martes, 07 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Dónde está el Origen?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Demos un repaso a esas fluctuaciones de “Vacío” en la que dicen que a partir de la NADA surgió toto. Claro que, donde no hay nada, nada podrá surgir, si surgió es porque había.

¿La Realidad? ¿Dónde estará?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

No una sino mil veces podemos haber podido hablar del “milagro griego”. La hipótesis es la siguiente: La Ciencia nació en la antigua Grecia alrededor del año 600 a. C. y floreció durante unos pocos cientos de años, aproximadamente hasta 146 a. C., cuando los griegos cedieron su primacía a los romanos y la ciencia se frenó en seco, permaneció en letargo hasta que resucitó en Europa durante el Renacimiento alrededor de 1500. Y, no pocos creen a pie juntillas que eso fue así y que, las personas que habitaron la India, Egipto, Mesopotamia, el África Subsahariana, China, el Continente americano y algún otro lugar con anterioridad al año 600 a. C. no dirigieron el desarrollo de la Ciencia. Cuando descubrieron el fuego, se quedaron esperando tranquilamente a que Tales de Mileto, Pitágoras, Demócrito y Aristóteles inventaran la Ciencia en el Egeo.

 

Resultado de imagen de Aquellos sabios de China

Sí, en otras partes del mundo también estaban presentes grandes pensadores

Claro que, tal pensamiento es una auténtica barbaridad, pensar eso es un sin sentido. ¿Cómo durante más de mil quinientos años, desde el final del período griego hasta la época de Copérnico, no se produjo avance alguna en la Ciencia? Esto quiere decir que ninguna persona, en ninguna parte, demostró la capacidad o el interés necesario para proseguir insistiendo en las obras de Arquímedes, Euclides o Apolonio.

 

 

    Lo cierto es que da mucha pena comprobar como el paso del tiempo hace desaparecer aquellas culturas

 

Las primeras observaciones sobre fenómenos eléctricos se realizaron ya en la antigua Grecia, cuando el filósofo Tales de Mileto (640-546 a.C.) comprobó que, al frotar barras de ámbar contra pieles curtidas, se producía en ellas características de atracción que antes no poseían. Es el mismo experimento que ahora se puede hacer frotando una barra de plástico con un paño; acercándola luego a pequeños pedazos de papel, los atrae hacia sí, como es característico en los cuerpos electrizados.

Sin embargo, fue el filósofo griego Theophrastus (374-287 a.C.) el primero, que en un tratado escrito tres siglos después, estableció que otras sustancias tienen este mismo poder, dejando así constancia del primer estudio científico sobre la electricidad. Comprobando que no todos los materiales pueden adquirir tal propiedad o adquirirla en igual medida. Se atraen, por ejemplo, una barra de vidrio y otra de ebonita. Se repelen, sin embargo, dos barras de vidrio o dos de ebonita.

 

Gradas y restos del edificio de la escena del teatro de Mileto. Mileto (en cario: Anactoria; en hitita: Milawata o Millawanda; en griego antiguo Μίλητος Mílêtos; en turco: Milet) fue una antigua ciudad griega de la costa occidental de Anatolia (en la actual provincia de Aydın de Turquía), cerca de la desembocadura del río Meandro en la antigua Caria. El emplazamiento estuvo habitado desde la Edad del Bronce.

Resultado de imagen de tales de mileto

 

Aquellos  ”científicos” se reunieron en Mileto. Tales, Anaximandro y Anaxímenes hicieron observaciones astronómicas con el gnomon, diseñaron cartas náuticas, plantearon hipótesis más o menos relacionadas con los hechos observados referidas a la estructura de la Tierra, la naturaleza de los planetas y las estrellas, las leyes seguidas por los astros en sus movimientos. En Mileto, la ciencia, entendida como interpretación racional de las observaciones, aparece que dio los primeros pasos

Claro que, las cosas nunca suelen ser tan sencillas. La hipótesis según la cual la ciencia surgió por generación espontánea en suelo griego y desaparecido después hasta el Renacimiento parece ridícula cuando se expresa de forma sucinta, sin más explicaciones. Es una idea que se formuló por primera vez en Alemania hace unos 150 años y que, poco a poco, ha ido calando, sutilmente en nuestras consciencias a través de la educación que, la única concesión que se hace a las culturas no europeas es la que se refiere al Islam. Esta teoría dice que los árabes conservaron viva la cultura griega, incluida la ciencia, durante toda la Edad Media. Ejercieron de escribas, traductores y guardianes, sin pensar, aparentemente, en crear su propia ciencia.

