Sep
27
¿Sabremos alguna vez lo que la Vida es?
por Emilio Silvera ~ Clasificado en General ~ Comments (1)
A pesar del tiempo transcurrido, la Vida, nos sigue asombrando. ¿Qué pasó para que surgiera?
Cúmulo abierto 290 Joyero Estelar
Aquellos primeros intentos del hombre por conocer el Universo y el lugar que ocupaba en él, convertía ese misterio de la Naturaleza en una poderosa historia que, desde épocas remotas, ha estado siempre desafiando nuestro intelecto. Cuando llegamos a un aceptable nivel de conocimientos, pudimos buscar los fósiles de animales como los dinosaurios siguen causando el asombro del público en general y nos transportan a un tiempo en los que reinaban en aquellos frondosos bosques mesozoicos por los que bullía la vida de aquellas bestias prodigiosas.
Cráneo de Lucy, el fósil de un niño de hace 3,3 millones de años de la especie Astrolopithecus afarensis. El cráneo de Lucy y unos huesos diminutos, cuidadosamente dispuestos en una vitrina, nos transportan hasta la cálida sabana africana en la que se gestó hace unos tres millones de años, la aventura de la especie humana.
Los más antiguos son los trilobites, esos monarcas de los mares cámbricos que, con sus extremidades articuladas, deambulaban por los arrecifes tropicales hace unos quinientos millones de años.
Pocos especímenes inspiran una mayor emoción entre los coleccionistas de fósiles que un trilobite completo. Estos antiguos artrópodos, parientes evolutivos de las langostas, arañas e insectos, se extinguieron hace muchos millones de años, pero a veces se les encuentra magníficamente conservados.
Los fósiles de animales, reclamados por la cultura popular tanto como por la ciencia, nos ofrece una crónica biológica de importante envergadura. Sin embargo, los fósiles sólo registran los capítulos más recientes de la colosal épica evolutiva de la Tierra. La historia completa de la vida abarca nada menos que cuatro mil millones de años, desde los extraños mundos de los océanos sulfurosos que se extendían bajo una atmósfera asfixiante, pasando por bacterias que respiraban hierro y quimeras microscópicas, hasta llegar por fin a nuestro familiar mundo de Oxígeno y Ozono, de valles boscosos, de animales que nadan, corren o vuelan. Sheherazade no habría imaginado un cuento más fascinante que esa realidad que nos cuenta la historia de la vida en el planeta Tierra.
Siendo mucho lo que, sobre la vida, hemos podido saber, no es suficiente para dar una explicación convincente. Cada nuevo dato, cada nuevo descubrimiento de los científicos especialistas, nos viene a plantear nuevas preguntas que no sabemos contestar.
Acordaos de lo que decía Jhon Archibal Wheeler, aquel gran Físico: “Vivimos en una isla rodeada por un mar de ignorancia”. Y, cada día, tenemos la obligación de buscar las respuestas que nos lleven a saber, de forma tal que, cada vez la isla se haga más grande y ese mar…, al menos se reduzca en una buemna proporción.
La historia científica de la vida es una narración apasionante que, correctamente explicada, nos ayuda a comprender no sólo nuestro pasado biológico sino también la Tierra y toda la vida que nos rodea en la actualidad. Esa diversidad biológica es el producto de casi cuatro mil millones de años de evolución. Somos parte de ese legado; al intentar comprender la historia evolutiva de la vida, comenzamos a entender nuestro propio lugar en el mundo y nuestra responsabilidad como administradores de un planeta que nos dio cobijo y al que nos tuvimos que adaptar lo mismo que él, el planeta, se adaptó a la presencia de la vida que, de alguna manera cambió su entorno climático, precisamente debido, a esa presencia viviente que generó las precisas condiciones para poder estar aquí.
La historia de la vida tiende a relatarse (no pocas veces) al estilo de la genealogía de Abraham: las bacterias engendraron a los protozoos, los protozoos engendraron a los invertebrados, los invertebrados engendraron a los peces, y así sucesivamente. Tales listas de conocimientos adquiridos pueden memorizarse, pero no dejan mucho espacio para pensar. La cuestión no es tan sencilla y los descubrimientos de la paleontología, la más tradicional de las empresas científicas, se entrelazan con nuevas ideas nacidas de la biología molecular y la geoquímica.
Los huesos de los Dinosaurios son grandes y espectaculares y hacen que los que los contemplan (niños y mayores), abran los ojos como platos, asombrados de tal maravilla. Pero, aparte del tamaño de sus habitantes, el mundo de los dinosaurios se parecía mucho al nuestro. Contrasta con él la historia profunda de la Tierra, que nos cuentan fósiles microscópicos y sutiles señales químicas y que es, pese a ello, un relato dramático, una sucesión de mundos desaparecidos que, por medio de la transformación de la atmósfera y una evolución biológica, nos llevan hacia el mundo que conocemos hoy.
Pero, ¿cómo podemos llegar a comprender acontecimientos que se produjeron hace mil millones de años o más? Una cosa es aprender que en las llanuras mareales de hace mil quinientos millones de años vivían bacterias fotosintéticas, y otra muy distinta cómo se infiere que unos fósiles microscópicos pertenecen a bacterias fotosintéticas, cómo se averigua que las rocas que los rodean se formaron en antiguas llanuras mareales y cómo se estima su edad en mil quinientos millones de años.
Las rocas australianas se han convertido en el lugar más idóneo del planeta para buscar indicios del origen de la vida en la Tierra. Ha sido en la formación Strelley Poll, al oeste del país, en Pilbara, donde un equipo de científicos, australianos en su mayoría, ha descubierto los fósiles microscópicos de unas bacterias que vivieron hace 3.400 millones de años y que aparecen asociados a diminutos cristales de pirita.
El leitmotiv epistemológico de cómo sabemos lo que creemos que sabemos, en realidad, aparece de manera espontánea a base de mucho estudio de campo, investigación exhaustiva en los más dispares rincones de la Tierra y, un profundo estudio concatenado en el tiempo de todo aquello que, en cada exploración pueda ir apareciendo. En tanto que empresa humana, estamos inmersos también en un relato de exploración que se extiende desde el espacio interior de las moléculas al espacio literalmente exterior de Marte y otros planetas.
Uno de los temas más claros de la historia evolutiva es el carácter acumulativo de la diversidad biológica. Las especies individuales (al menos las de los organismos nucleados) aparecen y desaparecen en una sucesión geológica de extinciones que ponen de manifiesto la fragilidad de las poblaciones en un mundo de competencia y cambio ambiental –de formas de vida con una morfología y fisiología características- es una historia de acumulación. La visión de la evolución a gran escala es indiscutiblemente la de una acumulación en el tiempo gobernada por las reglas de funcionamiento de los ecosistemas. La serie de sustituciones que sugieren los enfoques al estilo de la genealogía de Abraham no consigue captar este atributo básico de la historia biológica.
Así, creemos saber que la vida nació por mediación de procesos físicos en la Tierra primigenia. Estos mismos procesos –tectónicos, oceanográficos y atmosféricos- sustentaron la vida era tras era al tiempo que modificaban continuamente la superficie de la Tierra. Por fin la vida se expandió y se diversificó hasta convertirse en una fuerza planetaria por derecho propio, uniéndose a los procesos tectónicos y físico-químicos en la transformación de la atmósfera y los océanos.
Dondequiera que choquen las relativamente rápidas placas tectónicas oceánicas con las enormes placas continentales, se forman cadenas montañosas en continua elevación. Los ejemplos más espectaculares se subducción y formación montañosa son, respectivamente, la placa del Pacífico sumergiéndose en las profundas fosas del Asia oriental, y el Himalaya, que se eleva por el choque de las placas índica y euroasiática. Todo forma parte del proceso que llevó a la vida.
Para mí y para cualquiera que emplee la lógica de la ciencia que se guía por los hechos probados, el surgimiento de la vida como una característica definitoria –quizá la característica definitoria- de nuestro planeta es algo extraordinario.
¿Cuántas veces ha ocurrido lo mismo en la vastedad del Universo? Es lo primero que se me viene a la mente cuando (en la noche silenciosa, oscura y tranquila lejos del bullicioso ambiente de las ciudades y de su molesta contaminación lumínica), miro hacia las estrellas brillantes del cielo que, muy lejanas en regiones remotas, también como nuestro Sol, están rodeadas de mundos que, como el nuestro, habrán tenido la misma posibilidad que la Tierra para que la vida, pudiera surgir.
