precisa de la velocidad de los neutrinos - La  Ciencia de la Mula FrancisNeutrinos, los mensajeros cósmicos que atraviesan nuestros cuerpos y los  científicos buscan en la Antártica y en las profundidades del mar - BBC  News Mundo

                                      Medida de la velocidad de los neutrinos, esos mensajeros cósmicos

En menos de un siglo, el neutrino pasó de una partícula fantasma – propuesta en 1930 por el físico austríaco Wolfgang Pauli (1900-1958) a explicar el balance de energía en una forma de radioactividad,  el llamado decaimiento beta, en una sonda capaz de escrutar el interior de estrellas y de la propia Tierra.

De esa manera, oleadas de neutrinos liberados en un segundo después del big bang persiste aún después, formando una radiación cósmica de fondo de neutrinos semejante a la radiación de fondo de microondas producida por el desacoplamiento de los fotones.

Si estos neutrinos “cósmicos” (como se los llama para diferenciarlos de los neutrinos liberados más tarde por las supernovas) pudiesen ser observador por un telescopio de neutrinos de alguna clase, proporcionarían una visión directa del Universo cuando sólo tenía un segundo.

A medida que retrocedemos en el tiempo, el Universo se vuelve más denso y más caliente, y el nivel de  estructura que puede existir se hace cada vez más rudimentario.

Recrean plasma existente en el universo tras el Big BangLa energía del plasma en el espacio, las chispas generadas por ordenador  fractal abstracto mapa de intensidad, en blanco y negro, 3D rendering  Fotografía de stock - Alamy

 

Por supuesto, en ese tiempo, no hay moléculas, ni átomos, ni núcleos atómicos, y, a 10-6 (0.000001) de segundo después del comienzo del tiempo, tampoco hay neutrones ni protones.  El Universo es un océano de quarks libres y otras partículas elementales.

Si nos tomamos el de contarlos, hallaremos que por cada mil millones de antiquarks existen mil millones y un quark.  asimetría es importante.  Los pocos quarks en exceso destinados a sobrevivir a la aniquilación general quark-antiquark formaran todos los átomos de materia del Universo del último día.  Se desconoce el origen de la desigualdad; presumiblemente obedezca a la ruptura de una simetría materia antimateria en alguna etapa anterior.

Nos aproximamos a un tiempo en que las estructuras básicas de las leyes naturales, y no sólo las de las partículas y campos cuya conducta dictaban, cambiaron a medida que evolucionó el Universo.

La primera transición semejante se produjo en los 10-11 de segundo después del comienzo del Tiempo, cuando las funciones de las fuerzas débiles y electromagnéticas se regían por una sola fuerza, la electro-débil.  hay bastante energía ambiente para permitir la creación y el mantenimiento de gran de bosones w y z.

 

 

Bosones W y Z - Wikipedia, la enciclopedia libreBosones W y Z - Wikipedia, la enciclopedia libreInteracciones de las partículas elementales en el Modelo Estándar. Los... |  Download Scientific Diagram

CMS Masterclass ppt descargarEl bosón Z cumple 30 años | Conexión causal

 

 

Estas partículas –las mismas cuya aparición en el acelerador del CERN verificó la teoría electro-débil– son las mediadoras intercambiables en las interacciones de fuerzas electromagnéticas y débiles, lo que las hace indistinguibles.  En ese tiempo, el Universo está gobernando sólo por tres fuerzas: la gravedad, la interacción nuclear fuerte y la electro-débil.

Más atrás de ese tiempo nos quedamos en el misterio y envueltos en una gran nebulosa de ignorancia.  Cada uno se despacha a su gusto para lanzar conjeturas y teorizar sobre lo que pudo haber sido.   Seguramente, en el futuro, será la teoría M (de supercuerdas) la que contestará esas preguntas sin respuestas ahora.

En los 10-35 de segundo desde el comienzo del tiempo, entramos en un ámbito en el que las cósmicas son aún menos conocidas.  Si las grandes teorías unificadas son correctas, se produjo una ruptura de la simetría por la que la fuerza electronuclear unificada se escindió en las fuerzas electro-débil y las fuertes.  Si es correcta la teoría de la supersimetría, la transición puede haberse producido antes, había involucrado a la gravitación.

 

 

En el universo temprano la primera materia (hidrógeno y Helio) era llevada por la fuerza de gravedad a conformarse en grandes conglomerados de gas y polvo que interaccionaban, producían calor y formaron las primeras estrellas pasados doscientos millones de años.

Durante una largo tiempo después de su nacimiento nuestro Universo estuvo completamente oscuro, silencioso y vacío. Las primeras estrellas no aparecieron hasta que el Universo tenía quizás 100 millones de años de edad. En esta época no existía nada en el Universo salvo gases.

Las primeras estrellas que existieron en nuestro Universo nunca han sido vistas ya que se extinguieron hace largo tiempo. Pero muchos astrónomos han discutido acerca de su existencia.

Un universo giratorio: la nueva teoría sobre la fase temprana del espacio |  RPP Noticias

Elaborar una teoría totalmente unificada es tratar de comprender lo que ocurrió en ese tiempo remoto que, según los últimos estudios está situado entre 15.000 y 18.000 millones de años, cunado la perfecta simetría que, se pensaba, caracterizó el Universo, se hizo añicos para dar lugar a los simetrías rotas que hallamos a nuestro alrededor y que, nos trajo las fuerzas y constantes Universales que, paradójicamente, hicieron posible nuestra aparición para que , sea posible que, alguien como yo esté contando lo que pasó.

Pero hasta que no tengamos tal teoría no podemos esperar comprender lo que realmente ocurrió en ese Universo bebé.  Los límites de nuestras conjeturas actuales cuando la edad del Universo sólo es de 10-43 de segundo, nos da la única respuesta de encontrarnos ante una puerta cerrada.