 

Averroes

Al Sur de la puerta de Almodóvar de Córdoba, se levanta la estátua de Averroes. Jurista, médico, filósofo. El gran Averroes fue la máxima autoridad judicial de la época,(siglo XII). Fue acusado por los fundamentalistas de poner la razón humana por encima de la ley divina. La mirada del viejo filósofo se pierde entre las callejas mientras escucha el murmullo del agua del estanque junto al que reposa.

Nada de eso es cierto. De hecho, los eruditos islámicos admiraron y preservaron las matemáticas y la ciencia griega y actuaron como el hilo conductor de la ciencia de muchas culturas no occidentales, además de construir un edificio propio impresionante en el campo de las ciencias. Lo cierto es que, la ciencia occidental es lo que es porque se construyó acertadamente sobre las mejores ideas de los distintos pueblos, los mejores datos e incluso, los mejores aparatos procedentes de otras culturas. Por ejmplo, los babilonios desarrollaron el teorema de Pitágoras (la suma de los cuadrados de los dos lados perpendiculares de un triángulo rectángulo es igual al cuadrado de la hipotenusa) al menos mil quinientos años antes de que Pitágoras naciera.

La Aventura de la Ciencia: Carnaval de Matemáticas 6.2: Número Pi. 23-29 de marzo.

En el año 200 d. C., el matemático chino Liu Hui calculó para el número π un valor (3,1416) que se mantuvo como la  estimación más precisa de dicho número durante unos mil años. Nuestras cifras del 0 al 9, se inventaron en la antigua India, siendo las cifras de Gwalior del año 500 d. C. casi indistinguibles de las cifras occidentales modernas. Álgebra es una palabra árabe que significa “obligación”, como cuando se obliga a que la incógnita x tome un valor numérico.

Resultado de imagen de La Astronomía árabe

Este Astrónomo Musulmán Calculó La Duración Del Año Solar Mucho Antes Del Uso De Telescopios - Islamic Bridge

                                                                      Astrónomo árabe Al-Battani

Arabia es una región de Oriente Medio del desierto comprendido entre el mar Rojo y el océano Índico. Desde el punto de vista histórico, esta región era conocida también como la cuna de una de las principales religiones del mundo, el Islam. Nacida en el siglo VII, esta religión había establecido importantes cambios en la configuración de mandato, los derechos económicos y principios culturales del mundo árabe. Sin embargo, pocos saben de su cultura y de la importante contribución que hicieron a la Ciencia (Astronomía, Medicina, Matemáticas…)

Los bárbaros también pueden ser cristianos.

China, Babilonia y también el Islam. El Califa árabe al-Mamun hizo construir la ciudad de la Sabiduría y un Observatorio para que los astrónomos pudieron abservar las variantes de los parámetros astronómicos (obtenidos de los griegos) y las estrellas del cielo. Aportaron así la mayor contribución y uno de los valores más exactos de de la precesión de los equinoccios, la inclinación de la eclíptica y otros datos de este tipo. En el año 829 sus cuadrantes y sextantes eran mayores que los que construyó Tycho Brahe en Europa más de siete siglos después.

Casa de la sabiduría - Wikipedia, la enciclopedia libre

Como antes decía, en el siglo IX, el gran mecenas de la ciencia el califa abasí al-Mamun, reunió a varios astrónomos en Bagdad para crear la casa de la Sabiduría (Bait al-Hikmah). Allí los astrónomos llevaron a cabo observaciones del Sol y de la Luna, con el fin de determina la latitud y la longitud locales para fijar la gibla. Recopilaron algunos de los mejores resultados de un zij titulado “Lo Comprobado” (al-Mumtahan).

Al-Biruni desarrolló técnicas para medir la Tierra y las distancias sobre ella utilizando la triangulación. Descubrió que el radio de la Tierra era 6.339,6 Kilómetros, un valor que no se obtuvo en Occidente hasta el siglo XVI. Uno de sus zijs contiene una tabla que da las coordenadas de seiscientos lugares, casi todos conocidos por él directamente.

Aryabhatiya - Wikipedia, la enciclopedia libreEl pasado! ¿Qué haríamos sin él? : Blog de Emilio Silvera V.