Hacer aquí un recorrido pormenorizado del largo camino que la vida ha tenido que recorrer, y dibujar un esquema a modo de un árbol de la vida, es imposible. El presente trabajo trata simplemente, de dejar una idea básica de cómo la vida llegó aquí, al planeta Tierra, y, de cómo pudo evolucionar con el paso del tiempo y dentro de su rica diversidad.
En todos estos escenarios está presente la vida
Los expertos si han construido un árbol de la vida a partir de comparaciones ente secuencias de nucleótidos de genes de diversos organismos, las plantas y los animales quedan reducidos, en ese árbol, a brotes en la punta de una sola de las ramas. La mayor diversidad de la vida y, por extensión, la mayor parte de su historia, es microbiana. Así lo atestiguan todos y cada uno de los hallazgos encontramos en las rocas precámbricas que contienen fósiles de aquellas primeras formas de vida.
Y, una cosa está muy clara y no se presta a ninguna clase de dudas: Las Bacterias y las Arqueas, son los arquitectos de los ecosistemas terrestres.
Biólogos expertos indiscutibles de probada valía y reconocido prestigio, han llegado a sugerir que los genes de los organismos actuales contienen el relato completo de la historia evolutiva. Pero, de ser así se trataría, como en las historias de Shakespeare, de relatos limitados a los vencedores de la vida. Sólo la paleontología nos puede hablar de los trilobites, los dinosaurios y otras maravillas biológicas que ya no adoran la faz de la Tierra.
Para comprender la historia de la vida, tenemos que urdir en una misma tela los descubrimientos de la geología y de la biología comparativa, utilizando los organismos vivos para reanimar a los fósiles y a los fósiles para averiguar cómo ha llegado a formarse la diversidad de nuestra propia era.
Tras descubrir el mundo de las bacterias pudimos saber que, la vida en la Tierra, estaba representada de muchas maneras además de la que podíamos contemplar a nuestro alrededor. Otro “mundo” oculto a la vista, contenía una inmensidad de “criaturas” que, también contaban.
La similitud jerarquizada de las especies era bien conocida por aquellos antiguos naturalistas de los que, en su momento, ya hablamos aquí y dejamos una bonita reseña. Linneo la codificó hasta finales de la década de 1730 al proponer un sistema jerárquico de clasificación taxonómica que, prácticamente, sigue utilizándose en nuestros días. Pero fue Charles Darwin quien reconoció explícitamente la naturaleza genealógica de este patrón.
Podemos explicar las similitudes entre humanos y chimpancés atribuyéndolas a su descendencia de un antepasado común que poseía las distintas características que los dos grupos comparten. En realidad, el registro fósil de la descendencia humana es notablemente incompleto, pero los restos de esqueletos hallados en África y Asia, conforman esta predicción: Los Humanos no descienden de los chimpancés, divergieron a partir de un antepasado común que no era ni Homo ni Pan.
Está claro que, la especie Humana (por muchas razones), se cree muy superior a todos los demás seres vivos sobre la Tierra. Puesto que somos grandes animales (algo racionales), se nos podría perdonar que tengamos una visión del mundo que tiende a celebrar lo nuestro, pero la realidad es que nuestra perspectiva es errónea. Somos nosotros los que hemos tenido que evolucionar para encajar en el mundo microbiano, y no al revés. Que esto sea así se debe, en parte, a una cuestión histórica, pero también tiene una explicación en términos de diversidad y funcionamiento del ecosistema. Si los animales son la guinda de la evolución, las Bacterias son el pastel.
Anabaena (cyanobacterium)
Las plantas, los animales, los hongos, las algas, y los protozoos son todos organismos eucariotas, genealógicamente vinculados por un modo de organización celular en el que el material genético aparece encerrado en el interior de una estructura membranosa llamada núcleo. Las Bacterias y los Procariotas son distintos: sus células carecen de núcleo. Por lo que respecta a su importancia biológica, los eucariotas parecen jugar con una clara ventaja; los organismos eucariotas se presentan en una gran variedad de tamaños y formas que van desde los escorpiones, los elefantes y las setas hasta los geranios, las luminarias y las amebas. Los procariotas, en cambio, son en su mayoría esferas diminutas, cilindros o espirales. Algunas bacterias forman filamentos sencillos de células unidas por sus extremos, pero son muy pocas las que llegan a construir estructuras multicelulares más complejas.
El tamaño y la forma sin duda dan la ventaja a los eucariotas, pero la morfología es sólo uno de los criterios posibles para medir la importancia ecológica. El metabolismo –el modo como un organismo obtiene materia y energía- es otro criterio, y de acuerdo con este son los procariotas los que destacan por su diversidad. Los organismos eucariotas básicamente viven de tres maneras sencillas, algunos, como nosotros mismos, somos heterótrofos, es decir, obtenemos tanto el Carbono como la energía que necesitamos para el crecimiento de ingerir moléculas orgánicas producidas por otros organismos. Para obtener energía, nuestras células utilizan oxígeno para descomponer azúcares en dióxido de carbono y agua mediante el proceso denominado respiración aeróbica (utilizamos oxígeno).
En caso de necesidad, podemos conseguir un poco de energía por medio de un segundo tipo de metabolismo llamado fermentación, un proceso anaeróbico (sin oxígeno) por el que una molécula orgánica se descompone en dos (sólo las levaduras y unos pocos eucariotas más viven fundamentalmente con este metabolismo.)
El tercer tipo principal de metabolismo energético que se encuentra en los eucariotas es la fotosíntesis que realizan las plantas y las algas: la clorofila y otros pigmentos asociados captan la energía del Sol, y ésta permite a las plantas fijar dióxido de carbono en forma de materia orgánica. Para convertir la luz en energía bioquímica las plantas necesitan un electrón, que proporciona el agua, y en el proceso se libera oxígeno como producto secundario.
Claro que, si comparamos las formas de metabolismo de los eucariotas con las de los procariotas, perdemos por goleada. La diversidad metabólica de los microorganismos procariotas, son el aspecto clave para estudiar la vida primigenia. Sus numerosas y asombrosas formas de metabolismo a las que se han adaptado para vivir son, en verdad, una maravilla de la Naturaleza.
Algunas, como nosotros mismos, utilizan oxígeno pero otras, para la respiración utilizan Nitrato disuelto (NO₃¯) en lugar de oxígeno, y aún otras usan iones sulfato (SO₄²¯) u óxidos metálicos de hierro p manganeso. Unos pocos procariotas pueden incluso utilizar CO₂ de forma muy parecida a como lo hacen las algas y plantas terrestres eucariotas. Sin embargo, cuando en el medio hay sulfuro de hidrógeno (H₂S), bien conocido por su característico olor a “huevos podridos” (en las Nebulosas es un material muy abundante), muchas cianobacterias utilizan este gas en lugar del agua para obtener los electrones que requiere la fotosíntesis. Como producto secundario se forma entonces azufre y sulfato, no oxígeno.
Las Cianobacterias constituyen sólo uno de los cinco grupos distintos de bacterias fotosintéticas. En los otros grupos, el aporte de electrones por H₂S, gas hidrógeno (H₂) o moléculas orgánicas es obligado y nunca se produce oxígeno. Estas bacterias fotosintéticas captan la luz con bacteriocloforila en lugar de la clorofila, más familiar. Otras usan vías metabólicas muy distintas, y un tercer grupo se sirve de una fuente de Carbono orgánico en lugar de CO₂.
La Respiración Aerobia y Anaerobia
Las variaciones bacterianas sobre temas metabólicos de la respiración, la fermentación y la fotosíntesis son, pues, impresionantes, pero los organismos procarióticos han desarrollado todavía otro modo de crecer que es completamente desconocido en los eucariotas: la quimiosíntesis. Como los organismos fotosintéticos, los microbios quimiosintéticos toman el carbono del CO₂. Pero obtienen la energía de reacciones químicas y no de la radiación solar, lo que consiguen utilizando oxígeno o nitrato (o, de forma menos frecuente, el sulfato, el hierro hoxidizado o el manganeso) se combina con hidrógeno, metano o formas reducidas de hierro, sulfuro o nitrógeno de tal modo que la célula capta la energía desprendida por la reacción. Los procariotas metanogénicos resultan de particular interés para la ecología y la evolución, estas diminutas células extraen energía de una reacción entre hidrógeno y dióxido de carbono en la que se libera metano (aquí, nos podemos acordar del foco de metano detectado en Marte).
Se ha descubierto que la Atmósfera de Marte pudo haber contenido agua en abundancia, que ahora el agua está allí presente, que existen focos de metano que no se está seguro si su procedencia pudiera ser…de “seres vivos” microscópicos de los llamados metanógenos.
Las vías metabólicas de los procariotas sustentan los ciclos biológicos que mantienen la Tierra en su condición de planeta habitable.
Fijémonos por ejemplo en el dióxido de Carbono. Los Volcanes aportan CO₂ a los Océanos y la Atmósfera, pero la fotosíntesis lo sustrae a un ritmo más rápido. Tan rápido de hecho, que los organismos fotosintéticos podrían proveer de CO₂ a la atmósfera actual en poco menos de una década. Naturalmente no ocurre así, y ello se debe sobre todo a que esencialmente la respiración realiza la reacción fotosintética en sentido inverso. Mientras que los organismos fotosintéticos hacen reaccionar CO₂ con agua para producir azúcares y oxígeno los seres vivos que respiran (entre los que nos incluimos todos nosotros) hacen reaccionar azúcar con oxígeno y en el proceso liberan agua y dióxido de carbono. Conjuntamente, la fotosíntesis y la respiración reciclan el carbono en la biosfera y sostiene así la vida y su ambiente a largo tiempo.
Estaría bien dejar aquí una reseña de ese otro dominio microscópico al que llamamos extremófilos y que, por sus metabolismos increíbles, podrían vivir, en cualquier parte que nos podamos imaginar: Una Nebulosa, las profundidades de la Tierra, en las Salinas, en aguas pesadas, en capas altas de la atmósfera, en las profundidades oceánicas y, en fin, en cualquier sitio que nos pudiera parecer un infierno inhabitable, allí, para nuestro asombro, podrían estar ellas ricamente instaladas. Sin embargo, el trabajo se hace muy largo ya, y, lo que menos quisiera es que, el personal, comenzara a bostezar, aunque durante todo el recorrido, he procurado siempre plasmar las ideas de manera que despertara la curiosidad y, sobre todo, que dejara una idea clara de lo que la vida ha sido en la Tierra desde su aparición.
¿Qué nos queda mucho por saber de la historia de la vida en la Tierra? Claro que sí. Sin embargo, es bueno estar al día de las cosas que ya sabemos.
emilio silvera
Fuente: Recopilación de textos diversos escritos por autores de reconocido prestigio. Aquí quedan párrafos de “La Vida en un joven Planeta”, de “Así de Simple”, o, de “La vida en Evolución” y, desde luego, nos da una idea básica de lo que la vida es y de cómo ha podido ir adaptándose al medio incidiendo en él para que, el ecosistema se convirtiera en el ideal para ella.
Sep
27
Rumores del saber XI
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
Antiguo laboratorio Cavendish
El laboratorio Cavendish de la Universidad de Cambridge, en Inglaterra, es posiblemente la institución científica más prestigiosa del mundo. Desde su fundación, a finales del siglo XIX, el laboratorio ha sido responsable de algunos de los avances más innovadores y trascendentales de todos los tiempos: el descubrimiento del electrón (1897), el descubrimiento de los isótopos de los elementos ligeros de la tabla periódica (1919), la división del átomo (1919), la revelación de la estructura del ADN (1953) y el descubrimiento de los púlsares (1967). Desde la creación del premio Nobel en 1.901, más de veinte científicos del Laboratorio Cavendish o formados en él lo han ganado, ya sea en Física o en Química.
Fundado en 1871, el Laboratorio abrió sus puertas tres años después en un edificio neogótico de Free School Lane, que ostentaba una fachada de seis hastiales y una maraña de pequeñas habitaciones conectadas, en palabras de Steven Weinberg, “por una red incomprensible de escaleras y corredores.”
A finales del siglo XIX, poca gente sabía con exactitud a qué se dedicaban los “físicos”. El término mismo era relativamente nuevo. En Cambridge, la física se enseñaba como parte del grado de matemáticas.