Del otro lado de esa puerta está la época de Planck, un tiempo en que la atracción gravitatoria ejercida por cada partícula era comparable en intensidad a la fuerza nuclear fuerte.

 

Átomos y electricidad - VIXPartículas Interacciones - ppt descargar

 

La fuerza nuclear fuerte hizo posible la existencia de los núcleos que atraían electrones para formar átomos

 

Así que, llegados a este punto podemos decir que la clave teórica que podría abrir esa puerta sería una teoría unificada que incluyese la gravitación, es decir, una teoría cuántica-gravitatoria que uniese, de una vez por todas, a Planck y Einsteins que, aunque eran muy amigos, no parecen que sus teorías (la Mecánica Cuántica) y (la Relatividad General) se lleven de maravilla.

Es sorprende ver, como funciona la Naturaleza.

 

 

Una extraña forma de vida podría florecer en las profundidades de las  estrellasTres nuevos mundos en una estrella cercana animan la búsqueda de vida -  Scientific American - Español

Exoplanetas: más cerca del otro planeta habitadoHay 29 puntos cercanos desde los que ET podría espiarnos

 

 

El Universo (al menos el nuestro), nos ofrece algo más, mucho más que grandes espacios vacíos, oscuros y fríos. En él podemos ver muchos lugares luminosos llenos de estrellas, de mundos y… muy probablemente de vida. Sin embargo, tenemos la sospecha de que, aparte del nuestro, otros universos podrían rondar por ahí y conformar un todo de múltiples Universos de características diversas y no en todos, serían posible la formación de estrellas y como consecuencia de la Vida.

Cuando me sumerjo en los misterios y maravillas que encierra el Universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, la sorprendente presencia de formas de vida y su variedad, y, sobre todo, que esa materia animada pudiera llegar hasta la consciencia, emitir ideas y pensamientos.

 

                   ¿Qué “escalera” habrá que subir para llegar a ese otro universo?

 

Como nunca nadie pudo estar en otro Universo, tenemos que imaginarlos y basados en la realidad del nuestro, hacemos conjeturas y comparaciones con otros que podrían ser. ¿Quién puede asegurar que nuestro Universo es único? Realmente nadie puede afirmar tal cosa e incluso, estando limitados a un mundo de cuatro dimensiones espacio-temporales, no contamos con las condiciones físico-tecnológicas necesarias para poder captar (si es que lo hay), ese otro universo paralelo o simbiótico que presentimos junto al nuestro y que sospechamos que está situado mucho m´sas allá de nuestro alcance. Sin embargo, podríamos conjeturar que, ambos universos, se necesitan mutuamente, el uno sin el otro no podría existir y, de esa manera, estaríamos en un universo dual dentro de la paradoja de no poder conocernos mutuamente, al menos de momento, al carecer de los conocimientos necesarios para construir esa tecnología futurista que nos llevaría a esos otros horizontes.

 

La NASA afirma que el primer contacto extraterrestre será en menos de 20  añosUna ecuación matemática estima que sí hay vida en otros planetas y con qué  frecuencia se inicia el fenómeno

 

¿Quién sabe lo que en otros mundos podremos encontrar?

 

¡Oh mundo de muchos mundos!

¡Oh vida de vidas!

¿Cuál es tu centro?

¿Dónde estamos nosotros?

¿Habrá algo más de lo que vemos?

¿Debemos prestar atención a las voces que oímos en nuestras mentes?

¿Cómo pudimos llegar a saber de lo muy pequeño y de lo muy grande?

 

 

 

Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetros. En los sólidos y líquidos ordinarios los átomos están muy juntos, casi en contacto mutuo. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.

De los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3.

Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.

 

 

Pero los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Rutherford, demostró en 1.909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

 

 

El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos en contacto mutuo, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original.

De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos en contacto, obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.

El Portal de la Rosa de los Vientos Forums-viewtopic-Hilo de astronomiaLos ecos de luz alrededor de la estrella V838 Monocerotis, imagen del  Telescopio Espacial Hubble Fotografía de stock - Alamy

 

         Imágenes que nos hablan de transiciones de fase en las estrellas

 

El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero como los núcleos atómicos se mueven de un lado a otros sin impedimento alguno, el material sigue siendo un gas.  Hay estrellas que se componen casi por entero de tales átomos destrozados.  La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.

El misterio de la estrella Sirio y el pueblo dogón | Ciencia | elmundo.es

                                                                        Sirio y su compañera enana blanca

Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho antes que todos los protones tienen carga eléctrica positiva y se repelen entre sí, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en condiciones adecuadas pueden estar juntos y empaquetados un enorme número de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.

 

 

Descubrieron una de las estrellas de neutrones más densas jamás detectada -  InfobaePulsar - Estrella de Neutrones

 

Estas estrellas se forman cuando las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden continuar fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera increíble hasta que se degeneran y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.

Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.

 

Nuestro Sol es la estrella más estudiada en nuestro mundo

 

La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones puede llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad! Sin embargo, en el contexto del Universo eso no supone nada si pensamos en su inmensidad. Si eso es así (que lo es), ¿qué somos nosotros comparados con toda esa grandeza? Bueno, si dejamos aparte el tamaño, creo que somos la parte del universo que piensa, o, al menos, una de las partes que puede hacerlo.

 

Ahí se producen las transiciones de fase que transmutan la materia sencilla en la compleja

 

Objetos como estos pueblan el universo, e incluso más sorprendentes todavía, como es el caso de los agujeros negros explicado en páginas anteriores de este mismo trabajo. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿hasta cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envie luz y calor que la haga posible tal como la conocemos.