En el año 499, Aryabhata escribió un pequeño volumen, Aryabhatuya, de 123 versos métricos, que se ocupaban de astronomía y (una tercera parte) de ganitapada o matemáticas.  En la segunda mitad de esta obra, en la que habla del tiempo y la trigonometría esférica, Aryabhata utiliza una frase, en la que se refiere a los números empleados en el cálculo, “cada lugar es diez veces el lugar precedente”.  El  valor posicional había sido un componente esencial de la numeración babilónica, pero los babilonios no empleaban un sistema decimal.

http://apod.nasa.gov/apod/image/1108/NGC7331_crawford900c.jpg

La fuerza de gravedad mantiene unidas las estrellas, estas a las galaxias, las galaxias entre sí, y, los mundos a las estrellas que orbitan, mientras nosotros, nos sentidos atraidos por la gravedad que genera el mundo que habitamos que mantiene nuestros pies unidos a la superficie impidiendo que flotemos sin control. (Tengo la suerte de que, Ken Crawford (Rancho Del Sol Obs.), me envíe imágenes como la de arriba).

Veinticinco siglos antes de Isaac Newton, el Rog-Veda hindú afirmaba que la gravitación hace que el universo se mantenga unido, aunque esta hipótesis era mucho menos rigurosa que la de Newton, en esencia, quería decir lo mismo que él dijo.

 

Cuándo se descubrió que la tierra era redonda?

La Tierra plana de los griegos (hoy en día todavía los hay que piensan de la misma manera)

Los arios de lengua sánscrita suscribieron la idea de que la Tierra era redonda en una época en que los griegos creían que era plana. Los hindúes del siglo V d. C. calcularon de algún modo la edad de la Tierra, cifrándola en 4.300 millones de años; los científicos ingleses del siglo XIX estaban convencidos de que la Tierra tenía 100 millones de años. Algunos expertos chinos del siglo IV d. C. -como los árabes del s. XIII y los papúes de Nueva Guinea posteriormente- adoptaron la rutina de utilizr fósiles para estudiar la historia del planeta, sin embargo, en el siglo XVII algunos miembros de la Universidad de Oxford seguían enseñando que los fósiles eran “pistas falsas sembradas por el diablo” para engañar a los hombres.

¡Que cosas!

Con todo esto, os quiero decir amigos míos que, cuando oímos hablar de la primacía europea con respecto a las Ciencias…, debemos dejar el comentario en cuarentena y, dedicar un tiempo a profundizar más en cómo fueron las cosas en la realidad. No siempre las cosas son como parecen, o, como nos las quieren presentar.

 

                                                   

Mucho antes de que llegaran los científicos modernos, en tiempos del pasado muy lejano, otras culturas de filósofos naturales ya hablaban del átomo y del vacío. Ellos supieron intuir que había una materia cósmica y que todo lo grande estaba hecho de pequeñas cosas. Los pensadores de aquellos lugares eran anacoretas encerrados en un misticismo que los unía a la Naturaleza y a ese otro mundo de los pensamientos que están situados más allá de lo material. Ellos ya se preguntaban por…:

¡Tantas cosas!

 

Cuento de la India. El velo de Maya: La ilusión. Nueva Acrópolis Bilbao - YouTube

Claro que, si no fuera tan largo de contar, os diría que, en realidad, el Higgs se descubrió hace ya muchos siglos en la antigua India, con el nombre de maya, que sugiere la idea de un velo de ilusión para dar peso a los objetos del mundo material. Pocos conocen que, los hindúes fueron los que más se acercaron a las ideas modernas sobre el átomo, la física cuántica y otras teorías actuales. Ellos desarrollaron muy temprano sólidas teorías atomistas sobre la materia. Posiblemente, el pensamiento atomista griega recibió las influencias del pensamiento de los hindúes a través de las civilizaciones persas. El Rig-Veda, que data de alguna fecha situada entre el 2000 y el 1500 a. C., es el primer texto hindú en el que se exponen unas ideas que pueden considerarse leyes naturales universales. La ley cósmica está relacionada con la luz cósmica.

 

                                   Resultado de imagen de Anteriores a los primeros Upanishads tenemos en la India la creación de los Vedas

Los Vedas: antiguos textos místicos

Anteriores a los primeros Upanishads tenemos en la India la creación de los Vedas, visiones poéticas y espirituales en las que la imaginación humana ve la Naturaleza y la expresa en creación poética, y después va avanzando unidades más intensamente reales que espirituales hasta llegar al Brahmán único de los Upanishads.