En este sistema no había espacio para la investigación: se consideraba que la física era una rama de las matemáticas y lo que se le enseñaba a los estudiantes era como resolver problemas.
En la década de 1870, la competencia económica que mantenían Alemania, Francia, Estados Unidos, y Gran Bretaña se intensificó. Las Universidades se ampliaron y se construyó un Laboratorio de física experimental en Berlín.
Cambridge sufrió una reorganización. William Cavendish, el séptimo duque de Devonshire, un terrateniente y un industrial, cuyo antepasado Henry Cavendish había sido una temprana autoridad en teoría de la gravitación, accedió a financiar un Laboratorio si la Universidad prometía fundar una cátedra de física experimental. Cuando el laboratorio abrió, el duque recibió una carta en la que se le informaba (en un elegante latín) que el Laboratorio llevaría su nombre.
Lord Kelvin uno de sus primeros miembros
Tras intentar conseguir sin éxito atraer primero a William Thomson, más tarde a lord Kelvin (quien entre otras cosas, concibió la idea del cero absoluto y contribuyó a la segunda ley de la termodinámica) y después a Hermann von Helmohltz, de Alemania (entre cuyas decenas de ideas y descubrimientos destaca una noción pionera del cuanto), finalmente se ofreció la dirección del centro a James Clerk Maxwell, un escocés graduado en Cambridge. Este fue un hecho fortuito, pero Maxwell terminaría convirtiéndose en lo que por lo general se considera el físico más destacado entre Newton y Einstein. Su principal aportación fue, por encima de todo, las ecuaciones matemáticas que permiten entender perfectamente la electricidad y el magnetismo. Estas explicaban la naturaleza de la luz, pero también condujeron al físico alemán Heinrich Hertz a identificar en 1887, en Karlsruhe, las ondas electromagnéticas que hoy conocemos como ondas de radio.
Maxwell también creó un programa de investigación en Cavendish con el propósito de idear un estándar preciso de medición eléctrica, en particular la unidad de resistencia eléctrica, el ohmio. Esta era una cuestión de importancia internacional debido a la enorme expansión que había experimentado la telegrafía en la década de 1850 y 1860, y la iniciativa de Maxwell no solo puso a Gran Bretaña a la vanguardia de este campo, sino que también consolidó la reputación del Laboratorio Cavendish como un centro en el que se trataban problemas prácticos y se ideaban nuevos instrumentos.
A este hecho es posible atribuir parte del crucial papel que el laboratorio iba a desempeñar en la edad dorada de la Física, entre 1897 y 1933. Los científicos de Cavendish, se decía, tenían “sus cerebros en la punta de los dedos.”
Lord Rayleigh
Maxwell murió en 1879 y le sucedió lord Rayleigh, quien continuó su labor, pero se retiró después de cinco años y, de manera inesperada, la dirección pasó a un joven de veintiocho años, Joseph John Thomson, que a pesar de su juventud ya se había labrado una reputación en Cambridge como un estupendo físico-matemático. Conocido universalmente como “J.J.!, puede decirse que Thomson fue quien dio comienzo a la segunda revolución científica que creó el mundo que conocemos.
Joseph John Thomson
La primera revolución científica comenzó con los descubrimientos de Copérnico, divulgados en 1543, y los de Isaac Newton en 1687 con su Gravedad y su obra de incomparable valor Principia Matemática, a todo esto siguió los nuevos hallazgos en la Física, la biología y la psicología.
Pero fue la Física la que abrió el camino. Disciplina en permanente cambio, debido principalmente a la forma de entender el átomo (esa sustancia elemental, invisible, indivisible que Demócrito expuso en la Grecia antigua).
En estos primeras décadas del siglo XIX, químicos como John Dalton se habían visto forzados a aceptar la teoría de los átomos como las unidades mínimas de los elementos, con miras a explicar lo que ocurría en las reacciones químicas (por ejemplo, el hecho de que dos líquidos incoloros produjeran, al mezclarse, un precipitado blanco). De forma similar, fueron estas propiedades químicas y el hecho de que variaran de forma sistemática, combinada con sus pesos atómicos, lo que sugirió al ruso Dimitri Mendeleiv la organización de la Tabla Periódica de los elementos, que concibió jugando, con “paciencia química”, con sesenta y tres cartas en su finca de Tver, a unos trescientos kilómetros de Moscú.
