miércoles, 25 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Sabremos alguna vez?

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Resultado de imagen de Supernova

En una supernova, en orden decreciente tenemos la secuencia de núcleos H, He, O, C, N, Fe, que coincide bastante bien con una ordenación en la tabla periódica que es:

            H, He, (Li, Be, B) C, N, O… Fe

No pocas veces hemos referido aquí el maravilloso suceso que está presente en las estrellas que mediante la fusión nuclear, transforma los elementos sencillos en otros más complejos y, cuando agotado el ciclo y no pueden continuar fusionando los materiales pesados que les quedan, dependiendo de sus masas se transforman en gigantes rojas y finalmente en enanas blancas (como le pasará a nuestro Sol), dejando una bonita Nebulosa Planetaria, y, si la estrella es masiva, su final será mediante la explosión como Supernova que regará el espacio interestelar con el remanente de materiales pesados y la estrella, en su mayor parte, se convertirá en una estrella de Neutrones, o, si es una supermasiva, en Agujero Negro.

Resultado de imagen de Grandes Nebulosas

Lo curioso y asombroso del caso es que, a partir de esos materiales, se forman nuevas estrellas y nuevos mundos y, en algunos de esos mundos que se sitúan en la zona adecuada para la habitabilidad, donde el agua corre líquida y se ha formado una atmósfera adecuada y océanos, con el paso del tiempo, esa materia primordial se acomoda en estructuras complejas y surge la Vida.

 

La imagern de arriba, SN 1987A, es la descomunal explosión de supernova, cuando ocurrió, la potencia de miles de soles cambió, momentáneamente, la región del espacio conocida como Nube Mayor de Magallanes, a muchos años luz de la Tierra.

¡Qué maravilla!  Las estrellas brillan en el cielo para hacer posible que nosotros estemos aquí descubriendo los enigmas del universo y… de la vida inteligente que esas mismas estrellan han posibilitado, creo que, en muchos mundos que son en las galaxias del universo.

 

Pero está claro que todo el proceso estelar evolutivo inorgánico nos condujo desde el simple gas y polvo cósmico a la formación de estrellas y nebulosas solares hasta los planetas, la Tierra en particular, en cuyo medio ígneo describimos la formación de las estructuras de los silicatos, desplegándose con ello una enorme diversidad de composiciones, formas y colores, asistiéndose, por primera vez en la historia de la materia, a unas manifestaciones que contrastan con las que hemos mencionado en relación al proceso de las estrellas.

Desde el punto de vista del orden es la primera vez que nos encontramos con objetos de tamaño comparables al nuestro, en los que la ordenación de sus constituyentes es el rasgo más característico.

Al mismo tiempo nos ha parecido reconocer que esos objetos, es decir, sus redes cristalinas “reales”, almacenan información (memoria) que se nos muestra muy diversa y que puede cobrar interés en ciertos casos, como el de los micro-cristales de arcilla, en los que, según Cairns-Smith, puede incluso llegar a transmitirse.

Porque, ¿Qué sabemos en realidad de lo que llamamos materia inerte? Lo único que sabemos de ella son los datos referidos a sus condiciones físicas de dureza, composición, etc; en otros aspectos ni sabemos si pueden existir otras propiedades distintas a las meramente físicas.

¿No os hace pensar que nosotros estemos hechos, precisamente, de lo que llamamos materia inerte?

Pero el mundo inorgánico es sólo una parte del inmenso mundo molecular. El resto lo constituye el mundo orgánico, que es el de las moléculas que contienen carbono y otros átomos y del que quedan excluidos, por convenio y características especiales, los carbonatos, bicarbonatos y carburos metálicos, los cuales se incluyen en el mundo inorgánico.

 

http://3.bp.blogspot.com/-IO7zpTA9Gqw/TvNABf1MU8I/AAAAAAAAAOg/jG_CA-apnAo/s1600/carbono.jpg

                          En Titán existen moléculas de Carbono necesarias para la vida

Según decía en algún trabajo anterior, los quarks up y down se hallan en el seno de los nucleones (protones y neutrones) y, por tanto, en los núcleos atómicos. Hoy día, éstos se consideran como una subclase de los hadrones. Sin embargo, debemos tener claro que toda la materia del Universo (al menos la conocida), está conformada por Quarks y Leptones.

La composición de los núcleos (lo que en química se llama análisis cualitativo) es extraordinariamente sencilla, ya que como es sabido, constan de neutrones y protones que se pueden considerar como unidades que dentro del núcleo mantienen su identidad. Tal simplicidad cualitativa recuerda, por ejemplo, el caso de las series orgánicas, siendo la de los hidrocarburos saturados la más conocida. Recordad que su fórmula general es CnH2n+2, lo que significa que una molécula de hidrocarburo contiene n átomos de carbono (símbolo C) y (2n+2) átomos de hidrógeno (símbolo H).

El número de protones y neutrones determina al elemento, desde el hidrógeno (el más simple), al uranio (el más complejo), siempre referido a elementos naturales que son 92; el resto son artificiales, los conocidos transuránicos en cuyo grupo están el einstenio o el plutonio, artificiales todos ellos.

 

Volcán de hielo Sotra Facula en Titan. Crédito: NASA.

Científicos descubrieron posibles cráteres que expulsan hielos, llamados crio-volcanes. (15 Diciembre, 2010 NASA – CA) Con el sistema de radar e imágenes infrarrojas de la sonda Cassini, que orbita Saturno, científicos han encontrado evidencias de lo que podría ser un volcán de hielo en Titán. Este pequeño mundo haría las delicias de cualquier químico de la Tierra y, no digamos de los geólogos. (4 Enero 2007 – NASA/Agencias – CA) Fue comprobada la predicción sobre la existencia de lagos de metano líquido en Titán.

Pero, si hablamos de los núcleos, como sistemas dinámicos de nucleones, pertenecen obviamente a la microfísica y, por consiguiente, para su descripción es necesario acudir a la mecánica cuántica. La materia, en general, aunque presumimos de conocerla, en realidad, nos queda mucho por aprender de ella.

Hablemos un poco de moléculas.

 

 

Molécula de fullereno, dinitrógeno, agua y la representación poliédrica del anión de Keggin, un polianión  molecular

El número de especímenes atómicos es finito, existiendo ciertas razones para suponer que hacia el número atómico 173 los correspondientes núcleos serían inestables, no por razones intrínsecas de inestabilidad “radiactiva” nuclear, sino por razones relativistas. Ya antes me referiría a las especies atómicas, naturales y artificiales que son de unos pocos millares; en cambio, el número de moléculas conocidas hasta ahora comprende varios millones de especímenes, aumentando continuamente el número de ellas gracias a las síntesis que se llevan a cabo en numerosos laboratorios repartidos por todo el mundo.

Una molécula es una estructura con individualidad propia, constituida por núcleos y electrones. Obviamente, en una molécula las interacciones deben tener lugar entre núcleos y electrones, núcleos y núcleos y electrones y electrones, siendo del tipo electromagnético.

 

 

Debido al confinamiento de los núcleos, el papel que desempeñan, aparte del de proporcionar la casi totalidad de la masa de la molécula, es poco relevante, a no ser que se trate de moléculas livianas, como la del hidrógeno. De una manera gráfica podríamos decir que los núcleos en una molécula constituyen el armazón de la misma, el esqueleto, cuya misión sería proporcionar el soporte del edificio. El papel más relevante lo proporcionan los electrones y en particular los llamados de valencia, que son los que de modo mayoritario intervienen en los enlaces, debido a que su energía es comparativamente inferior a la de los demás, lo que desempeña un importante papel en la evolución.

 

Esta nebulosa llena de color, denominada NGC 604, es uno de los mayores y mejores ejemplos de nacimiento estelar en una galaxia cercana. La nebulosa NGC 604 es semejante a otras regiones de formación de estrellas en la Vía Láctea que nos resultan familiares, como la nebulosa de Orión, pero en este caso nos hallamos ante una enorme extensión que contiene más de 200 brillantes estrellas azules inmersas en una resplandeciente nube gaseosa que ocupa 1.300 años-luz de espacio, unas cien veces el tamaño de la Nebulosa de Orión, la cual aloja exactamente cuatro estrellas brillantes centrales. Las luminosas estrellas de NGC 604 son extremadamente jóvenes, ya que se han formado hace tres millones de años.

Las moléculas diatómicas de hidrógeno abundan en el espacio interestelar. NGC 604, una enorme región de hidrógeno ionizado en la Galaxia del Triángulo. Son muchas las moléculas descubiertas en estas nebulosas y se cree que son el material que más tarde forman los mundos y, si tienen la suerte de caer en la zona habitable de la estrella que les dará luz y calor, esas moléculas se unirán para construir estructuras más complejas que las lleven hasta la vida.

 

Resultado de imagen de La molécula del hidrógeno

 

Desde las moléculas más sencilla, como la del hidrógeno con un total de 2 electrones, hasta las más complejas, como las de las proteínas con muchos miles de ellos, existe toda una gama, según decía, de varios millones. Esta extraordinaria variedad de especies moleculares contrasta con la de las especies nucleares e incluso atómicas.

Sin entrar en las posibles diferencias interpretativas de estas notables divergencias, señalaré que desde el punto de vista de la información, las especies moleculares la poseen en mucho mayor grado que las nucleares y atómicas.

¿La molécula sintética más grande del mundo? Bueno, en la naturaleza existen muchas moléculas de gran tamaño, un claro ejemplo son las proteínas o el ADN, y son grandes debido a que están formados por la unión de muchas moléculas más pequeñas. Las proteínas están formadas por la unión de aminoácidos, y el ADN por la unión de nucleótidos.

Los Electrones Giran Alrededor Del Núcleo Metrajes - Vídeo de aprenda, azul: 109926386Ilustración 3D del átomo de potasio: ilustración de stock 1994313632 | Shutterstock

 

Dejando aparte los núcleos, la información que soportan los átomos se podría atribuir a la distribución de su carga eléctrica, y en particular a la de los electrones más débilmente ligados. Concretando un poco se podría admitir que la citada información la soportan los orbitales atómicos, pues son precisamente estos orbitales las que introducen diferencias “geométricas” entre los diferentes electrones corticales.

Justamente esa información es la que va a determinar las capacidades de unión de unos átomos con otros, previo el “reconocimiento” entre los orbitales correspondientes. De acuerdo con la mecánica cuántica, el número de orbitales se reduce a unos pocos. Se individualizan por unas letras, hablándose de orbitales sp,dfgh. Este pequeño número nos proporciona una gran diversidad.

 

 http://upload.wikimedia.org/wikipedia/commons/5/58/Es-Orbital_s.png

                                           De los orbitales hablamos aquí extensamente muy a menudo

 

La llamada hibridación (una especie de mezcla) de orbitales es un modo de aumentar el número de mensajes, esto es, la información, bien entendido que esta hibridación ocurre en tanto y en cuanto dos átomos se preparan para enlazarse y formar una molécula. En las moléculas, la información, obviamente, debe abarcar todo el edificio, por lo que en principio parece que debería ser más rica que en los átomos. La ganancia de información equivale a una disminución de entropía; por esta razón, a la información se la llama también negantropía.

En términos electrónicos, la información se podría considerar proporcionada por un campo de densidad eléctrica, con valles, cimas, collados, etc, es decir, curvas isoelectrónicas equivalentes formalmente a las de nivel en topografía. Parece razonable suponer que cuanto más diverso sean los átomos de una molécula, más rica y variada podrá ser su información, la información que pueda soportar.

 

 

La enorme variedad de formas, colores, comportamientos, etc que acompaña a los objetos, incluidos los vivientes, sería una consecuencia de la riqueza en la información que soportan las moléculas (y sus agregados) que forman parte de dichos objetos. Ello explicaría que las moléculas de la vida sean en general de grandes dimensiones (macromoléculas). La inmensa mayoría de ellas contiene carbono. Debido a su tetravalencia y a la gran capacidad que posee dicho átomo para unirse consigo mismo, dichas moléculas pueden considerarse como un esqueleto formado por cadenas de esos átomos.

El carbono no es el único átomo con capacidad para formar los citados esqueletos. Próximos al carbono en la tabla periódica, el silicio, fósforo y boro comparten con dicho átomo esa característica, si bien en un grado mucho menor. De todas las maneras y, sin descartar nada, creo que las formas de vida que podamos encontrar en el Universo, al menos la mayoría, estarán basadas, como nosotros, en el Carbono que, por sus características especiales, es el más idóneo para la vida.

emilio silvera