 

Historia del budismo - Wikipedia, la enciclopedia libreVocabulario para entender el budismo - Història de les creences

la época de Buda (500 a, C.), los Upanishad, escritos durante un período de varios siglos, mencionaban el concepto  de svabhava, definido “la naturaleza inherente de los distintos materiales”; es decir, su eficacia causal única, , tal como la combustión en el caso del fuego, o el hecho de fluir hacia abajo en el caso dela agua. El pensador Jainí Bunaratna nos dijo: “Todo lo que existe ha llegado a existir por acción de la svabhava. Así… la tierra se transforma en una vasija y no en paño… A partir de los hilos se produce el paño y no la vasija”.

 

También aquellos pensadores, manejaron el concepto de yadrccha, o azar desdetiempos muy remotos. Implicaba la falta de orden y la aleatoriedad de la causalidad. Ambos conceptos se sumaron a la afirmación del griego Demócrito medio siglo más tarde: “Todo lo que hay en el universo es fruto del azar y la necesidad”. El ejemplo que que dio Demócrito -similar al de los hilos del paño- fue que, toda la materia que existe, está formada por a-tomos o átomos.

Bueno, no lo puedo evitar, mi imaginación se desboca y corre rápida por los diversos pensamientos que por la mente pasan, de uno se traslada a otros y, al final, todo resulta un conglomerado de ideas que, en realidad, quieren explicar, dentro de esa diversidad, la misma cosa.

emilio silvera

PD. Los datos provienen de fuentes variadas.

La Gravedad… ¡Sigue siendo misteriosa!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                             
Células simples y complejas, sustancias químicas, estructuras y componentes que se elevan hasta un nivel de asombrosa complejidad que llamamos vida y que, con mayor o menor nivel de entendimiento, se aleja de lo que entendemos por materia inerte para constituirse en sistemas complejos individuales que se reproducen y evolucionan
 
Resultado de imagen de Nuevas teorías de la Gravedad

Dos nuevos estudios realizados por investigadores de Australia, Austria y Alemania han puesto en entredicho la forma en la que entendemos la física de la gravedad. Los descubrimientos, publicados en las revistas Astrophysical Journal y Monthly Notices of the Royal Astronomical Society, se basan en observaciones de galaxias enanas satélite o galaxias más pequeñas que se encuentran en el extrarradio de la gran galaxia espiral que es la Vía Láctea.

Y por otra parte, es preciso cerciorarse de que, la “dichosa” energía oscura existe en realidad, ya que, se supone Gravedad negativa, es decir, la gravedad hace que los cuerpos de grandes masas se junten y la energía oscura los aleja. ¿O en realidad es la Constante Cosmológica· de Einstein?

 

Resultado de imagen de La Ley de gravitación de Newton{\displaystyle \Lambda \leq 10^{-46}\ {\textrm {km}}^{-2}}

La Ley de la gravitación universal de Newton, publicada en 1687, sirve para explicar cómo actúa la gravedad en la Tierra, por ejemplo por qué cae una manzana de un árbol. El profesor Pavel Kroupa del Instituto de Astronomía Argelander de la Universidad de Bonn (Alemania) explicó que «a pesar de que su ley describe los efectos cotidianos de la gravedad en la Tierra, las cosas que podemos ver y medir, cabe la posibilidad de que no hayamos sido capaces de comprender en absoluto las leyes físicas que rigen realmente la fuerza de la gravedad».

 

Archivo:CL0024+17.jpg - Wikipedia, la enciclopedia libre

“Imagen compuesta del cúmulo de galaxias CL0024+17 tomada por el telescopio espacial Hubble muestra la creación de un efecto de lente gravitacional. Se supone que este efecto se debe, en gran parte, a la interacción gravitatoria con la materia oscura.”

La ley de Newton ha sido puesta en entredicho por distintos cosmólogos modernos, los cuales han redactado teorías contradictorias sobre la gravitación que intentan explicar la gran cantidad de discrepancias que se dan entre las mediciones reales de los sucesos astronómicos y las predicciones basadas en los modelos teóricos. La idea de que la «materia oscura» pueda ser la responsable de estas discrepancias ha ganado muchos adeptos durante los últimos años. No obstante, no existen pruebas concluyentes de su existencia.

 

                                   

En esta investigación, el profesor Kroupa y varios colegas examinaron «galaxias enanas satélite», cientos de las cuales deberían existir en la cercanía de las principales galaxias, incluida la Vía Láctea, según indican los modelos teóricos. Se cree que algunas de estas galaxias menores contienen tan sólo unos pocos millares de estrellas (se estima que la Vía Láctea, por ejemplo, contiene más de 200.000 millones de estrellas).

 

         Resultado de imagen de Galaxias enanas satélites de la Vía Láctea

                                           La Vía Láctea está rodeada de galaxias enanas

No obstante, a día de hoy sólo se ha logrado detectar treinta de estas galaxias alrededor de la Vía Láctea. Esta situación se atribuye al hecho de que, al contener tan pocas estrellas, su luz es demasiado débil como para que podamos observarlas desde una distancia tan lejana. Lo cierto es que este estudio tan detallado ha deparado resultados sorprendentes.

«En primer lugar, hay algo extraño en su distribución», indicó el profesor Kroupa. «Estas galaxias satélite deberían estar distribuidas uniformemente alrededor de su galaxia madre, pero no es el caso.»

 

El papel de la galaxia enana de Sagitario en la evolución de nuestra Galaxia | Instituto de Astrofísica de Canarias • IAC

Impresión artística de la actual interacción entre la galaxia enana Sgr y la Vía Láctea. Detallada historia evolutiva de nuestra Galaxia donde se aprecian tres brotes de formación estelar.

Los investigadores descubrieron que la totalidad de los satélites clásicos de la Vía Láctea (las once galaxias enanas más brillantes) están situados prácticamente en un mismo plano que dibuja una especie de disco. También observaron que la mayoría de estas once galaxias rotan en la misma dirección en su movimiento circular alrededor de la Vía Láctea, de forma muy similar a como lo hacen los planetas alrededor del Sol.

 

                                       

                                                             Grupo Local de Galaxias

La explicación de los físicos a estos fenómenos es que los satélites debieron surgir de una colisión entregalaxias más jóvenes. «Los fragmentos resultantes de un acontecimiento así pueden formar galaxias enanas en rotación», explicó el Dr. Manuel Metz, también del Instituto de Astronomía Argelander. Éste añadió que «los cálculos teóricos nos indican la imposibilidad de que los satélites creados contengan materia oscura».

Estos cálculos contradicen otras observaciones del equipo. «Las estrellas contenidas en los satélites que hemos observado se mueven a mucha más velocidad que la predicha por la Ley de la gravitación universal. Si se aplica la física clásica, esto sólo puede atribuirse a la presencia de materia oscura», aseveró el Dr. Metz.

Este enigma nos indica que quizás se hayan interpretado de forma incorrecta algunos de los principios fundamentales de la física. «La única solución posible sería desechar la Ley de la gravitación de Newton», indicó el profesor Kroupa. «Probablemente habitemos un universo no Newtoniano. De ser cierto, nuestras observaciones podrían tener explicación sin necesidad de recurrir a la materia oscura

 

 

                                                       Universo sin la ma teria oscura

Hasta ahora, la Ley de la gravitación de Newton sólo ha sido modificada en tres ocasiones: paraincluir los efectos de las grandes velocidades (la teoría especial de la relatividad), la proximidad de grandes masas (la teoría general de la relatividad) y las escalas subatómicas (la mecánica cuántica). Ahora, las graves inconsistencias reveladas por los datos obtenidos sobre las galaxias satélite respaldan la idea de que hay que adoptar una «dinámica newtoniana modificada» (MOND) para el espacio.

                                                                   🔷 A Galáxia UGC 2885 é uma das... - Skynews Astronomia | Facebook
                                                                    Galaxia espiral UGC 2885

Según un nuevo análisis, unos datos recientes sobre galaxias ricas en gas coinciden exactamente con la predicción hecha por una teoría conocida como MOND, la cual constituye una modificación de la gravedad con respecto a los planteamientos teóricos más aceptados.

Esta predicción, la última de varias hechas a la luz de esta teoría y que han tenido acierto, despierta nuevas dudas sobre la precisión del modelo cosmológico hoy vigente del universo.

 

                             Resultado de imagen de La teoría MOND de la gravedad

 

De todo esto, lo que sí podemos obtener es una nueva conclusión: ¡De la Gravedad desconocemos muchas cosas! Es la fuerza misteriosa que no se deja “controlar” del todo, como ocurre con las otras tres fuerzas fundamentales de la Naturaleza que, bien sometidas en el Modelo Estándar, dejan al desnudo todos sus misterios, mientras que la Gravedad, no deja que se incluya en el Modelo, y, hasta su Bosón mediador, el hipotético gravitón se niega a ser hallado (si es que realmente existe).

 

matiere noire N Palanque Delabrouille IAPPor qué la teoría MOND requiere la existencia de la materia oscura - La Ciencia de la Mula Francis

  No parece que la teoría MOND halla obtenido el éxito que buscaba

La teoría MOND, propuesta en 1981, modifica la segunda ley de la dinámica de Newton para que con ella se pueda explicar la rotación a velocidad uniforme de las galaxias, que contradice las predicciones newtonianas que afirman que la velocidad de los objetos separados del centro será menor.

Los nuevos descubrimientos poseen implicaciones de gran calado para la física fundamental y para las teorías sobre el Universo. Según el astrofísico Bob Sanders de la Universidad de Groninga (Países Bajos), «los autores de este artículo aportan argumentos contundentes. Sus resultados coinciden plenamente con lo predicho por la dinámica newtoniana modificada, pero completamente contrarios a la hipótesis de la materia oscura. No es normal encontrarse con observaciones tan concluyentes.»

 

                                           

  Una nueva teoría de la Gravedad podría explicar el movimiento de las estrellas en las galaxias

Claro que, todos estos nuevos derroteros y atisbos de teorías (hay algunas más circulando por ahí), no son más que demostraciones de la insatisfacción que algunos sienten al comprender que…, ¡falta algo! y, yo personalmente en mi modestia y con humildad, me decanto por el simple hecho de que aún, no conocemos a fondo eso que llamamos Gravitación que debe ser mucho más amplia de lo que nos dijo Einstein y, no me extrañaría que, incluso eso que llamamos “materia oscura” no sea otra cosa que un continuo de esa Gravedad, es decir, la parte desconocida y que, al ser ignorantes de su existencia, nos hemos inventado “la materia oscura” para que nos cuadren los números.

Para más información, consulte:

http://www.astro.uni-bonn.de

http://www.iop.org/EJ/journal/apj

http://www.wiley.com/bw/journal.asp?ref=0035-8711

Conozcamos un poco mejor el planeta que nos acoge

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Es bueno saber algo más del planeta que nos acoge, de como se formó, y, desde luego, algo sobre el por qué existe la vida en un mundo acogedor para ella en la que conviven miles y millones de especies. Aunque es verdad que en el presente, sólo el 1% de las especies que vivieron en el planeta lo siguen haciendo.

Veamos algunos interesantes datos que nos harán comprender lo que pasó para que la Tierra sea tal como hoy la podemos observar.

Que paséis un buen rato.

¡Aquellos primeros momentos!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

                    GIF explosion - GIF animado en GIFER
Se produjo la Gran Explosión, nació el Espacio Tiempo, surgieron las primeras partículas de la materia, se liberaron los fotones para que el universo fuera de luz, de la fuerza fundamental que llamamos Gravedad se desgajaron las otras tres que conocemos, se formaron los primeros ´átomos, y más tarde las estrellas.

                         ORIGEN DEL UNIVERSO by martaferlo2005 on emaze

El Universo se expandió

Antes de que la imagen de arriba fuese una realidad tuvieron que pasar muchos miles de millones de años. Hasta donde sabemos y el origen más aceptado para nuestro Universo es el de una inmensa explosión proveniente de una singularidad en la que la densidad y la energía eran “infinitas” y a partir de ahí, comenzó la gran aventura. Esa es la idea que más coincide con lo que ahora podemos observar, y, precisamente por eso, el Modelo de Universo aceptado es el llamado Big Bang.

¡El Universo!

 

James Webb: la primera imagen increíblemente detallada del espacio profundo captada por el telescopio - BBC News Mundo

           Aquí vemos una “pequeña” región del Universo cuajado de galaxias

La primera interacción que puede ser considerada era la constante aniquilación y producción de electrones y positrones. Uno de los descubrimientos más famosos del siglo XX es la equivalencia entre la masa y la energía (E= m c2): bajo condiciones adecuadas, la energía se puede convertir en materia y viceversa. La conversión de energía en materia no se observa comúnmente en nuestro entorno porque éste es demasiado frío y no hay presión suficiente. Pero con las densidades y temperaturas que reinaban en el universo primitivo, esta conversión era el pan de cada día. Los fotones (g) se convertían en electrones (e) y positrones (e+) (proceso conocido como producción de pares). Estos fotones no podían producir partículas más pesadas (como nucleones por ejemplo) por no poseer suficiente energía. Los electrones y positrones terminarían por colisionar con sus respectivas antipartículas y convertirse de nuevo en fotones (a lo que nos referiremos como aniquilación)

 

El universo primitivo y la nucleosíntesis

La segunda interacción fue la conversión de protones en neutrones y viceversa. Esas partículas atómicas pesadas estaban ya presentes “en el principio” y estaban continuamente transmutándose una en otra mediante las siguientes reacciones:

 

“En el principio”, debido a la alta densidad de energía, las colisiones entre las partículas ocurrían de forma tan rápida que las reacciones de conversión de protones en neutrones y viceversa se equilibraban de tal manera, que su número, aunque pequeño, era muy aproximadamente el mismo.

 

EXPOSICIÓNNeutrón - Wikipedia, la enciclopedia librePROTÓN » Definición, Características, Antiprotón - Cumbre Pueblos

Pero esa igualdad se rompió casi inmediatamente debido a que los neutrones son ligeramente más pesados que los protones. Por tanto, se necesita un poco más de energía para cambiar de un protón a un neutrón que viceversa. Al principio esto no tenía ninguna influencia porque había gran cantidad de energía en los alrededores. Pero como esta densidad de energía decrecía continuamente con la expansión, cada vez había menos energía disponible para cada colisión. Este hecho empezó a inclinar la balanza hacia la formación de protones, por lo que en número de protones empezó a ser mayor que el de neutrones y a medida que bajaba la temperatura la diferencia fue cada vez más notable.

 

                             

 

Antes de alrededor de un minuto y cuarenta segundos desde el comienzo del tiempo,  no hay núcleos atómicos estables.  El nivel de energía en el ambiente es mayor que la energía de unión nuclear. Por consiguiente, todos los núcleos que se forman, se destruyen de rápidamente.

Alrededor de un segundo desde el comienzo del tiempo, llegamos a la época de desacoplamiento de los neutrinos.  Aunque en esa época el Universo es más denso que las orcas (y tan caliente como la explosión de una bomba de hidrógeno), ya ha empezado a parecer vacío a los neutrinos.  Puesto que los neutrinos sólo reaccionan a la fuerza débil, que tiene un alcance extremadamente corto, pueden escapar de sus garras y volar indefinidamente sin experimentar ninguna otra interacción.

 

                                           

Aunque parezca mentira, al día de hoy no sabemos, a ciencia cierta, como se formaron las galaxias, la expansión de Hubble lo habría impedido. ¿Qué había allí para hacerlo posible? ¿Quizás las sustancias cósmica que los clásicos griegos llamaron Ylem?

Así, emancipados, en lo sucesivo son libres de vagar por el Universo a su manera indiferente, volando a través de la mayor   de la materia como sino existiese. (Diez trillones de neutrinos atravesarán sin causar daños el cerebro y el cuerpo del lector en el tiempo que le lleve leer esta frase.  Y en el tiempo en que usted haya leído esta frase estarán más lejos que la Luna).

En menos de un siglo, el neutrino pasó de ser una partícula fantasma propuesta en 1930 por el físico austríaco Wolfgang Pauli (1900-1958), a explicar el balance de energía en una forma de radioactividad,  el llamado decaimiento beta, en una sonda capaz de escrutar el interior de estrellas y de la propia Tierra.

 

Estas imágenes obtenidas por el instrumento SPIRE del telescopio espacial Herschel muestran algunos de los objetos más representativos de la población de 234 candidatos a protocúmulos galácticos recientemente descubiertos. Los contornos en amarillo representan variaciones en la densidad de las galaxias. Créditos: ESA / Colaboración Planck / H. Dole, D. Guéry y G. Hurier, IAS/Universidad de París Sud/CNRS/CNES.

   Proto-cúmulos galácticos en el universo primitivo captados por los telescopios Planck y Herschel

De esa manera, oleadas de neutrinos liberados en un segundo después del big bang persiste aún después, formando una radiación cósmica de fondo de neutrinos semejante a la radiación de fondo de microondas producida por el desacoplamiento de los fotones.

Si estos neutrinos “cósmicos” (como se los llama para diferenciarlos de los neutrinos liberados más tarde por las supernovas) pudiesen ser observador por un telescopio de neutrinos de alguna clase, proporcionarían una visión directa del Universo cuando sólo tenía un segundo.

A medida que retrocedemos en el tiempo, el Universo se vuelve más denso y más caliente, y el nivel de  estructura que puede existir se hace cada vez más rudimentario.

 

Física nuclear de partículas - ppt descargar

Por supuesto, en ese tiempo, no hay moléculas, ni átomos, ni núcleos atómicos, y, a 10-6 (0.000001) de segundo después del comienzo del tiempo, tampoco hay neutrones ni protones.  El Universo es un océano de quarks libres y otras partículas elementales.

Si nos tomamos el de contarlos, hallaremos que por cada mil millones de anti-quarks existen mil millones y un quark.  asimetría es importante.  Los pocos quarks en exceso destinados a sobrevivir a la aniquilación general quark-anti-quark formaran todos los átomos de materia del Universo del último día.  Se desconoce el origen de la desigualdad; presumiblemente obedezca a la ruptura de una simetría materia antimateria en alguna etapa anterior.

 

wavegrower : Photo | Pink ästhetik, Optische täuschung, Ästhetik

Nos aproximamos a un tiempo en que las estructuras básicas de las leyes naturales, y no sólo las de las partículas y campos cuya conducta dictaban, cambiaron a medida que evolucionó el Universo.

La primera transición semejante se produjo en los 10-11 de segundo después del comienzo del tiempo, cuando las funciones de las fuerzas débiles y electromagnéticas se regían por una sola fuerza, la electrodébil.  hay bastante energía ambiente para permitir la creación y el mantenimiento de gran de

bosones w y z.

 

Estas partículas – las mismas cuya aparición en el acelerador del CERN verificó la teoría electrodébil – son las mediadoras intercambiables en las interacciones de fuerzas electromagnéticas y débiles, lo que las hace indistinguibles.  En ese tiempo, el Universo está gobernando sólo por tres fuerzas: la gravedad, la interacción nuclear fuerte y la electrodébil.

Más atrás de ese tiempo nos quedamos en el misterio y envueltos en una gran nebulosa de ignorancia.  Cada uno se despacha a su gusto para lanzar conjeturas y teorizar sobre lo que pudo haber sido.   Seguramente, en el futuro, será la teoría M (de supercuerdas) la que contestará esas preguntas sin respuestas ahora.

Mecanismo de HiggsObservan el análogo a un bosón de Higgs en un superconductor - La Ciencia de la Mula Francis

En los 10-35 de segundo desde el comienzo del tiempo, entramos en un ámbito en el que las cuerdas cósmicas son aún menos conocidas.  Si las grandes teorías unificadas son correctas, se produjo una ruptura de la simetría por la que la fuerza electronuclear unificada se escindió en las fuerzas electrodébil y las fuertes.  Si es correcta la teoría de la supersimetría, la transición puede haberse producido antes, había involucrado a la gravitación.

 

                       

 

En el universo temprano la primera materia (hidrógeno y Helio) era llevada por la fuerza de gravedad a conformarse en grandes conglomerados de gas y polvo que interaccionaba, producían calor y formaron las primeras estrellas.

Elaborar una teoría totalmente unificada es tratar de comprender lo que ocurrió en ese tiempo remoto que, según los últimos estudios está situado entre 15.000 y 18.000 millones de años, cunado la perfecta simetría que, se pensaba, caracterizó el Universo, se hizo añicos para dar lugar a los simetrías rotas que hallamos a nuestro alrededor y que, nos trajo las fuerzas y constantes Universales que, paradójicamente, hicieron posible nuestra aparición para que , sea posible que, alguien como yo esté contando lo que pasó.

Pero hasta que no tengamos tal teoría no podemos esperar comprender lo que realmente ocurrió en ese Universo bebé.  Los límites de nuestras conjeturas actuales cuando la edad del Universo sólo es de 10-43 de segundo, nos da la única respuesta de encontrarnos ante una puerta cerrada.

Del otro lado de esa puerta está la época de Planck, un tiempo en que la atracción gravitatoria ejercida por cada partícula era comparable en intensidad a la fuerza nuclear fuerte.

 

TECNOLOGÍA ELECTRÓNICA : TEORÍA DE LOS ÁTOMOS Y LA ELECTRICIDADFuerza Nuclear DebilFuerzas fundamentales de la Naturaleza: Fuerza Nuclear Fuerte

 

La fuerza nuclear fuerte hizo posible la existencia de los núcleos que atraían electrones para formar átomos

Así que, llegados a este punto podemos decir que la clave teórica que podría abrir esa puerta sería una teoría unificada que incluyese la gravitación, es decir, una teoría cuántica-gravitatoria que uniese, de una vez por todas, a Planck y Einstein que, aunque eran muy amigos, no parecen que sus teorías (la Mecánica Cuántica) y (la Relatividad General) se lleven de maravilla.

emilio silvera