 

 

Radiación solar en la superficie de la Tierra – UNIVERSO Blog

 

Todo lo que debes saber sobre la radiación solar | Meteorología en RedQué es la radiación solar? Tipos y características

La radiación solar es frenada y, la que llega a la Tierra es beneficiosa para muchas cosas

 

Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el Sol se necesita una cantidad ingente de fusión: cada segundo tienen que fusionarse 654.600.000 toneladas de hidrógeno en 650.000.000 toneladas de helio  (las 4.600.000 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de esta energía que incide sobre la Tierra basta para mantener toda la vida en nuestro planeta).

Nadie diría que con este consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene encuentra el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.

 

Para completar datos diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un número dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado -, el Sol es hidrógeno en un 80 por ciento.

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654.000  toneladas  por segundo y que lo seguirá haciendo hasta el final, se calcula que ha estado radiando desde hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más.

Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás.  Así pues, la materia prima del Sol contenía ya mucho helio desde el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

 

Por otra parte, el Sol no continuará radiando exactamente al mismo ritmo que ahora. El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo.

A medida que el Sol siga radiando, irá adquiriendo una masa cada vez mayor ese núcleo de helio y la temperatura en el centro aumentará. En última instancia, la temperatura sube lo suficiente como para transformar los átomos de helio en átomos más complicados. Hasta entonces el Sol radiará más o menos como ahora, pero una vez que comience la fusión del helio, empezará a expandirse y a convertirse poco a poco en una gigante roja. El calor se hará insoportable en la Tierra, los océanos se evaporarán y el planeta dejará de albergar vida en la forma que la conocemos.

La esfera del Sol, antes de explotar para convertirse en una enana blanca, aumentará engullendo a Mercurio y a Venus y quedará cerca del planeta Tierra, que para entonces será un planeta yermo.

Los astrónomos estiman que el Sol entrará en esta nueva fase en unos 5 ó 6 mil millones de años. Así que el tiempo que nos queda por delante es como para no alarmarse todavía. Sin embargo, el no pensar en ello… no parece conveniente.

 

 

Espero que al lector de este trabajo, encargado por la Asociación Cultural “Amigos de la Física 137, e/hc”, le resulte entreteniendo y sobre todo interesando los temas que aquí hemos tratado, siempre con las miras puestas en difundir el conocimiento científico de temas de la naturaleza como la astronomía y la física. Tratamos de elegir temas de interés y aquellos que han llamado la atención del público en general, explicándolos y respondiendo a preguntas que seguramente les gustaría conocer, tales como: ¿por qué la Luna muestra siempre la misma cara hacia la Tierra?

La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a este, estos dos bultos – de los cuales uno mira hacia la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra.

 

Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo cada mil años.

Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida menos notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando hacia la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).

La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, como nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, para periodos de rotación iguales, mucho menor.

 

Luna roja sobre el Templo de Poseidón

 

Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación.  Hace seguramente muchos millones de años debió de decelerarse hasta el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara hacia el planeta Tierra.

 

 

samuel- la luna timeline | Timetoast timelines

 

 

Siempre nos muestra la misma cara

 

Esto, a su vez, congela los abultamientos en una aposición fija. Unos de ellos miran hacia la Tierra desde el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún nuevo cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento. La Luna es un caso relativamente simple. En ciertas condiciones, el rozamiento debido a las mareas puede dar lugar a condiciones de estabilidad más complicadas.

Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercan al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de este planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.

Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente para conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? ¿Hay algo más excitante que el descubrir y saber?

emilio silvera

 

El Universo y la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (9)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Gran Nebulosa de Orión

 

En lugares como este que arriba podemos contemplar, nacen las estrellas nuevas, surgen los sistemas planetarios y, de nuevo, a partir del caos de las explosiones supernovas, comienza un nuevo ciclo que, con el paso del Tiempo, nos traerá…¡La Vida! La materia, que como todo en el universo evoluciona mediante procesos imparables que el ritmo del universo nos impone, pasa del estado que llamamos “inerte” a ese otro que nos hemos llegado a comprender y que llamamos “animado” que viene de ánima: Alma.

Sí, nos deja estar en su superficie pero, ¿lo cuidamos bien?

Leer más

¡La Conciencia! ¿Llegaremos a conocerla?

Autor por Emilio Silvera    ~    Archivo Clasificado en conciencia    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Imagen de miniatura de un resultado de LensCómo crea el cerebro recuerdos, los retiene y rememora? – Centro  Psicológico CPC

La conciencia con una inmensa diversidad como si de una galaxia se tratara y que contiene tantas neuronas como estrellas tiene  aquella. Nuestro cerebro  contiene 86.000 millones de neuronas,

 

  • “Todas esas neuronas se comunican a través de unas largas fibras de protoplasma llamadas axones. Aunque parezca mentira, hay 160.934 kilómetros de ellas, lo que supondría dar la vuelta al mundo cuatro veces.
    • Las neuronas son verdaderos bólidos en ese movimiento, y se estima que los impulsos neuronales se transmiten a velocidades de 350 km por hora.
    • Hay 10 billones de sinapsis entre esas neuronas, un número que por ejemplo supera al número total de células del cuerpo humano.
      • Para regar todo ese sistema hay más de 640 kilómetros de vasos capilares
      • Se estima que nuestro cerebro es capaz de realizar unos 10.000 billones (con b española) de cálculos por segundo, y aquí suelen producirse las comparaciones con los supercomputadores actuales. De momento ninguna máquina es capaz de lograr emular ese rendimiento, pero algunos estudios sostienen que en apenas 10 años llegaremos a contar con esa potencia en uno de esos supercomputadores.
      • Esa capacidad de cálculo exige su propia alimentación: el cerebro hace uso de una cantidad de energía equivalente a 25 W para funcionar, y además consume el 20% del oxígeno del cuerpo humano.”
La ConcienciaLa conciencia.

 

Dentro de nuestras mentes, en una maraña de neuronas y conexiones de sinopsis que, de alguna manera, están conectadas con el Universo al que pertenecemos. Ahí reside la Conciencia de Ser y del mundo que nos rodea. Tras complicados procesos químicos de los elementos que conforman la materia compleja de nuestros cerebros, se ha desarrollado una estructura muy compleja de la que, al evolucionar miles de años, se ha podido llegar a generar pensamientos, profundas ideas y sentimientos.

 

Charles Sherrington

Muchos han sido los que han querido explicar lo que es la consciencia.  En 1.940, el gran neuro-fisiólogo Charles Sherrington lo intentó y puso un ejemplo de lo que él pensaba sobre el problema de la consciencia. pocos años más tarde también lo intentaron otros, y antes, el mismo Bertrand Russell hizo lo propio, y en todos los casos, con más o menos acierto, el resultado no fue satisfactorio por una sencilla razón: nadie sabe a ciencia cierta lo que en verdad es la consciencia y cuales son sus verdaderos mecanismos; de hecho, Russell expresó su escepticismo sobre la capacidad de los filósofos alcanzar una respuesta:

                                     Bertrand Russell

“Suponemos que un proceso físico da comienzo en un objeto visible, viaja el ojo donde se convierte en otro proceso físico en el nervio óptico y, finalmente, produce algún efecto en el cerebro al mismo tiempo que vemos el objeto donde se inició el proceso; pero este proceso de ver es algo “mental”, de naturaleza totalmente distinta a la de los procesos físicos que lo preceden y acompañan. La concepción es tan extraña que los metafísicos han inventado toda suerte de teorías con el fin de sustituirla con algo menos increíble”.

 

La conciencia, de alguna manera, está conectada con el universo que la creó

Está claro que en lo más profundo de consciencia (que no conocemos), se encuentran todas las respuestas planteadas o requeridas mediante preguntas que nadie ha contestado. Para poder llegar a esos conocimientos tan profundamente escondidos dentro de nosotros, debemos observar la Naturaleza que, habiendo logrado traernos hasta aquí, a partir de la materia “inerte”, es la que, contiene todos y cada uno de los que nos dirán lo que somos, de dónde venimos y dónde vamos.

En variadas oportunidades he mencionaba el cosmos y la gravedad junto con la consciencia y, en realidad, con más o acierto, lo que estaba tratando era ver que todo ello es la misma cosa: universo-galaxia-mente. Nada es independiente en un sentido global, sino que son partes de un todo y están estrechamente relacionados.

              Sí, todo el universo infinito está dentro de nuestras mentes, allí debemos buscar

Una galaxia es simplemente una pequeña del universo, nuestro planeta es una mínima fracción infinitesimal de esa galaxia, y nosotros mismos podríamos ser comparados (en relación a la inmensidad del cosmos) con una colonia de bacterias pensantes e inteligentes. Sin embargo, todo de lo mismo, y aunque pueda dar la sensación engañosa de una cierta autonomía, en realidad todo está interconectado y el funcionamiento de una cosa incide directamente en las otras.

El Secreto

Algunos buscan incansables una conciencia planetaria, algo que en este mundo no hay. Sólo algunas mentes parecen estar preparadas, o, mejor predispuestas lograr tal estadio de comprensión “humana” que englobe a todos los demás como sus hermanos. El resto…Ya lo estamos viendo. La única conciencia que ellos prima es la suya particular que, es cambiante y acomodaticia a sus propios intereses.

Tener la capacidad de fundirse con la Naturaleza, sentirse de ella. ¡Si supiéramos utilizar el poder la Mente! Si podemos llegar, por fín, a lograr que todas nuestras mentes trabajen al unísono, como una sóla mente, entonces, amigos míos, seguramente, miraremos atrás y, nos sonreiremos al ver, como en otros tiempos pasados erámos tan simples, tan poco evolucionados que, inconscientes, llegamos a cometer actos de los que , en ese futuro, ni queremos recordar.

Uno de los grandes errores que cometemos es, creernos los únicos seres inteligentes del planeta, y, ¡estamos tan equivocados!

Después de millones y millones de de evolución, se formaron las consciencias primarias que surgieron en los animales con ciertas estructuras cerebrales de alta complejidad, que podían ser capaces de construir una escena mental, pero con capacidad semántica o simbólica muy limitada y careciendo de un verdadero lenguaje.

CHACRAS EN LOS NIÑOS

 

 

Formación de los Chakras en los niños - Psicología Integral UruguayLa memoria y sus lagunas: ¿por qué todos nos inventamos nuestro pasado? –  Yorokobu

 

Ya recrean imágenes mentales al recordar su inmediato pasado. Los niños nacen con un cuerpo mental y astral muy fuerte y seguro. Hasta que una persona no adquiere conciencia no se da cuenta otra vez que ese sueño, esa otra realidad, realmente existe y es parte de algo mucho más grande que desde la mente del yo despierto o consciente se pueda entender.

Conectar la Conciencia a la Vida con tu respiración - Shurya.comPor qué es absurdo pensar que la conciencia surge de la materia

La consciencia de orden superior (que floreció en los humanos y presupone la coexistencia de una conciencia primaria) viene acompañada de un sentido de la propia identidad y de la capacidad explícita de construir en los estados de vigilia escenas pasadas y futuras. mínimo, requiere una capacidad semántica y, en su más desarrollada, una capacidad lingüística.

Los procesos neuronales que subyacen en nuestro cerebro son en realidad desconocidos, y aunque son muchos los estudios y experimentos que se están realizando, su complejidad es tal que de los avances son muy limitados. Estamos tratando de conocer la máquina más compleja y perfecta que existe en el universo.

El Despertar De Una Nueva Conciencia | Vivir AgradecidosSabemos que el cerebro produce conciencia, pero no sabemos cómo” | Letras  Libres

Sí, sabemos algo sobre lo que ahí reside, sin embargo, presentimos, intuimos, que es mucho más lo que esconde. No hemos podido acceder a ello y, es tal su complejidad que, el Universo parece más fácil de descifrar que nuestras mentes. ¿Qué contradicción es esa? O, mejor sería exclamar: ¡Qué maravilla es esa!

Si eso es así, resultará que después de todo no somos tan insignificantes como en un principio podría parecer, y sólo se trata de tiempo. En su momento y evolucionadas, nuestras mentes tendrán un nivel de conciencia que estará más allá de las percepciones físicas tan limitadas. entonces sí estaremos totalmente integrados y formando parte, como un todo, del universo que presentimos.

El carácter especial de la conciencia me hace adoptar una posición que me lleva a decidir que no es un objeto, sino un proceso, y que este punto de vista considerarse un ente digno del estudio científico perfectamente legítimo. ¿Por qué no podría, la materia evolucionada hasta sus últimas consecuencias formar un ente pensante, consciente, generador de pensamientos y que, con unn poder mental de enormes energías futuras, pudiera conectar con su origen en las estrellas.

Puede ser verdad que el poder de la Mente, al menos de , sólo sea virtual y, de esa manera, simplemente con el pensamiento pueda, en todo instante, realizar cualquier cosa que podamos pensar. Sin embargo, ¿será lo mismo mañana? Yo, por si acaso, no lo aseguro.

La conciencia plantea un problema especial que no se encuentra en otros dominios de la ciencia. En la física y en la química se suelen explicar unas entidades determinadas en función de otras entidades y leyes. Podemos describir el agua con el lenguaje ordinario, podemos igualmente describir el agua, al en principio, en términos de átomos y de leyes de la mecánica cuántica. Lo que hacemos es conectar dos niveles de descripción de la misma entidad externa (uno común y otro científico de extraordinario poder explicativo y predictivo, ambos niveles de descripción), el agua líquida, o una disposición particular de átomos que se comportan de acuerdo con las leyes de la mecánica cuántica (se refiere a una entidad que está fuera de nosotros y que supuestamente existe independientemente de la existencia de un observador consciente).

La fuente que mana

El agua, fuente de vida y, nuestras Mentes que lo saben, se alegran ante imágenes que como estas, crean ecosistemas y  Naturaleza Viva

En el caso de la conciencia, sin embargo, nos encontramos con una simetría. Lo que intentamos no es simplemente comprender de qué manera se explican las conductas o las operaciones cognitivas de otro ser humano en términos del funcionamiento de su cerebro, por difícil que esto parezca. No queremos simplemente conectar una descripción de algo externo a nosotros con una descripción científica más sofisticada. Lo que realmente queremos hacer es conectar una descripción de algo externo a nosotros (consciencia-mente), con algo de nuestro interior (el cerebro creador): una experiencia, nuestra propia experiencia individual, que nos acontece en tanto que observadores conscientes.

Ya sabemos qué se siente al Ser nosotros mismos, qué significa Ser nosotros mismos, pero queremos explicar por qué somos conscientes, saber qué es ese “algo” que nos hace Ser como somos, explicar, en fin, cómo se generan las cualidades subjetivas experienciales. En suma, deseamos explicar ese “Pienso, luego existo” que Descartes postuló como evidencia primera e indiscutible sobre la cual edificar toda la filosofía.

Ninguna descripción, por prolija que sea, logrará nunca explicar claramente la experiencia subjetiva. Muchos filósofos han utilizado el ejemplo del color para explicar este punto. Ninguna explicación científica de los mecanismos neuronales de la discriminación del color, aunque sea enteramente satisfactoria, bastaría para comprender cómo se siente el proceso de percepción de un color. Ninguna descripción, ninguna teoría, científica o de otro , bastará nunca para que una persona daltónica consiga experimentar un color.

      Por mucho que con mil detalles te lo puedan explicar, nunca será como verlo y sentirlo. Un paisaje o el amor, una canción, la más bella pintura, o, la mejor imagen del Universo.

Pensemos por un momento que tenemos un amigo ciego al que contamos lo que estamos viendo un día soleado del mes de abril: el cielo despejado, limpio y celeste, el Sol allí arriba esplendoroso y cegador que nos envía su luz y su calor, los árboles y los arbustos llenos de flores de mil colores que son asediados por las abejas, el aroma y el rumor del río, cuyas aguas cantarinas no cesan de correr transparentes, los pajarillos de distintos plumajes que lanzan alegres trinos en sus vuelos por el ramaje que se mece movido por una brisa suave, todo esto lo contamos a nuestro amigo ciego que, si de pronto pudiera ver, comprobaría que la experiencia directa de sus sentidos ante tales maravillas, nada tiene que ver con la pobreza de aquello que le contamos, por muy hermosas palabras que para la descripción pudiéramos emplear.

La mente humana es tan compleja que no todos ante la misma cosa vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugiere. De diez personas, sólo coinciden tres, los otros siete divergen en la apreciación de lo que el dibujo o la figura les sugiere.

Esto nos viene a demostrar la individualidad de pensamiento, el libre albedrío decidir. Sin embargo, la misma prueba realizada en grupos de conocimientos científicos similares y específicos: físicos, matemáticos, químicos, etc, hace que el de coincidencias sea más elevado; más personas ven la misma respuesta al problema planteado. Esto nos sugiere que la mente está en un estado virgen que cuenta con todos los elementos necesarios para dar respuestas pero que necesita experiencias y aprendizaje para desarrollarse.

