viernes, 22 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¡La Hiper-dimensionalidad! ¡Qué cosas nos cuentan!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

cosas microscopio 3cosas microscopio 4cosas microscopio 5

Cuerda de guitarra                  Embrión de pollo           No es un balón, es un trozo de tiza

cosas microscopio 6cosas microscopio 7cosas microscopio 9

           Esto es velcro          Pirámide maya NO Un grano de Sal   Piel de salamandra

Estamos rodeados de maravillas. En ocasiones son visibles a simple vista pero en muchas otras necesitamos de algún instrumento para poder apreciarlo. Como si de un portal hacía otros mundos se tratase, algunos instrumentos nos permiten observar realidades imperceptibles al simple ojo humano.

 

cosas microscopio 13cosas microscopio 16cosas microscopio 18

La punta de un pelo de la cabeza            Una mota de polvo                   Una hormiga

cosas microscopio 20cosas microscopio 26cosas microscopio 29

                          Una oruga                            Poro de sudor humano        Una avispa

“Puede ser un telescopio, que nos muestra la belleza de planetas como Saturno y sus fascinantes anillos o, como es en este caso, un microscopio que nos hace darnos cuenta de la cantidad de mundos que hay dentro de nuestro propio mundo.”

                            Qué sabemos de las misteriosas ondas delta? - La Mente es Maravillosa
                                 El cerebro tiene secretos que… ¡Nunca nos contará!
Las ondas delta del cerebro son misteriosas y fascinantes. Se sabe de su existencia desde comienzos del siglo XX, cuando Grey Walter las descubrió. También se sabe que tienen una frecuencia que va de los 0 a los 4 Hz y que son consideradas las más lentas de todas cuantas produce el cerebro. Así mismo, están asociadas con el bienestar y la paz interior.

                                      Many ancient Indian texts told us about the VIMANA flying machines that GODS used to fly around in India, 14… | Ancient aliens, Ancient india, Unexplained mysteries31 Vimanas ideas | ancient aliens, ancient india, ancient astronaut

                                            Vimana, un pozo de tiempo en Afganistán

El 21 de diciembre de 2010 científicos estadounidenses descubrieron “un vimana atrapado en un pozo del tiempo“ (un campo gravitatorio electromagnético, que sólo puede ocurrir en una dimensión invisible del espacio) en la ciudad de Balkh, Afganistán, lugar que alguna vez Marco Polo catalogó como “una de las ciudades más nobles y grandiosas” del mundo”.

 

“Los intentos por retirar el misterioso Vimana de la cueva donde había estado oculto durante por lo menos 5.000 años, causaron la “desaparición” de por lo menos 8 soldados norteamericanos, atrapados por el vórtex temporal ( nuestros cuerpos no pueden desplazarse como si nada del presente al futuro y del futuro al pasado sin cargarse el peso destructivo de las leyes de la física, salvo si se logra bloquear el campo magnético, algo que aparentemente los científicos norteamericanos tardaron ocho cadáveres en descubrir y solucionar, probablemente con jaulas de Faraday ).”

 

Stargate from Buck Rogers in the 25th Century | Buck rogers, Buck rodgers, Sci fi films

La existencia de este tipo de fenómenos no está demostrado por los científicos (caso contrario estaríamos hablando de leyes), pero los físicos teóricos coinciden en general que podrían ser posibles si se acepta la teoría del Multi-universo (un universo de por lo menos 11 dimensiones espaciotemporales) como estructura lógica y matemática. Atravesando esa especie de plasma líquido, nos podríamos trasladar a otros mundos, a otras galaxias.

 

Theodor Kaluza, ya en 1921 conjeturaba que si ampliáramos nuestra visión del universo a 5 dimensiones, entonces no habría más que un solo campo de fuerza: la gravedad, y lo que llamamos electromagnetismo sería tan sólo la parte del campo gravitatorio que opera en la quinta dimensión, una realidad espacial que jamás reconoceríamos si persistiéramos en nuestros conceptos de realidad lineal, similar a un holograma.

