domingo, 22 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La supergravedad

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (3)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

La fuerza gravitatoria es, sin duda, una fuerza muy importante  que actúa sobre las partículas elementales que tienen masa. Es cierto que, la fuerza, cuando se trata de que interaccione con minusculos objetos, es casi despreciable, eso ocurre con los átomos y moléculas y todas las demás partículas de las que aquí hemos hablado en infinidad de ocasiones. Pero cuando miramos a partículas considerablemente menores que el tamaño del núcleo atómico, se alcanza un punto de retorno. La gravedad actúa sobre la masa de las partículas, mientras que todas las demás fuerzas actúan sobre algo que llamamos “carga”. La diferencia es que la carga depende muy ligeramente del grado de amplificación de nuestro microscopio, mientras que la masa está conectada con la energía.

y si tratamos de localizar una partícula en un volumen menor entonces, de acuerdo con las leyes de la mecánica cuántica, ahó habrá más movimientos y la energía de movimiento (llamada “energía cinética”) aumenta. Por esta razón, a distancias menores corresponden energías mayores y, por lo tanto, también masas mayores. Cuando las distancias son tan pequeñas que los movimientos se hacen relativistas (esto es, alcanzan velocidades cercanas a la velcoidad de la luz) los efectos de la fuerza gravitatoria comienzan a aumentar gradualmente en comparación con las demás fuerzas; sin embargo, aún son increíblemente débiles y tienen un largo camino por recorrer hasta poder competir en intensidad.

Claro que, todo esto, incluso para los grandes expertos, es altamente confuso y, nos viene a decir que, el límite nuestras teorías está definido por las unidades de Planck. Más allá de ellas (El Tiempo de Planck, la masa y la  Energía de Planck, etc.) nada sabemos.

Encuentran el agujero negro más cercano a la Tierra

Los conocimientos sobre el Universo aumentan

Encuentran el agujero negro más cercano a la Tierra

 

Localizan el agujero negro que crece más rápido en el universoEncuentran un agujero negro tan grande que parece imposible • Tendencias21

El Hubble espía la guarida de las estrellas gigantes

En todas las regiones del espacio interestelar donde existen objetos de enormes densidades y estrellas super-masivas se pueden producir, en cualquier momento, sucesos de energías increíbles que, son captados por nuestros ingenios detectando magnitudes de energías nunca antes conocidas. Estrellas nuevas y masivas que irradian en el ultravioleta generando fuerzas que inundan regiones inmensas y bañando la materia interestelar de manera tal que, en esas estrellas nuevas han comenzado aquellos mecanismos de creación de la materia que se transforma continuamente mediante su desarrollo evolutivo que, la llevará, finalmente, al surgimiento de la vida.

Big Bang models back to Planck time

Pero sigamos , según lo que podemos entender y hasta donde han podido llegar nuestros conocimientos actuales, ahora sabemos donde están las fronteras: donde las masas o las energías superan 1019 veces la masa del protón, y esto implica que estamos mirando a estructuras con un tamaño de 10-33 centímetros. Esta masa la conocemos con el nombre de masa de Planck y a la distancia correspondiente la llamamos distancia de Planck. La masa de Planck expresada en gramos es de 22 microgramos, que la es la masa de un grano muy pequeño de azúcar (que, por otra parte, es el único número de Planck que parece más o menos razonable, ¡los otros números son totalmente extravagantes!). Esto significa que tratamos de localizar una partícula con la precisión de una longitud de Planck, las fluctuaciones cuánticas darán tanta energía que su masa será tan grande como la masa de Planck, y los efectos de la fuerza gravitatoria entre partículas, así, sobrepasarán los de cualquier otra fuerza. Es decir, para estas partículas la gravedad es una interacción fuerte.

Qué relación hay entre la gravedad y las otras fuerzas? | Actualidad |  Investigación y CienciaY si el espacio tiempo no es continuo, sino que está dividido en pequeñas  «piezas»?

Si la Gravedad llega a ser una interacción fuerte, será un verdadero desastre. No se puede evitar lamentando que hará de la gravedad algo tan difícil como “la cromo-dinámica cuántica” cuando interacciona con los quarks. Aquí la situación es mucho más grave. Cuanto más pequeñas sean las estructuras que tratamos de estudiar más intensa es esta fuerza, hasta el extremo de que incluso los intentos más burdos para describirla darán lugar a resultados completamente absurdos.

La Teoría de la Relatividad: Las escalas de PlanckNo hay ninguna descripción de la foto disponible.

Todo lo que conocemos acerca de la Naturaleza será inválido en la escala de Planck, y nosotros que pensábamos que conocíamos todo con gran precisión. La Teoría de Einstein acerca de la Naturaleza de la fuerza gravitatoria funciona espléndidamente. parte de un principio muy fundamental, uno que prácticamente tiene que ser correcto: la gravedad es una propiedad del espacio y el tiempo mismos. El Espacio y el Tiempo están “curvados” quiero decir exactamente lo que sucede a un trozo de papel cuando se humedece: de deforma y no hay manera de alisarlo ni pasándole la plancha caliente. La guerza Gravitatoria es la responsable de semejante rugosidad en el espacio tiempo.