¿Debemos concluir entonces que una explicación científica satisfactoria de la conciencia queda para siempre fuera de nuestro alcance? ¿O es de alguna manera posible, romper esa barrera, tanto teórica como experimental, para resolver las paradojas de la conciencia?

El duelo por la muerte de un hijo (y una guía en PDF)

    Sí, algún día,  podríamos  llegar a llorar…,  ¡por no haber sabido comprender! Sentirse solo ante una inmensidad que nunca llegamos a comprender. Esa frustración la sintieron los mejores filósofos.

La respuesta a estas y otras preguntas, en mi opinión, radica en reconocer nuestras limitaciones actuales en este campo del conocimiento complejo de la mente, y como en la física cuántica, existe un principio de incertidumbre que, al menos de momento (y creo que en muchos cientos de años), nos impide saberlo todo sobre los mecanismos de la conciencia, y aunque podremos ir contestando a preguntas parciales, alcanzar la plenitud del conocimiento total de la mente no será nada sencillo, otras razones está el serio inconveniente que suponemos nosotros mismos, ya que con nuestro quehacer podemos, en cualquier momento, provocar la propia destrucción.

Una cosa sí está clara: ninguna explicación científica de la mente podrá nunca sustituir al fenómeno real de lo que la propia mente pueda sentir.

¿Qué hace la ciencia, aparte de seguir creciendo?

Immanuel Kan decía:

“Todo nuestro conocimiento arranca del sentido, pasa al entendimiento y termina en la razón.”

Lo cierto es que nuestro cerebro conforma un escenario del mundo al recibir información que recibe de nuestros sentidos y, como no somos perfectos, no todos los sentidos envían la misma información, y, de esa manera, cada cual tiende a crear su “propio mundo”, su “propia realidad”, su “propia consciencia” de lo que le circunda y percibe. De ahí la diversidad de ideas y, también, la complejidad de conocer lo que la mente es.

Cada cabeza es un mundo y no en todos los mundos hay vida inteligente.En Cada Cabeza un Mundo, por Carlos M. Montenegro

Es cierto que cada cabeza es un mundo y no será fácil llegar a comprender… ¡Lo que la consciencia es!

emilio silvera

¿Qué dice la NASA? ¡Hay cosas peores que el Coronavirus!

Autor por Emilio Silvera    ~    Archivo Clasificado en Catástrofes Naturales    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Vista Aérea De Manhattan Más Baja NYC Imagen de archivo - Imagen de  brooklyn, centro: 98475461Vista Aérea De Midtown Manhattan New York City Foto de archivo - Imagen de  edificio, manhattan: 101142486
Vista Aérea De Manhattan De Nueva York Foto de stock y más banco de  imágenes de Ciudad de Nueva York - iStockDescargar fondos de pantalla Manhattan, vista aérea vista aérea de Nueva  York, estados UNIDOS, tarde, puesta de sol, paisaje urbano, rascacielos,  Centro de Comercio Mundial 1, edificios modernos libre. Imágenes fondos de
                                           Vista aérea de Manhattan

El administrador jefe de la NASA (entonces), Charles Bolden, señaló, en su comparecencia en la Comisión de Ciencias en el Congreso de Estados Unidos, que solo cabe rezar si un asteroide se dirigiera a Nueva York.

                                  El de Rusia dejó una buena huella

 Un asteroide de unos 17 metros de diámetro explotó el pasado 15 de febrerosobre Chelyabinsk, Rusia, generando ondas de choque que rompieron ventanas y dañaron edificios. Más de 1.500 personas resultaron heridas.

Un asteroide pasa muy cerca de la tierra pero no hay de qué preocuparse ¿o  sí? - VIX

                                      Este nos pasó cerca

Más tarde, ese mismo día, un asteroide más grande descubierto el año pasado pasó a solo 27.681 kilómetros de la Tierra, más cerca que los satélites de telecomunicaciones que rodean el planeta. Para Bolden, estos eventos “sirven como prueba de que vivimos en un sistema solar activo, con objetos potencialmente peligrosos que pasan por nuestro vecindario con una frecuencia sorprendente”.

  “Un asteroide de un kilómetro o más, probablemente podría acabar con la civilización”

“Tuvimos la suerte de que los acontecimientos del mes pasado fueran simplemente una coincidencia interesante en lugar de una catástrofe”, dijo cuando ocurrió el suceso el presidente del Comité, Lamar Smith, republicano de Texas, quien convocó la audiencia para saber qué se está haciendo y cuánto dinero se necesita para proteger mejor el planeta.

DART, la misión de la NASA, altera la trayectoria de un asteroide - The New  York TimesPotencialmente peligroso”: la Nasa emite una advertencia por la proximidad  de un asteroide que se acerca peligrosamente a la Tierra - La Tercera

La NASA ha encontrado y sigue de cerca un 95 por ciento de los objetos más grandes que vuelan cerca de la Tierra, los que tienen 1 kilómetro o más de diámetro. “Un asteroide de ese tamaño, de un kilómetro o más grande, probablemente podría acabar con la civilización”, dijo John Holdren, asesor científico de la Casa Blanca, a los legisladores en la misma audiencia.

Potenciales asesinos de ciudades

Sin embargo, sólo se conoce aproximadamente el 10 por ciento de una estimación de 10.000 potenciales asteroides “asesinos de ciudades”, aquellos con un diámetro de 50 metros.  En promedio, se estima que los objetos de ese tamaño llegan a la Tierra alrededor de una vez cada 1.000 años. “A partir de la información que tenemos, no sabemos de ningún asteroide que amenace la población de los Estados Unidos”, dijo Bolden. “Pero si viene en tres semanas, recen”.

Además de la intensificación de sus esfuerzos de vigilancia y la creación de alianzas internacionales, la NASA está considerando el desarrollo de tecnologías para desviar un objeto que puede estar en un curso de colisión con la Tierra.