Bueno, independientemente de que todo esto pueda ser una realidad, lo cierto es que, nosotros, ahora en nuestro tiempo, hablamos de un universo con más dimensiones y, la carrera de las más altas dimensiones la inicio (como arrtiba se menciona) en el año 1919 (no el 1921) por Theodor Kaluza, un osucro y desconocido matemático,  cuando le presentó a Einstein mediante un escrito una teoría unificada que podía unificar, las dos grandes teorías del momento, la Relatividad General con el Magnetismo y podía realizarse si elaboraba sus ecuciones  en un espacio-tiempo de cinco dimensiones.

 

Einstein y la teoría de Kaluza-Klein — Cuaderno de Cultura CientíficaEinstein y...la teoría de Kaluza-Klein - Experientia docetArchivo:Kaluza Klein compactification.svg - Wikipedia, la enciclopedia libre

          Kaluza-Klein y su teoría de 5 dimensiones

Así estaban las cosas cuando en 1.919 recibió Einstein un trabajo de Theodor Kaluza, un privatdozent en la Universidad de Königsberg, en el que extendía la Relatividad General a cinco dimensiones. Kaluza consideraba un espacio con cuatro dimensiones, más la correspondiente dimensión temporal y suponía que la métrica del espacio-tiempo se podía escribir como:

 

                                                    metrica_de_kaluza

Así que, como hemos dicho, ese mismo año, Oskar Klein publicaba un trabajo sobre la relación entre la teoría cuántica y la relatividad en cinco dimensiones. Uno de los principales defectos del modelo de Kaluza era la interpretación física de la quinta dimensión. La condición cilíndrica impuesta ad hoc hacía que ningún campo dependiera de la dimensión extra, pero no se justificaba de manera alguna.

Klein propuso que los campos podrían depender de ella, pero que ésta tendría la topología de un círculo con un radio muy pequeño, lo cual garantizaría la cuantización de la carga eléctrica. Su diminuto tamaño, R5 ≈ 8×10-31 cm, cercano a la longitud de Planck, explicaría el hecho de que la dimensión extra no se observe en los experimentos ordinarios, y en particular, que la ley del inverso del cuadrado se cumpla para distancias r » R5. Pero además, la condición de periodicidad implica que existe una isometría de la métrica bajo traslaciones en la quinta dimensión, cuyo grupo U(1), coincide con el grupo de simetría gauge del electromagnetismo.

Einstein al principio se burló de aquella disparatada idea pero, más tarde, habiendo leído y pensado con más atención en lo que aquello podía significar, ayudó a Kaluza a publicar su idea de un mundo con cinco dimensiones (allí quedó abierta la puerta que más tarde, traspasarían los teóricos de las teorías de más altas dimensiones). Algunos años más tarde, , el físico sueco Oskar Klein publicó una versión cuántica del artículo de Kaluza. La Teoría Kaluza-Klein que resultó parecía interesante, pero, en realidad, nadie sabía que hacer con ella hasta que, en los años setenta; cuando pareció beneficioso trabajar en la supersimetría, la sacaron del baúl de los recuerdos, la desempolvaron y la tomaron como modelo.

Pronto, Kaluza y Klein estuvieron en los labios de todo el mundo  (con Murray Gell-Mann, en su papel de centinela lingüístico, regañando a sus colegas que no lo sabían pronunciar “Ka-wu-sah-Klein”.

 

Pero, ¿Existen en nuestro Universo dimensiones ocultas?

Aunque la teoría de cuerdas en particular y la supersimetría en general apelaban a mayores dimensiones, las cuerdas tenían un modo de seleccionar su dimensionalidad requerida. Pronto se hizo evidente que la Teoría de cuerdas sólo sería eficaz, en diez, once y veintiséis dimensiones, y sólo invocaba dos posibles grupos de simetría: SO(32) o E8 x E8. Cuando una teoría apunta hacia algo tan tajante, los científicos prestan atención, y a finales de los años ochenta había decenas de ellos que trabajaban en las cuerdas. Por aquel entonces, quedaba mucho trabajo duro por hacer, pero las perspectivas era brillantes. “Es posible que las décadas futuras -escribieron Schwarz y sus colaboradores en supercuerdas Green y Edward Witten- sea un excepcional período de aventura intelectual.” Desde luego, la aventura comenzó y, ¡qué aventura!