Pero además, la Tabla Periódica, a la que se ha llamado “el alfabeto del Universo” (el lenguaje del Universo), insinuaba que existían todavía elementos por descubrir.
La tabla de Mendeleyev encajaba a la perfección con los hallazgos de la Física de partículas, con lo que vinculaba física y química de forma racional: era el primer paso hacia la unificación de las ciencias que caracterizaría el siglo XX.
En Cavendish, en 1873, Maxwell refinaría la idea de átomo al introducir la idea de campo electromagnético (idea que tomó prestada de Faraday), y sostuvo que éste campo “impregnaba el vacío “y la energía eléctrica y magnética se” propagaba a través de él” a la velocidad de la luz. Sin embargo, Maxwell aún pensaba en el átomo como algo sólido y duro y que, básicamente, obedecían a las leyes de la mecánica.
El problema estaba en el hecho de que, los átomos, si existían, eran demasiado pequeños para ser observados con la tecnología entonces disponible.
Max Planck, físico alemán
Esa situación empezaría a cambiar con Max Planck, el físico alemán que, como parte de su investigación de doctorado, había estudiado los conductores de calor y la segunda ley termodinámica, establecida originalmente por Rudolf Clausius, un físico alemán nacido en Polonia, aunque lord Kelvin también había hecho algún aporte.
Clausius había presentado su ley por primera vez en 1850, y esta estipulaba algo que cualquiera podía observar, a saber, que cuando se realiza un trabajo la energía se disipaba convertida en calor y que ese calor no puede reorganizarse en una forma útil. Esta idea, que por lo demás parecería una anotación de sentido común, tenía consecuencias importantísimas.
Dado que el calor (energía) no podía recuperarse, reorganizarse y reutilizarse, el Universo estaba dirigiéndose gradual e imparable hacia un desorden completo:
Una casa que se desmorona nunca se reconstruye así misma, una botella rota nunca se recompone por decisión propia. La palabra que Clausius empleó para designar este fenómeno o desorden irreversible y creciente fue “entropía”: su conclusión era que, llegado el momento, el Universo moriría.
En su doctorado, Planck advirtió la relevancia de esta idea. La segunda ley de la termodinámica evidenciaba que el tiempo era en verdad una parte fundamental del Universo, de la física. Sea lo que sea, el tiempo es un componente básico del mundo que nos rodea y se relaciona con la materia de formas que todavía no entendemos.
La noción de tiempo implica que el Universo solo funciona en un sentido, hacia delante, nunca se está quieto ni funciona hacia atrás, la entropía lo impide, su discurrir no tiene marcha atrás. ¿No será nuestro discurrir lo que siempre marcha hacia delante, y, lo que tenemos por tiempo se limita a estar ahí?
emilio silvera
Sep
27
La Historia, algunas veces distorsionan los hechos.
por Emilio Silvera ~ Clasificado en General ~ Comments (0)
HIPARCO DE NICEA (190 – 120 a.C.)
Astrónomo, matemático y geógrafo nacido en Grecia. Llevó a cabo sus observaciones en Rodas, donde construyó un observatorio astronómico en Alejandría (Egipto). Ninguno de sus estudios ha llegado hasta nuestros días, pero tenemos noticia de ellos gracias a los escritos de Estrabón (Geógrafo e historiador griego, 64 a.C.–22 d.C.?) y de Claudio Ptolomeo.
En 134 a.C. observó una nueva estrella en la constelación de Escorpión; alentado por el descubrimiento, el cual, no fue superado en precisión hasta el siglo XVI; elaboró un catálogo en torno a 850 estrellas, clasificadas según su luminosidad aparente, que distingue seis magnitudes, está en la base de la actual clasificación fotométrica de las estrellas.
Pero vayamos directamente al objeto del comentario de hoy que, no es otro que, dejar claro que no siempre se le concede el mérito de alguna idea, al primero que la pudo engendrar. Así ha sido a lo largo de la historia y así seguirá siendo (cada vez menos).