El asteroide que explotó sobre Rusia el mes pasado fue el objeto más grande que chocó con la atmósfera de la Tierra desde el evento de Tunguska en 1908, cuando un asteroide o un cometa explotó sobre Siberia, arrasando 80 millones de árboles en más de 2.150 kilómetros cuadrados como arriba podéis ver. La onda expansiva dio la vuelta al mundo y fue recogida por todos los sismógrafos.

El Día Después de Mañana”: Cómo la película de Hollywood se vuelve más real  después del informe del cambio climático de la ONU - La TerceraEl escenario de la película 'El día después de mañana' podría hacerse  realidad - RT

De la película “El día de mañana”

Claro que, el suceso, podría caer en cualquier parte del mundo y, los americanos ¡tan suyos ellos! se empeñan en que todo pase en Nueva York… Aunque sea una catástrofe. Con tal de hacer una película son capaces de cualquier cosa.

emilio silvera

¡Por fin! El James West

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Así es como el telescopio espacial James Webb va a cambiar nuestra forma de ver el universo
       El Telescopio Espacial James West cambiará nuestra forma de ver el Universo

Hubble descubre la galaxia más antigua del Universo hallada hasta ahora

                                                               Las galaxias más antiguas del Universo

 

Los telescopios espaciales son como máquinas del tiempo: cuando uno capta una imagen de una galaxia lejana, lo hace a sabiendas de que esa foto es ya muy vieja cuando la vemos. Y pronto tendremos la máquina del tiempo más especial y espectacular de la historia: el telescopio espacial James Webb.

Se espera que el telescopio —un proyecto conjunto de la NASA y las agencias espaciales europea (ESA) y canadiense (CSA)— se lance por fin al espacio el próximo 22 de diciembre de 2021. Tardará unos meses en comenzar a operar como está previsto, pero cuando lo haga nos ofrecerá imágenes alucinantes y permitirá hacer un viaje en el tiempo increíble: no en vano es 100 veces más potente que el legendario Hubble.

Unos comienzos difíciles

 

El telescopio espacial Hubble se lanzó en 1990 y tres más de tres décadas en funcionamiento está ya sufriendo de achaques importantes. El último lo tuvo fuera de servicio unos días pero finalmente la NASA logró solucionar el problema técnico y puede que este ya viejo explorador del espacio pueda aún dar guerra durante un tiempo.

Webb5

Lo cierto es que el plan para sustituirlo comenzó muy pronto. Todo comenzó en 1996 con el plan llamado Next Generation Space Telescope (NGST), que en 2002 acabó cambiando de nombre para adoptar el del segundo máximo responsable de la NASA, James E. Webb, que dirigió la agencia desde 1961 hasta 1968.

El proyecto, liderado por la NASA pero con la participación de la ESA y la CSA, tuvo un recorrido errático que además de estar plagado de retrasos también vio cómo el presupuesto iba creciendo de forma notable con frecuencia.

De hecho la estimación inicial del coste era de 1.600 millones de dólares y se estimaba que se lanzaría en 2007. Finalmente el presupuesto ha ascendido a 9.700 millones de dólares, y su lanzamiento —que ya está a punto de caramelo— se ha visto retrasado hasta este 22 de diciembre de 2021, lo que suponen 14 años desde aquella fecha inicial que se había planteado.

            El Telescopio Espacial James West es diferente (y mucho mejor) que el Hubble

Hay diferencias importantes entre el Hubble y el James Webb. En primer lugar está la de la distancia a la que operarán: mientras que el Hubble está situado a un baja órbita terrestre (en su apogeo, 540,9 km de distancia con nuestro planeta), el James Webb estará mucho más lejos. Muchísimo más.

Webb 6

De hecho a pesar de que el Hubble lleva tres décadas logrando capturar imágenes asombrosas de nuestro universo, su operativa estaba limitada por la luminiscencia y el ligero halo de la atmósfera terrestre.

El telescopio espacial James Webb pasará aproximadamente un mes viajando hasta el llamado segundo punto de Lagrange (L2), que está aproximadamente a 1,5 millones de kilómetros de la tierra. Durante ese viaje el James Webb irá desplegándose, irá reduciendo su temperatura operativa y sus sistemas coomenzarán a ser evaluados de forma previa a iniciar sus funciones.

Eso le permitirá al James Webb tener una perspectiva única de nuestro universo. Una “sin distracciones” con la que podrá tomar imágenes aún más impactantes, pero esa ventaja tiene un contrapunto: la distancia a la que está el Hubble permite repararlo en caso de problemas. Con el James Webb esa ocpión está descartada, y es necesario que todo funcione a la perfección desde el primer momento. No tendrá segundas oportunidades.

Webb1

Otra de las claves del telescopio espacial James Webb estará en su espejo principal, el llamado Optical Telescope Element, que consta de 18 segmentos hexagonales fabricados con berilio recubierto por una película de 48,25 gramos de oro. Esos segmentos combinados forman un espejo gigante de 6,5 m de diámetro, frente a los 2,4 del espejo principal del Hubble.

El James Webb contará además con un escudo solar de Kapton revestido de silicio y aluminio, lo que permitirá mantener la temperatura operativa por debajo de los 50 grados Kelvin (-223,15 ºC) a pesar de su exposición a la radiación solar.

Deep Field

¿Qué se logra con algo así en la práctica? Para explicarlo es útil tomar como referencia la célebre imagen ‘Deep Field’ que el Hubble tomó en 1995 y que recogió tanta luz como fue posible de un diminuto pedazo de cielo. Aquella imagen permitió descubrir miles de galaxias, lo que a su vez permitió que se refinara el número de galaxias que se piensa que existen en nuestro universo.