                        La Importancia de las Constantes Universales! No todos las comprenden : Blog de Emilio Silvera V.

 El mundo está definido por las Constantes adimensionales de la Naturaleza que hace el Universo que conocemos. Si la carga del electrón, o la masa del protón, variaran aunque solo fuera una diez millonésima parte… ¡La Vida no estará presente!

Lo único que cuenta en la definición del mundo son los valores de las constantes adimensionales de la naturaleza (así lo creían Einstein y Planck).  Si se duplica el valor de todas las masas no se puede llegar a saber, porque todos los números puros definidos por las razones de cualquier par de masas son invariables.

Puesto que el radio de compactificación es tan pequeño, el valor típico de las masas será muy elevado, cercano a la masa de Planck Mp = k-12 = 1’2 × 1019 GeV*, y por tanto, a las energías accesibles hoy día (y previsiblemente, tampoco en un futuro cercano – qué más quisieran E. Witten y los perseguidores de las supercuerdas -), únicamente el modo cero n = 0 será relevante. Esto plantea un serio problema para la teoría, pues no contendría partículas ligeras cargadas como las que conocemos.

¿Y si llevamos a Kaluza-Klein a dimensiones superiores para unificar todas las interacciones?

 

 

 

Desintegración beta - Wikipedia, la enciclopedia libre

 

En este proceso llamado desintegración beta y debido a la interacción débil, un neutrón se transforma en un protón, un electrón y un (anti)neutrino electrónico cuando uno de los quarks del neutrón emite una partícula W–. Aquí queda claro que el término “interacción” es más general que “fuerza”; esta interacción que hace cambiar la identidad de las partículas no podría llamarse fuerza (todo representado en uno de los famosos diagramas de Feynman).

La descripción de las interacciones débiles y fuertes a través de teorías gauge no abelianas mostró las limitaciones de los modelos en cinco dimensiones, pues éstas requerirían grupos de simetría mayores que el del electromagnetismo. En 1964 Bryce de UIT presentó el primer modelo de tipo Kaluza-KleinYang-Mills en el que el espacio extra contenía más de una dimensión.

 

Completación de cadenas de un modelo electrodébil SU(3)

El siguiente paso sería construir un modelo cuyo grupo de isometría contuviese el del Modelo Estándar SU(3)c × SU(2)l × U(1)y, y que unificara por tanto la gravitación con el resto de las interacciones.

 

 

Tecno-MCK - "TEORÍA M: LAS 11 DIMENSIONES" "La evolución ha asegurado que nuestros cerebros no están equipados para ver 11 dimensiones directamente. Sin embargo, desde un punto de vista matemático, es tanLas 11 dimensiones del Universo (explicadas)

Edward Witten demostró en 1981 que el número total de dimensiones que se necesitarían sería al menos de once. Sin embargo, se pudo comprobar que la extensión de la teoría a once dimensiones no podía contener fermiones quirales, y por tanto sería incapaz de describir los campos de leptones y quarks.

Por otra parte, la supersimetría implica que por cada bosón existe un fermión con las mismas propiedades. La extensión super-simétrica de la Relatividad General es lo que se conoce como super-gravedad (supersimetría local).

 

“Joël Scherk (1946-1980) (a menudo citado como Joel Scherk) fue un francés teórico físico que estudió la teoría de cuerdas ysupergravedad [1] . Junto con John H. Schwarz , pensaba que la teoría de cuerdas es una teoría de la gravedad cuántica en 1974. En 1978, junto con Eugène Cremmer y Julia Bernard , Scherk construyó el lagrangiano y supersimetría transformaciones para super-gravedad en once dimensiones, que es uno de los fundamentos de la teoría-M .”

 

                              Teoria M

 

Unos años antes, en 1978, Cremmer, Julia y Scherk habían encontrado que la super-gravedad, precisamente en once dimensiones, tenía propiedades de unicidad que no se encontraban en otras dimensiones. A pesar de ello, la teoría no contenía fermiones quirales, como los que conocemos, cuando se compactaba en cuatro dimensiones. Estos problemas llevaron a gran parte de los teóricos al estudio de otro programa de unificación a través de dimensiones extra aún más ambicioso, la teoría de cuerdas.

No por haberme referido a ella en otros trabajos anteriores estará de más dar un breve repaso a las supercuerdas. Siempre surge algún matiz nuevo que enriquece lo que ya sabemos.

 

Gabriele Veneziano - Wikipedia, la enciclopedia libre

 

El caso curioso es que, la Relatividad de Einstein, subyace en la Teoría de cuerdas, y, si eliminamos de esta a aquella y su geometría de la Gravedad…todo resulta inútil. El gran Einstein está presente en muchos lugares y quizás, más de los que nos podamos imaginar.

Es curioso constatar que si abandonamos la teoría de la gravedad de Einstein como una vibración de la cuerda, entonces la teoría se vuelve inconsistente e inútil. Esta, de hecho, es la razón por la que Witten se sintió atraído inicialmente hacia la teoría de cuerdas. En 1.982 leyó un artículo de revisión de John Schwarz y quedó sorprendido al darse cuenta de que la gravedad emerge de la teoría de supercuerdas a partir solamente de los requisitos de auto consistencia. Recuerda que fue “la mayor excitación intelectual de mi vida”.

La gravedad se puede explicar sin aplicar la teoría de cuerdas - Levante-EMV

 

Gross se siente satisfecho pensando que Einstein, si viviera, disfrutaría con la teoría de supercuerdas que sólo es válida si incluye su propia teoría de la relatividad general, y amaría el hecho de que la belleza y la simplicidad de esa teoría proceden en última instancia de un principio geométrico, cuya naturaleza exacta es aún desconocida relatividad general de Einstein. Nos ayuda a estudiar las partes más grandes del Universo, como las estrellas y las galaxias. Pero los elementos diminutos los átomos y las partículas subatómicas se rigen por unas leyes diferentes denominadas mecánica cuántica.

 

                                La teoría de la relatividad de Einstein obtuvo una nueva confirmación - Infobae

 

Claro que, como todos sabemos, Einstein se pasó los últimos treinta años de su vida tratando de buscar esa teoría unificada que nunca pudo encontrar. No era consciente de que, en su tiempo, ni las matemáticas necesarias existían aún. En la historia de la física del siglo XX muchos son los huesos descoloridos de teorías que antes se consideraban cercanas a esa respuesta final que incansables buscamos.

Hasta el gran Wolfgang Pauli había colaborado con Heisenberg en la búsqueda de una teoría unificada durante algún tiempo, pero se alarmó al oír en una emisión radiofónica como Heisenberg decía: “Está a punto de ser terminada una Teoría unificada de Pauli-Heisenberg, en la que sólo nos queda por elaborar unos pocos detalles técnicos.”

 

Wolfgang Pauli ETH-Bib Portr 01042.jpg

            Wolfgang Pauli

Enfadado por lo que consideraba una hipérbole de Heisenberg que se extralimitó con aquellas declaraciones en las que lo involucraba sin su consentimiento,  Pauli envió a Gamow y otros colegas una simple hija de papel en blanco en la que había dibujado una caja vacía. Al pie del dibujo puso estas palabras: “Esto es para demostrar al mundo que yo puedo pintar como Tiziano. Sólo faltan algunos detalles técnicos.”

Qué es la teoría de cuerdas?

 

Los críticos del concepto de supercuerdas señalaron que las afirmaciones sobre sus posibilidades se basaban casi enteramente en su belleza interna. La teoría aún  no había repetido siquiera los logros del Modelo Estándar, ni había hecho una sola predicción que pudiera someterse a prueba mediante el experimento. La Supersimetría ordenaba que el Universo debería estar repleto de familias de partículas nuevas, entre ellas los selectrones (equivalente al electrón super-simétrico) o el fotino (equivalente al fotón).

Lo cierto es que, nada de lo predicho ha podido ser comprobado “todavía” pero, sin embargo, la belleza que conlleva la teoría de cuerdas es tal que nos induce a creer en ella y, sólo podemos pensar que no tenemos los medios necesarios para comprobar sus predicciones, con razón nos dice E. Witten que se trata de una teoría fuera de nuestro tiempo, las supercuerdas pertenecen al futuro y aparecieron antes por Azar.

Y, a todo esto, ¿Dónde están esas otras dimensiones?

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting