domingo, 24 de noviembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Tierra, como todo en el Universo, también evolucionó

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Otra de las muchas Historias que circulan por ahí

Una estrella muy extraña

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Sucesos que este, en el inmenso Universo, existen a miles. Es más lo que no sabemos.

¡Aquellos primeros momentos!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Frente de ionización en la Nebulosa del Pelícano

Aquí podemos contemplar una enorme región ionizada en la Nebulosa del Pelícano. Estrellas nuevas emiten potente radiación ultravioleta que ataca el espesor de la Nebulosa molecular y hace que, el gas se ionice fuertemente creando una luminosidad que “viste” de azul claro todo el contorno que circunda el radio de acción de las estrellas.

Entradas anteriores

 

Informe Dune: La Princesa Irulan | DanienlaredEl principio antrópico - P. Carreira

              Hay en todas las cosas un ritmo que es parte del Universo

 

Palito Ortega - Un muchacho como yo - Acordes D Canciones - Guitarra y PianoUn Bonito Matorral Alto Con Un Follaje Burdeos Y Flores Blancas En Forma De Estrella Foto de archivo - Imagen de diverso, gris: 172587354

Pajarito azul | Mundo Poesía | Foros de poemas80,152 Peces De Agua Salada Imágenes y Fotos - 123RF

“Pues yo he sido a veces un muchacho y una chica,

Un matorral y un pájaro y un pez en las olas saladas.”

Con estas palabras el gran pensador nos quería decir que todo, sin excepción, estaba hecho de la misma cosa.

         

Antes de que la imagen de arriba fuese una realidad tuvieron que pasar muchos miles y millones de años. Hasta donde sabemos y el origen más aceptado para nuestro Universo es el de una inmensa explosión proveniente de una singularidad en la que la densidad y la energía eran “infinitas” y a partir de ahí, comenzó la gran aventura:
            El Hubble capta la imagen más precisa de la explosión de una supernova en el Universo primitivo

El Hubble capta la imagen más precisa de la explosión de una supernova en el Universo primitivo

¡El Universo!

Antes de alrededor de un minuto y cuarenta segundos desde el comienzo del tiempo,  no hay núcleos atómicos estables.  El nivel de energía en el ambiente es mayor que la energía de unión nuclear. Por consiguiente, todos los núcleos que se forman, se destruyen de rápidamente.

 

El universo temprano (I): el desacoplamiento de los neutrinos – Entre cientIFIC@s

 

Alrededor de un segundo desde el comienzo del tiempo, llegamos a la época de desacoplamiento de los neutrinos Aunque en esa época el Universo es más denso que las orcas (y tan caliente como la explosión de una bomba de hidrógeno), ya ha empezado a parecer vacío a los neutrinos.  Puesto que los neutrinos sólo reaccionan a la fuerza débil, que tiene un alcance extremadamente corto, pueden escapar de sus garras y volar indefinidamente sin experimentar ninguna otra interacción.

 

                                         

      Aunque parezca mentira, al día de hoy no sabemos, a ciencia cierta, como se formaron las galaxias

Así, emancipados, en lo sucesivo son libres de vagar por el Universo a su manera indiferente, volando a través de la mayor   de la materia como sino existiese. (Diez trillones de neutrinos atravesarán sin causar daños el cerebro y el cuerpo del lector en el tiempo que le lleve leer esta frase.  Y en el tiempo en que usted haya leído esta frase estarán más lejos que la Luna).

 

Desintegración beta - Wikipedia, la enciclopedia libre

“Decaimiento β de un núcleo. Se ilustra cómo uno de los neutrones se convierte en un protón a la vez que emite un electrón (β) y un antineutrino electrónico.”

 

En menos de un siglo, el neutrino pasó de una partícula fantasma (propuesta en 1930 por el físico austríaco Wolfgang Pauli (1900-1958) a explicar el balance de energía en una forma de radioactividad,  el llamado decaimiento beta, en una sonda capaz de escrutar el interior de estrellas y de la propia Tierra.

 

Las Partículas Fantasma: ¿qué son los Neutrinos?

El neutrino es la partícula subatómica más misteriosa del modelo estándar. Conocidas como partículas fantasma, son prácticamente imposibles de detectar pero esconden las claves para comprender el origen de la realidad.

De esa manera, oleadas de neutrinos liberados en un segundo después del Big Bang persiste aún después, formando una radiación cósmica de fondo de neutrinos semejante a la radiación de fondo de microondas producida por el desacoplamiento de los fotones.

Si estos neutrinos “cósmicos” (como se los llama para diferenciarlos de los neutrinos liberados más tarde por las supernovas) pudiesen ser observador por un telescopio de neutrinos de alguna clase, proporcionarían una visión directa del Universo cuando sólo tenía un segundo.

A medida que retrocedemos en el tiempo, el Universo se vuelve más denso y más caliente, y el nivel de  estructura que puede existir se hace cada vez más rudimentario.

 

       

 

Por supuesto, en ese tiempo, no hay moléculas, ni átomos, ni núcleos atómicos, y, a 10-6 (0.000001) de segundo después del comienzo del tiempo, tampoco hay neutrones ni protones.  El Universo es un océano de quarks libres y otras partículas elementales.

Si nos tomamos el de contarlos, hallaremos que por cada mil millones de anti-quarks existen mil millones y un quark.  asimetría es importante.  Los pocos quarks en exceso destinados a sobrevivir a la aniquilación general quark-anti-quark formaran todos los átomos de materia del Universo del último día.  Se desconoce el origen de la desigualdad; presumiblemente obedezca a la ruptura de una simetría materia antimateria en alguna etapa anterior.

Nos aproximamos a un tiempo en que las estructuras básicas de las leyes naturales, y no sólo las de las partículas y campos cuya conducta dictaban, cambiaron a medida que evolucionó el Universo.

 

Las interacciones fundamentales : Blog de Emilio Silvera V.Cuáles son todas las cualidades que debe cumplir una teoría unificada y cuáles han sido los obstáculos que han dificultado su creación? - Quora

 

La primera transición semejante se produjo en los 10-11 de segundo después del comienzo del tiempo, cuando las funciones de las fuerzas débiles y electromagnéticas se regían por una sola fuerza, la electrodébil.  hay bastante energía ambiente para permitir la creación y el mantenimiento de gran de bosones w y z.

 

 

Estas partículas – las mismas cuya aparición en el acelerador del CERN verificó la teoría electrodébil – son las mediadoras intercambiables en las interacciones de fuerzas electromagnéticas y débiles, lo que las hace indistinguibles.  En ese tiempo, el Universo está gobernando sólo por tres fuerzas: la gravedad, la interacción nuclear fuerte y la electrodébil.

Más atrás de ese tiempo nos quedamos en el misterio y envueltos en una gran nebulosa de ignorancia.  Cada uno se despacha a su gusto para lanzar conjeturas y teorizar sobre lo que pudo haber sido.   Seguramente, en el futuro, será la teoría M (de supercuerdas) la que contestará esas preguntas sin respuestas ahora.

 

QUE SUCEDIO EN EL PRIMER SEGUNDO DEL BING BANG?: LA RUPTURA DE SIMETRIA – UNIVERSITAMPuede una ruptura espontánea de simetría en algún momento haber separado el espacio-tiempo de la materia y el resto de interacciones? Es decir que en un principio eran una sola entidad. -

¿Puede una ruptura espontánea de simetría en algún momento haber separado el espacio-tiempo de la materia y el resto de interacciones? Es decir que en un principio eran una sola entidad.

En los 10-35 de segundo desde el comienzo del tiempo, entramos en un ámbito en el que las fuerzas cósmicas son aún menos conocidas.  Si las grandes teorías unificadas son correctas, se produjo una ruptura de simetría entre la Gravedad y las fuerzas fuertes.  Si es correcta la teoría de la supersimetría, la transición puede haberse producido antes, había involucrado a la gravitación.

 

                 

En el universo temprano la primera materia (hidrógeno y Helio) era llevada por la fuerza de gravedad a conformarse en grandes conglomerados de gas y polvo que interaccionaban, producían calor y formaron las primeras estrellas.

 

El universo I / La teoría del Big Bang, el origen de todo lo que conocemos

 

Elaborar una teoría totalmente unificada es tratar de comprender lo que ocurrió en ese tiempo remoto que, según los últimos estudios está situado entre 15.000 y 18.000 millones de años, cunado la perfecta simetría que, se pensaba, caracterizó el Universo, se hizo añicos para dar lugar a los simetrías rotas que hallamos a nuestro alrededor y que, nos trajo las fuerzas y constantes Universales que, paradójicamente, hicieron posible nuestra aparición para que , sea posible que, alguien como yo esté contando lo que pasó.

Pero hasta que no tengamos tal teoría no podemos esperar comprender lo que realmente ocurrió en ese Universo bebé.  Los límites de nuestras conjeturas actuales cuando la edad del Universo sólo es de 10-43 de segundo, nos da la única respuesta de encontrarnos ante una puerta cerrada.

 

Ya veremos ...: La era de Planck

La gente no se abstrae de reflexionar sobre una cuestión que le es desconocida, llegando a ser, muchas veces, fuente de fantasmas. Detrás de la frontera de Planck, los teóricos han elaborado escenarios que harían palidecer de envidia a los novelistas de ciencia ficción. He aquí algunos ejemplos.

La física moderna, ha asumido casi como un dogma el adagio «nada se pierde; nada se crea». En cualesquiera de los espacios del cosmos, pares de partículas, de toda masa y de toda especie, emergen para aniquilarse rápidamente. Este aparecer y desaparecer se asemeja a el «zumbido» de los vientos en el vacío. Esta febril actividad cósmica lleva el nombre de «fluctuación del vacío», y se rige por los principios cuánticos.

¿Y si el universo entero resultara de una fluctuación de este tipo? ¿Y si del «vacío primordial» hubiese surgido, hace quince mil millones de años, un cosmos de gran formato en el que galaxias, estrellas y planetas habitados hubiesen podido aparecer? La idea de poder «explicar» la creación del cosmos apela a lo más profundo del ser humano.

Del otro lado de esa puerta está la época de Planck, un tiempo en que la atracción gravitatoria ejercida por cada partícula era comparable en intensidad a la fuerza nuclear fuerte.

 

Interaición nuclear fuerte - WikipediaQue Es Fuerza Nuclear Fuerte Ejemplos

 

La fuerza nuclear fuerte hizo posible la existencia de los núcleos que atraían electrones para formar átomos

Así que, llegados a este punto podemos decir que la clave teórica que podría abrir esa puerta sería una teoría unificada que incluyese la gravitación, es decir, una teoría cuántica-gravitatoria que uniese, de una vez por todas, a Planck y Einstein que, aunque eran muy amigos, no parecen que sus teorías (la Mecánica Cuántica) y (la Relatividad General) se lleven de maravilla.

 

2 fuerzas fundamentales, energía nuclear fuerte y débil

                                    Es sorprende ver, como funciona la Naturaleza.

El Universo (al menos el nuestro), nos ofrece algo más, mucho más que grandes espacios vacíos, oscuros y fríos. En él podemos ver muchos lugares luminosos llenos de estrellas, de mundos y… muy probablemente de vida. Sin embargo, tenemos la sospecha de que, aparte del nuestro, otros universos podrían rondar por ahí y conformar un todo de múltiples Universos de características diversas y no en todos, serían posible la formación de estrellas y como consecuencia de la Vida.

Cuando me sumerjo en los misterios y maravillas que encierra el Universo, no puedo dejar de sorprenderme por sus complejas y bellas formaciones, la inmensidad, la diversidad, las fuerzas que están presentes, los objetos que lo pueblan, la sorprendente presencia de formas de vida y su variedad, y, sobre todo, que esa materia animada pudiera llegar hasta la consciencia, emitir ideas y pensamientos.

 

                                     

                              ¿Qué “escalera” habrá que subir para llegar a ese otro universo?

Como nunca nadie pudo estar en otro Universo, tenemos que imaginarlos y basados en la realidad del nuestro, hacemos conjeturas y comparaciones con otros que podrían ser. ¿Quién puede asegurar que nuestro Universo es único? Realmente nadie puede afirmar tal cosa e incluso, estando limitados a un mundo de cuatro dimensiones espacio-temporales, no contamos con las condiciones físico-tecnológicas necesarias para poder captar (si es que lo hay), ese otro universo paralelo o simbiótico que presentimos junto al nuestro y que sospechamos que está situado mucho más allá de nuestro alcance. Sin embargo, podríamos conjeturar que, ambos universos, se necesitan mutuamente, el uno sin el otro no podría existir y, de esa manera, estaríamos en un universo dual dentro de la paradoja de no poder conocernos mutuamente, al menos de momento, al carecer de los conocimientos necesarios para construir esa tecnología futurista que nos llevaría a esos otros horizontes.

                          Otros mundos habitables en el universo | VIDA | PERU21

                                ¿Quién sabe lo que en otros mundos podremos encontrar?

¡Oh mundo de muchos mundos!

¡Oh vida de vidas!

¿Cuál es tu centro?

¿Dónde estamos nosotros?

¿Habrá algo más de lo que vemos?

¿Debemos prestar atención a las voces que oímos en nuestras mentes?

¿Cómo pudimos llegar a saber de lo muy pequeño y de lo muy grande?

 

               

 

Pensemos por ejemplo que un átomo tiene aproximadamente 10-8 centímetros de diámetros. En los sólidos y líquidos ordinarios los átomos están muy juntos, casi en contacto mutuo. La densidad de los sólidos y líquidos ordinarios depende por tanto del tamaño exacto de los átomos, del grado de empaquetamiento y del peso de los distintos átomos.

De los sólidos ordinarios, el menos denso es el hidrógeno solidificado, con una densidad de 0’076 gramos por cm3. El más denso es un metal raro, el osmio, con una densidad de 22’48 gramos/cm3.

Si los átomos fuesen bolas macizas e incompresibles, el osmio sería el material más denso posible, y un centímetro cúbico de materia jamás podría pesar ni un kilogramo, y mucho menos toneladas.

 

                                         

 

Pero los átomos no son macizos. El físico neozelandés experimentador por excelencia, Ernest Ruthertord, demostró en 1.909 que los átomos eran en su mayor parte espacio vacío. La corteza exterior de los átomos contiene sólo electrones ligerísimos, mientras que el 99’9% de la masa del átomo está concentrada en una estructura diminuta situada en el centro: el núcleo atómico.

 

Núcleo atómico y modos de decaimientoCómo está constituido el núcleo de los átomos? - Foro Nuclear

 

El núcleo atómico tiene un diámetro de unos 10-15 cm (aproximadamente 1/100.000 del propio átomo). Si los átomos de una esfera de materia se pudieran estrujar hasta el punto de desplazar todos los electrones y dejar a los núcleos atómicos en contacto mutuo, el diámetro de la esfera disminuiría hasta un nivel de 1/100.000 de su tamaño original.

De manera análoga, si se pudiera comprimir la Tierra hasta dejarla reducida a un balón de núcleos atómicos, toda su materia quedaría reducida a una esfera de unos 130 metros de diámetro. En esas mismas condiciones, el Sol mediría 13’7 km de diámetro en lugar de los 1.392.530 km que realmente mide. Y si pudiéramos convertir toda la materia conocida del universo en núcleos atómicos en contacto, obtendríamos una esfera de sólo algunos cientos de miles de km de diámetro, que cabría cómodamente dentro del cinturón de asteroides del Sistema Solar.

 

La NASA detectó la estrella más lejana jamás vista en la historia

Estrella se encuentra a 15 millones de años luz de la Tierra. Foto: NASA

El Hubble captó una estrella “muriendo” con el núcleo expuesto a 15 millones de años-luz

El calor y la presión que reinan en el centro de las estrellas rompen la estructura atómica y permiten que los núcleos atómicos empiecen a empaquetarse unos junto a otros. Las densidades en el centro del Sol son mucho más altas que la del osmio, pero como los núcleos atómicos se mueven de un lado a otros sin impedimento alguno, el material sigue siendo un gas.  Hay estrellas que se componen casi por entero de tales átomos destrozados.  La compañera de la estrella Sirio es una “enana blanca” no mayor que el planeta Urano, y sin embargo tiene una masa parecida a la del Sol.

Los núcleos atómicos se componen de protones y neutrones. Ya hemos dicho antes que todos los protones tienen carga eléctrica positiva y se repelen entre sí, de modo que en un lugar dado no se pueden reunir más de un centenar de ellos. Los neutrones, por el contrario, no tienen carga eléctrica y en condiciones adecuadas pueden estar juntos y empaquetados un enorme número de ellos para formar una “estrella de neutrones”. Los púlsares, según se cree, son estrellas de neutrones en rápida rotación.

 

 

El James Webb capta los primeros instantes de una estrella formándose en una espectacular imagen

El James Webb capta los primeros instantes de una estrella formándose en una espectacular imagen

Estas estrellas se forman cuando las estrellas de 2 – 3 masas solares, agotado el combustible nuclear, no pueden continuar fusionando el hidrógeno en helio, el helio en oxígeno, el oxigeno en carbono, etc, y explotan en supernovas. Las capas exteriores se volatilizan y son expulsados al espacio; el resto de la estrella (su mayor parte), al quedar a merced de la fuerza gravitatoria, es literalmente aplastada bajo su propio peso hasta tal punto que los electrones se funden con los protones y se forman neutrones que se comprimen de manera increíble hasta que se degeneran y emiten una fuerza que contrarresta la gravedad, quedándose estabilizada como estrella de neutrones.

Si el Sol se convirtiera en una estrella de neutrones, toda su masa quedaría concentrada en una pelota cuyo diámetro sería de 1/100.000 del actual, y su volumen (1/100.000)3, o lo que es lo mismo 1/1.000.000.000.000.000 (una milmillonésima) del actual. Su densidad sería, por tanto, 1.000.000.000.000.000 (mil billones) de veces superior a la que tiene ahora.

 

                         

                            Nuestro Sol es la estrella más estudiada en nuestro mundo

La densidad global del Sol hoy día es de 1’4 gramos/cm3. Una estrella de neutrones a partir del Sol tendría una densidad que se reflejaría mediante 1.400.000.000.000.000 gramos por cm3. Es decir, un centímetro cúbico de una estrella de neutrones puede llegar a pesar 1.400.000.000 (mil cuatrocientos millones de toneladas). ¡Qué barbaridad! Sin embargo, en el contexto del Universo eso no supone nada si pensamos en su inmensidad. Si eso es así (que lo es), ¿Qué somos nosotros comparados con toda esa grandeza? Bueno, si dejamos aparte el tamaño, creo que somos la parte del universo que piensa, o, al menos, una de las partes que puede hacerlo.

 

                     

Ahí se producen las transiciones de fase que transmutan la materia sencilla en la compleja

Objetos como estos pueblan el universo, e incluso más sorprendentes todavía, como es el caso de los agujeros negros explicado en páginas anteriores de este mismo trabajo. Cuando hablamos de las cosas del universo estamos hablando de cosas muy grandes. Cualquiera se podría preguntar, por ejemplo: ¿hasta cuándo podrá mantener el Sol la vida en la Tierra? Está claro que podrá hacerlo mientras radie energía y nos envie luz y calor que la haga posible tal como la conocemos.

 

                                 

 

Como ya explicamos antes, la radiación del Sol proviene de la fusión del hidrógeno en helio. Para producir la radiación vertida por el sol se necesita una cantidad ingente de fusión: cada segundo tienen que fusionarse 654.600.000 toneladas de hidrógeno en 650.000.000 toneladas de helio  (las 4.600.000 toneladas restantes se convierten en energía de radiación y las pierde el Sol para siempre. La ínfima porción de esta energía que incide sobre la Tierra basta para mantener toda la vida en nuestro planeta).

Nadie diría que con este consumo tan alto de hidrógeno por segundo, el Sol pudiera durar mucho tiempo, pero es que ese cálculo no tiene encuentra el enorme tamaño del Sol. Su masa totaliza 2.200.000.000.000.000. 000.000.000.000 (más de dos mil cuatrillones) de toneladas. Un 53% de esta masa es hidrógeno, lo cual significa que el Sol contiene en la actualidad una cantidad de 1.166.000.000.000.000.000.0000.0000.000 toneladas.

 

             

 

Para completar datos diré que el resto de la masa del Sol es casi todo helio. Menos del 0’1 por 100 de su masa está constituido por átomos más complicados que el helio. El helio es más compacto que el hidrógeno. En condiciones idénticas, un número dado de átomos de helio tiene una masa cuatro veces mayor el mismo número de átomos de hidrógeno. O dicho de otra manera: una masa dada de helio ocupa menos espacio que la misma masa de hidrógeno. En función del volumen – el espacio ocupado -, el Sol es hidrógeno en un 80 por ciento.

Si suponemos que el Sol fue en origen todo hidrógeno, que siempre ha convertido hidrógeno en helio al ritmo dicho de 4.654.000  toneladas  por segundo y que lo seguirá haciendo hasta el final, se calcula que ha estado radiando desde hace unos 4.000 millones de años y que seguirá haciéndolo durante otros cinco mil millones de años más.

Pero las cosas no son tan simples. El Sol es una estrella de segunda generación, constituida a partir de gas y polvo cósmico desperdigado por estrellas que se habían quemado y explotado miles de millones de años atrás.  Así pues, la materia prima del Sol contenía ya mucho helio desde el principio, lo que nos lleva a pensar que el final puede estar algo más cercano.

 

 

Estados Unidos avisa de una tormenta solar "fuerte" en la Tierra este fin de semana

 

Por otra parte, el Sol no continuará radiando exactamente al mismo ritmo que ahora. El hidrógeno y el helio no están perfectamente entremezclados. El helio está concentrado en el núcleo central y la reacción de fusión se produce en la superficie del núcleo.

A medida que el Sol siga radiando, irá adquiriendo una masa cada vez mayor ese núcleo de helio y la temperatura en el centro aumentará. En última instancia, la temperatura sube lo suficiente como para transformar los átomos de helio en átomos más complicados. Hasta entonces el Sol radiará más o menos como ahora, pero una vez que comience la fusión del helio, empezará a expandirse y a convertirse poco a poco en una gigante roja. El calor se hará insoportable en la Tierra, los océanos se evaporarán y el planeta dejará de albergar vida en la forma que la conocemos.

 

ENANAS BLANCAS Y ENANAS NEGRAS – GABRIEL ROSSELLÓ, ESCRITOR

La parte de arriba de la imagen nos dice la evolución del Sol hasta enana blanca

La esfera del Sol, antes de explotar para convertirse en una enana blanca, aumentará engullendo a Mercurio y a Venus y quedará cerca del planeta Tierra, que para entonces será un planeta yermo.

Los astrónomos estiman que el Sol entrará en esta nueva fase en unos 5 ó 6 mil millones de años. Así que el tiempo que nos queda por delante es como para no alarmarse todavía. Sin embargo, el no pensar en ello… no parece conveniente.

 

                                   

Espero que al lector de este trabajo, encargado por la Asociación Cultural “Amigos de la Física 137, e/hc”, le resulte entreteniendo y sobre todo interesando los temas que aquí hemos tratado, siempre con las miras puestas en difundir el conocimiento científico de temas de la naturaleza como la astronomía y la física. Tratamos de elegir temas de interés y aquellos que han llamado la atención del público en general, explicándolos y respondiendo a preguntas que seguramente les gustaría conocer, tales como: ¿por qué la Luna muestra siempre la misma cara hacia la Tierra?

La atracción gravitatoria de la Luna sobre la Tierra hace subir el nivel de los océanos a ambos lados de nuestro planeta y crea así dos abultamientos. A medida que la Tierra gira de oeste a este, estos dos bultos – de los cuales uno mira hacia la Luna y el otro en dirección contraria – se desplazan de este a oeste alrededor de la Tierra.

 

       

 

Al efectuar este desplazamiento, los dos bultos rozan contra el fondo de los mares poco profundos, como el de Bering o el de Irlanda. Tal rozamiento convierte energía de rotación en calor, y este consumo de la energía de rotación terrestre hace que el movimiento de rotación de la Tierra alrededor de su eje vaya disminuyendo poco a poco. Las mareas actúan como freno sobre la rotación de la Tierra, y como consecuencia de ello, los días terrestres se van alargando un segundo cada mil años.

Pero no es sólo el agua del océano lo que sube de nivel en respuesta a la gravedad lunar. La corteza sólida de la Tierra también acusa el efecto, aunque en medida menos notable. El resultado son dos pequeños abultamientos rocosos que van girando alrededor de la Tierra, el uno mirando hacia la Luna y el otro en la cara opuesta de nuestro planeta. Durante ese desplazamiento, el rozamiento de una capa rocosa contra otra va minando también la energía de rotación terrestre. (Los bultos, claro está, no se mueven físicamente alrededor del planeta, sino que a medida que el planeta gira, remiten en un lugar y se forman en otro, según qué porciones de la superficie pasen por debajo de la Luna y sean atraídas por su fuerza de gravedad).

 

Siete curiosidades que quizás no sepas sobre las mareas

Las mareas son un espectáculo que ha fascinado al ser humano desde que se percató de los ciclos del mar. Resulta difícil pensar que el Homo erectus , en su periplo por las costas oceánicas desde la cuna de la vida africana, no se percatase de que dos veces al día el océano sube y baja. No fue hasta el 330 a. C. cuando el marino y explorador griego Piteas se dio cuenta de que fuera de la tranquilidad del mar Mediterráno, en el océano Atlántico, las mareas eran mucho más acusadas en luna llena y luna nueva , lo que le sugirió que nuestro satélite tenía mucho que ver el comportamiento de nuestras aguas. Y no solo eso: también se percató de que el Sol estaba relacionado con ese movimiento arriba y abajo, porque primavera y otoño eran los momentos en los que este fenómeno natural cobraba aún más fuerza.

La Luna no tiene mares ni mareas en el sentido corriente. Sin embargo, la corteza sólida de la luna acusa la fuerte atracción gravitacional de la Tierra, y no hay que olvidar que ésta es 80 veces más grande que la Luna. El abultamiento provocado en la superficie lunar es mucho mayor que el de la superficie terrestre. Por tanto, si la Luna rotase en un periodo de 24 horas, estaría sometida a un rozamiento muchísimo mayor que la Tierra. Además, como nuestro satélite tiene una masa mucho menor que la Tierra, su energía total de rotación sería, ya de entrada, para periodos de rotación iguales, mucho menor.

 

                     

                                                   Luna roja sobre el Templo de Poseidon

Así pues, la Luna, con una reserva inicial de energía muy pequeña, socavada rápidamente por los grandes bultos provocados por la Tierra, tuvo que sufrir una disminución relativamente rápida de su periodo de rotación.  Hace seguramente muchos millones de años debió de decelerarse hasta el punto de que el día lunar se igualó con el mes lunar. De ahí en adelante, la Luna siempre mostraría la misma cara hacia el planeta Tierra.

 

Por qué siempre vemos la misma cara de la Luna? - AstroAficion

                                                  Siempre nos muestra la misma cara

Esto, a su vez, congela los abultamientos en una aposición fija. Unos de ellos miran hacia la Tierra desde el centro mismo de la cara lunar que nosotros vemos, mientras que el otro está apuntando en dirección contraria desde el centro mismo de la cara lunar que no podemos ver. Puesto que las dos caras no cambian de posición a medida que la Luna gira alrededor de la Tierra, los bultos no experimentan ningún nuevo cambio ni tampoco se produce rozamiento alguno que altere el periodo de rotación del satélite. La luna continuará mostrándonos la misma cara indefinidamente; lo cual, como veis, no es ninguna coincidencia, sino la consecuencia inevitable de la gravitación y del rozamiento. La Luna es un caso relativamente simple. En ciertas condiciones, el rozamiento debido a las mareas puede dar lugar a condiciones de estabilidad más complicadas.

 

Características notables del planeta Mercurio — Astronoo

 

Durante unos ochenta años, por ejemplo, se pensó que Mercurio (el planeta más cercan al Sol y el más afectado por la fuerza gravitatoria solar) ofrecía siempre la misma cara al Sol, por el mismo motivo que la Luna ofrece siempre la misma cara a la Tierra. Pero se ha comprobado que, en el caso de este planeta, los efectos del rozamiento producen un periodo estable de rotación de 58 días, que es justamente dos tercios de los 88 días que constituyen el período de revolución de Mercurio alrededor del Sol.

Hay tantas cosas que aprender que el corto tiempo que se nos permite estar aquí es totalmente insuficiente para conocer todo lo que nos gustaría. ¿Hay algo más penoso que la ignorancia? ¿Hay algo más excitante que el descubrir y saber?

emilio silvera