Aquella foto era un espectacular viaje en el tiempo, y las galaxias aparecían tal y como eran hace miles de millones de años. Pues bien, con el James Webb esa capacidad irá mucho más allá. Esa imagen del Hubble podrá tomarse de forma que todo sea más brillante y más detallado. Básicamente podremos viajar aún más atrás en el tiempo.

Webb2
El telescopio James Webb, listo para viajar al espacio. Fuente: ESA/CNES/Arianespace.

De hecho con el Webb esperan poder ver las primeras estrellas y galaxias que se formaron tras el Big Bang. El Hubble ha logrado captar luz de estrellas que se formaron 400 millones de años tras el Big Bang, y esa imagen ha tardado 13.300 millones de años en llegar a nosotros.

Con el James Webb se podrán ver estrellas formadas 250 millones de años después del Big Bang. No parece mucho, pero en realidad es la diferencia entre ver las primeras estrellas que realmente comenzaron a brillar frente a verlas ya apagándose.

Ni siquiera con el telescopio más potente del mundo sería posible ver mucho más atrás: tras el Big Bang el universo estuvo cubierto de una niebla de gras primigenio que lo oscurecía todo: a aquello se la llama la era oscura cósmica y de hecho uno de los grandes retos de la cosmología es cómo el universo se expandió tan rápido durante aquellos primeros instantes.

Que viva la luz infrarroja

 

Otra de las claves del funcionamiento del James Webb será el tipo de luz que capta. Mientras que el ojo humano solo es capaz de captar un pequeño rango del espectro que llamamos ‘luz visible’, el universo contiene muchos otros rangos.

Webb3
                                   Fuente: NASA y J. Olmstead.

Entre ellos están aquellos de rangos de alta frecuencia y alta energía como los rayos gamma, los ultravioletas o los rayos-X. En el otro lado del espectro está la luz de baja energía con longitudes de onda mucho más amplias: la luz infrarroja, las microondas o las ondas de radio.

Mientras que el Hubble captura luz visible, ultravioleta y algo de luz infrarroja, el telescopio James Webb estará centrado en la luz infrarroja, y ese será el secreto para lograr que este telescopio espacial pueda viajar aún más atrás en el tiempo.

La luz infrarroja es a menudo “luz muy vieja” debido a un fenómeno llamado corrimiento al rojo, que ocurre cuando la radiación electromagnética se desplaza hacia el rojo al final del espectro electromagnético.

Resuelto el misterio de la expansión del universo

Dado que el universo está en expansión, los cuerpos más lejanos de nosotros siguen alejándonos, y la luz que viaja a través del espacio de esas galaxias lejanas literalmente se estira por la expansión del espacio. Que el James Webb capte luz infrarroja precisamente permite que capte la luz emitida por esos cuerpos que se han alejado muchísimo de nosotros.

Hay otra ventaja de trabajar con la luz infrarroja: es también estupenda para descubrir nuevos exoplanetas. La luz visible no es buena aliada para esto, y de hecho si queremos descubrir otros planetas similares a la Tierra en otros sistemas solares, es ideal elegir este espectro, que es también en el que emite nuestro planeta visto desde gran distancia.

Que compuestos químicos delatarían la existencia de vida en otro planeta? |  Actualidad | Investigación y CienciaAsí es como el telescopio espacial James Webb va a cambiar nuestra forma de  ver el universo

Con el telescopio espacial James Webb será también posible determinar compuestos químicos de las atmósferas de esos exoplanetas. Por ejemplo, será posible detectar agua, dióxido de carbono o metano, y aunque su existencia no es la prueba definitiva de vida, permitirá plantear debates interesantes sobre esa posibilidad.

Cuándo veremos las primeras imágenes del James Webb

 

El lanzamiento del telescopio espacial James Webb está programado para el próximo 22 de diciembre de 2021 a las 13:20 de la tarde, hora local en España peninsular.

Webb Ariane5

El lanzamiento se realizará en un cohete Ariane 5 —parte de la contribución europea a la misión— que despegará desde el Puerto Espacial Europeo situado cerca de Kourou, en la Guayana Francesa.

Como explican en la FAQ de la NASA, tardaremos algún tiempo en ver las primeras imágenes captadas por este telescopio. De hecho tocará esperar aproximadamente un mes para que el James Webb, habiendo ya dejado muy atrás al cohete Ariane, alcance su órbita en L2.

Orbital2 Webb

Durante ese tiempo el James Web se habrá ido desplegando, se habrán iniciado los procesos para refrigerarlo y comenzarán a activarse sus instrumentos. En ese primer mes se desbloquearán todos los segmentos del espejo principal y secundario y se verificará que se pueden mover.

En los siguientes cinco meses el equipo de tierra se encargará de alinear la óptica del telescopio y de calibrar los instrumentos científicos. Se comprobarán los sistemas de alineación del telescopio y se tomarán las primeras imágenes de calibración, que probablemente aparecerán distorsionadas ya que todos los segmentos del espejo principal deberán estar perfectamente alineados para tomar imágenes perfectas.

El telescopio espacial James Webb podrá detectar vida en menos de 3 días -  InfobaeSeleccionan los primeros programas científicos que realizará el telescopio  espacial James Webb - Actualidad Aeroespacial

Tras seis meses en el espacio, explican en la NASA, “¡operaciones científicas!”, lo que significa que comenzará la actividad real del telescopio y será entonces —verano de 2022— cuando la NASA probablemente comience a compartir imágenes captadas por el telescopio.

Y a partir de ahí, a hacer historia con esta espectacular “máquina del tiempo” que se espera esté operativa durante al menos cinco años y medio y que podría estarlo más de diez años. La vida útil está limitada por la cantidad de combustible necesaria para mantener la órbita, y precisamente se estima que el combustible incluido dará como mínimo para diez años.

Más información | NASA