Por qué el tiempo pasa más despacio cerca de un agujero negro? Caso  «Interstellar» – Ciencia de SofáMiden una distorsión del espacio-tiempo a 25,000 años-luz de la Tierra -  INVDES

                      El Tiempo transcurre más despacio en las cercanías de un agujero negro

Sabemos que el espacio se curva en presencia e grandes masas que también, llegan a distorsionar el Tiempo. Otra cuestión sería saber el por qué de tan extraño suceso que hemos adjudicado al funcionamiento de la Interacción gravitatoria de la que, sabiendo mucho, no hemos podido llegar a saberlo todo.

Cuando más cerca estamos de la Longitud de Planck más fuerte resulta la necesidad de aplicar las leyes de la me´canica cuántica a esas arrugas del espacio-tiempo. Mientras las arrugas sean pequeñas, sabemos hacerlo y así obtenemos una teoría conocida como “gravedad cuántica”. Esta teoría predice la existencia de los ya tantas veces mencionados Gravitones. esas “partículas” elementales con espín 2 y masa cero.

 

Explicándolo brevemente, la Longitud de Planck hace referencia a que cualquier partícula que mida menos de esa longitud, dejará de tener una geometría clásica, es decir,  un objeto sin las dimensiones que conocemos, las cuales son largo, ancho, y profundidad.  Cuando hablamos de espuma cuántica, nos referimos a que el tejido del universo, se halla sobre estas longitudes. La longitud de Planck es de…

 

\ell_P =\sqrt\frac{\hbar G}{c^3} \approx 1.616 199 (97) \times 10^{-35} \mbox{ metros}

 

Qué es la espuma cuántica? | Muy Interesante

¿será así la espuma cuántica

 

Cuanto más cerca estamos de la Longitud de Planck, más rugoso se vuelve el espacio-tiempo, simplemente porque las arrugas más pequeñas se hacen más pronunciadas que las grandes. Las incertidumbres usuales, típicas de la mecánica cuántica, harán que las arrugas sean más borrosas. Y si tratamos de ir más allá de la Longitud de Planck, todo funciona mal. La curvatura y la incertidumbre llegan a ser tan grandes que la noción de “distancia entre dos puntos” deja de tener sentido, porque no hay reglas para medir que se ajusten a este espacio. El espacio y el tiemopo mismos se vuelven magnitudes inútiles. La definición matemática de lo que “significa” el espacio y el tiempo depende de la definición de “distancia entre dos puntos”. Esto probablemente implica que antes de encontrar una descripción útil del mundo sub-Plankiano, tendremos que cambiar completamente lo que sabemos de física.

Reconocimiento a los padres de la supergravedad | En perspectiva | SciLogs  | Investigación y Ciencia

Qué es la super-gravedad, la teoría ganadora del ‘Oscar de la Ciencia’ – Tec Review

La última parada antes de que tal cosa suceda se llama “super-gravedad”, una construcción matemáticamente complicada que consigue combinar la supersimetría con la fuerza gravitatoria pero, ¿qué es la super-gravedad? Meternos en esos berenjenales matemáticos sería algo engorroso y (para muchos) aburrido.

¿Qué pasa entonces con la super-gravedad? Aquí, al principio las cosas parecen mucho mejores e incluso al nivel de tres lazos nada parece ir mal. Los entusiastas afirman que esto no podía ser una coincidencia y que la teoría final de todas las fuerzas podría estar a la vista. ¿Una teoría de todas las fuerzas? ¿Podemos imaginar una cosa así? ¿Sería posible una formulación exacta  de las leyes de la física? ¿Se podría encontrar eso alguna vez?. Claro que, todo esto nos lleva a “universos” insospechados, lugares cada vez más pequeños en un reino donde el espacio y el tiempo dejan de existir, ya no podemos hablar de puntos y, nos vemos obligados a tener que hablar de cuerdas vibrantes.

 

http://guillegg.files.wordpress.com/2010/06/strings1.jpg

 

 

¿Quién sabe? Como decía en alguna ocasión, también en esta ocasión, los teóricos podrían haber dado en el blanco y, con su intuición “infinita”, haber descubierto que toda la materia del universo está formada por cuerdas vibrantes y armónicas que se conjugan de diferentes maneras, produciendo con sus pulsos, nuevas partículas.

¡Es todo tan extraño! ¡Es todo tan complejo! y, sobre todo…¡sabemos tan poco!

emilio silvera


  1. ¡El Universo! ¿de 11 Dimensiones? : Blog de Emilio Silvera V., el 24 de octubre del 2012 a las 7:46

    […] de la gravedad algo tan difícil como “la cromodinámica cuántica” cuando interacciona con los quarks. Aquí la situación es mucho más grave. Cuanto más pequeñas sean las estructuras que tratamos […]

  2. ¡Es mucho, lo que no sabemos! : Blog de Emilio Silvera V., el 25 de diciembre del 2012 a las 8:23

    […] la gravedad,  algo tan difícil como “la cromodinámica cuántica” cuando interacciona con los quarks. Aquí la situación es mucho más grave. Cuanto más pequeñas sean las estructuras que tratamos […]

  3. ¡El Universor! ¿De 11 dimensiones? : Blog de Emilio Silvera V., el 12 de junio del 2013 a las 6:02

    […] de la gravedad algo tan difícil como “la cromodinámica cuántica” cuando interacciona con los quarks. Aquí la situación es mucho más grave. Cuanto más pequeñas sean las estructuras que tratamos […]

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting