martes, 24 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Siempre el futuro…en el horizonte

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (44)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“En Cosmología, las condiciones “iniciales” raramente son absolutamente iniciales, pues nadie sabe como calcular el estado de la materia y el espacio-tiempo antes del Tiempo de Planck, que culminó alrededor de 10-43 de segundo Después del Comienzo del Tiempo.”

Es verdaderamente encomiable la pertinaz insistencia del ser humano por saber, y, en el ámbito de la Astronomía, desde los más remotos “tiempos” que podamos recordar o de los que tenemos alguna razón, nuestra especie ha estado interesada en saber, el origen de los objetos celestes, los mecanismos que rigen sus movimientos y las fuerzas que están presentes.

 

Resultado de imagen de un parpadeo del ojo

 

Claro que, nosotros, los Humanos, llevamos aquí el tiempo de un parpadeo del ojo si lo comparamos con el Tiempo del Universo. Sin embargo, nos hemos valido de todos los medios posibles para llegar al entendimiento de las cosas, incluso sabemos del pasado a través del descubrimiento de la vida media de los elementos y mediante algo que denominamos datación, como la del Carbono 14, podemos saber de la edad de muchos objetos que, de otra manera, sería imposible averiguar. La vida de los elementos es muy útil y, al mismo tiempo, nos habla de que todo en el Universo tiene un Tiempo Marcado. Por ejemplo, la vida media del Uranio 238 sabemos que es de 4.000 millones de años, y, la del Rubidio tiene la matusalénica vida media de 47.000 millones de años, varias veces la edad que ahora tiene el Universo.

 

metalesalcalinos003

La lepidolita es un mineral del grupo de las micas

 

Rubidio - Wikipedia, la enciclopedia libre

El rubidio es un elemento químico de la tabla periódica cuyo símbolo es el Rb y su número atómico es 37. … El rubidio es el primer metal alcalino, su vida media de 48.000 mil millones de años (el triple de la edad del universo). Tiene similitudes con el Potasio y el Cesio. No se puede almacenar bajo el oxígeno atmosférico , ya que se produciría una reacción altamente exotérmica. Su densidad es superior a la del agua.

 

Cesio - Wikipedia, la enciclopedia libre

El cesio es el elemento químico con número atómico 55 y peso atómico de 132,905 u. Su símbolo es Cs, y es el segundo más pesado de los metales alcalinos. Conocidos en el grupo IA de la tabla periódica, después del Francio; se encuentra en componentes no orgánicos. La adición de una pequeña cantidad de cesio en agua fría produce una pequeña explosión.

 

Unos gramos de Cesio dejado caer en el agua

Lepidolita, una de las mayores fuentes del raro rubidio y del cesio. El rubidio también fue descubierto, como el cesio, por los físicos alemanes Robert Wilhem Bunsen y Gustav Robert Kirchhoff en 1861; en este caso por el método espectroscópico. Su nombre proviene del latín “rubidus” (rubio), debido al color de sus líneas en el espectro.

Big Bang: la teoría que explica el origen, y evolución del universo

 

Hablaremos ahora del Big Bang, esa teoría aceptada por todos y que nos dice cómo se formó nuestro universo y comenzó su evolución hasta ser como ahora lo conocemos. De acuerdo a esta teoría, el universo se originó a partir de un estado inicial de alta temperatura y densidad, y desde entonces ha estado siempre expandiéndose. La teoría de la relatividad general predice la existencia de una singularidad en el comienzo, cuando la temperatura y la densidad eran infinitas.

 

 

La mayoría de los cosmólogos interpretan esta singularidad como una indicación de que la relatividad general de Einstein deja de ser válida en el universo muy primitivo (no existía materia), y el comienzo mismo debe ser estudiado utilizando una teoría de cosmología cuántica.

 

 

 

 

El tiempo de Planck es una unidad de tiempo considerada como el intervalo temporal más pequeño que puede ser medido. Se denota mediante el símbolo tP. En cosmología, el tiempo de Planckrepresenta el instante de tiempo más antiguo en el que las leyes de la física pueden ser utilizadas para estudiar la naturaleza y evolución del Universo. Se determina como combinación de otras constantes físicas en la forma siguiente:

 

 t_P = \sqrt{\frac{\hbar G}{c^5}} \approx 5.39124(27) × 10−43 segundos

 

La Era de planck: Es la era que comenzó cuando el efecto gravitacional de la materia comenzó a dominar sobre el efecto de presión de radiación. Aunque la radiación es no masiva, tiene un efecto gravitacional que aumenta con la intensidad de la radiación.

 

 

Física, la era cuántica, ese “mundo” fascinante : Blog de Emilio Silvera V.

 

Es más, a altas energías, la propia materia se comporta como la radiación electromagnética, ya que se mueve a velocidades próximas a la de la luz. En las etapas muy antíguas del universo, el ritmo de expansión se encontraba dominado por el efecto gravitacional de la presión de radiación, pero a medida que el universo se enfrió, este efecto se hizo menos importante que el efecto gravitacional de la materia. Se piensa que la materia se volvió predominante a una temperatura de unos 104 K, aproximadamente 30.000 años a partir del Big Bang. Este hecho marcó el comienzo de la era de la materia.

 

 

La materia salió de ese clima de enormes temperaturas ahora inimaginables y, durante varias etapas o eras (de la radiación, de la materia, hadronica y bariónica… llegamos al momento presente habiendo descubierto muchos de los secretos que, el Universo guardaba celosamente para que, nosotros, los pudiéramos desvelar.

 

De la radiación

 

 

Periodo entre 10-43 s (la era de Planck) y 300.000 años después del Big Bang.. Durante este periodo, la expansión del universo estaba dominada por los efectos de la radiación o de las partículas rápidas (a altas energías todas las partículas se comportan como la radiación). De hecho, la era leptónica y la era hadrónica son ambas subdivisiones de la era de radiación.

La era de radiación fue seguida por la era de la materia que antes se reseña, durante la cual los partículas lentas dominaron la expansión del universo.

 

             

Era hadronica

Corto periodo de tiempo entre 10-6 s y 10-5 s después del Big Bang en el que se formaron las partículas atómicas pesadas, como protones, neutrones, piones y kaones entre otras. Antes del comienzo de la era hadrónica, los quarks se comportaban como partículas libres. El proceso por el que se formaron los quarks se denomina transición de fase quark-hadrón. Al final de la era hadrónica, todas las demás especies hadrónicas habían decaído o se habían desintegrado, dejando sólo protones o neutrones. Inmediatamente después de esto el universo entró en la era leptónica.

 

Era Leptónica

Intervalo que (según se cree)  comenzó unos 10-5 s después del Big Bang, en el que diversos tipos de leptones eran la principal contribución a la densidad del universo. Se crearon pares de leptones y antileptones en gran número en el universo primitivo, pero a medida que el universo se enfrió, la mayor parte de las especies leptónicas fueron aniquiladas. La era leptónica se entremezcla con la hadrónica y ambas, como ya dije antes, son subdivisiones de la era de la radiación. El final de la era leptónica se considera normalmente que ocurrió cuando se aniquilaron la mayor parte de los pares electrón-positrón, a una temperatura de 5×109 K, más o menos un segundo después del Big Bang. Después, los leptones se unieron a los hadrones para formar átomos.

 

Universo - Wikipedia, la enciclopedia libre

 

El universo es el conjunto de todo lo que existe, incluyendo (como he dicho) el espacio, el tiempo y la materia.  El estudio del universo se conoce como cosmología. Los cosmólogos distinguen al Universo con “U” mayúscula, significando el cosmos y su contenido, y el universo con “u” minúscula, que es normalmente un modelo matemático deducido de alguna teoría física como por ejemplo, el universo de Friedmann o el universo de Einstein-de Sitter. El universo real está constituido en su mayoría de espacios que aparentemente están vacíos, existiendo materia concentrada en galaxias formadas por estrellas, planetas, gases y otros objetos cosmológicos.

 

 

El universo se está expandiendo, de manera que el espacio entre las galaxias está aumentando gradualmente, provocando un desplazamiento al rojo cosmológico en la luz procedente de los objetos distantes. Existe evidencia creciente de que el espacio puede estar lleno de una “materia oscuras”  invisible que puede constituir muchas veces la masa total de las galaxias visibles. También podría suceder que, exista una rama de la fuerza de Gravedad desconocida y que actúa haciéndonos creer que existe aquella otra materia, o, también es posible que, fluctuaciones del vacío que abren grietas en el espacio tiempo, dejen pasar gravitones que transportan esa otra fuerza de gravedad venida de universos paralelos, o…¡quién sabe!

 

                                   El Universo, como los átomos,  está lleno de espacios “vacíos”

Podemos calcular que hay unas 100.000.000.000 de galaxias en el universo. Cada una de estas galaxias tiene una media de masa igual a 100.000.000.000 la masa del Sol. Quiere decir que la cantidad total de materia en el universo sería igual a 1011×1011 ó 1022 veces la masa del Sol.

 

         Estos son los cálculos actuales que deben ser confirmados

El tiempo y el espacio nacieron juntos cuando nació el universo en el Big Bang, llevan creciendo unos 13.700 millones de años , la materia se mueve y avanza creando nuevos espacios en presencia del Tiempo que siempre está, y, tanto el uno como el otro, -el espacio y el tiempo-, son enormes, descomunalmente grandes para que nuestras mentes los asimile de forma real.

 

Alfa Centauri. ¿Qué esconde el sistema estelar más cercano a nosotros? - YouTube

 

La estrella más cercana a nosotros, Alfa Centauro, está situada a una distancia de 4’3 años luz. El año luz es la distancia que recorre la luz, o cualquier otra radiación electromagnética, en un año trópico a través del espacio. Un año luz es igual a 9’4607×1012 Km, ó 63.240 unidades astronómicas, ó 0’3066 parsecs.

La luz viaja por el espacio a razón de 299.792.458 m/s, una Unidad Astronómica es igual a 150 millones de Km (la distancia que nos separa del Sol). El pársec es una unidad galáctica de distancias estelares, y es igual a 3’2616 años luz o 206.265 unidades astronómicas. Existen para las escalas galácticas o intergalácticas, otras medidas como el kiloparsec (Kpc) y el megaparsec (Mpc).

Nos podríamos entretener para hallar la distancia que nos separa de un sistema solar con posibilidad de albergar vida y situado a 118 años luz de nosotros. ¿Cuándo llegaríamos allí?

 

                               

Las estrellas más cercanas que, por el momento, son inalcanzables para nosotros

A pesar de su ínfima dimensión, los nucleones se unen a los electrones para formar los átomos y, estos a su vez, son los que forman la materia que conforman las Galaxias del Universo y todos los demos objetos que podemos observar.

Miremos ahora al revés. La masa del universo está concentrada casi por entero en los nucleones que contiene. Los nucleones son partículas diminutas y hacen falta 6×1023 de ellas para formar una masa equivalente a un gramo.

Pues bien, si 6×2023 nucleones hacen 1 g, y si hay 2×1055 g en el universo, entonces el número total de nucleones en el universo podría ser de 6×1023×2×1055 ó 12×1078, que de manera más convencional se escribiría 1,2×1079.

 

Las partículas que forman la materia | PPTLas partículas que forman la materia | PPTLas partículas que forman la materia | PPTLas partículas que forman la materia | PPT

 

La grandeza de nuestro Universo tiene su origen en las minúsculas partículas que conforman la materia, en las interacciones fundamentales que rigen las leyes y, en las constantes universales que indican cómo deben ser las cosas: la velocidad de la luz, la masa del electrón,  la constante de estructura fina…

Pero, no rompamos el hilo, antes hacíamos una pregunta:¿Cuanto tardaríamos en llegar a un Sistema Solar situado a 118 a.l.? Nuestros ingenios espaciales que enviamos a las lunas y planetas vecinos, viajan por el espacio exterior a 50.000 Km/h. Es una auténtica frustración el pensar lo que tardarían en llegar a la estrella cercana Alfa Centauro a más de 4 años luz. Así que la distancia es la primera barrera infranqueable (al menos de momento). La segunda, no de menor envergadura, es la coincidencia en el tiempo. Se piensa que una especie tiene un tiempo limitado de existencia antes de que, por una u otra razón, desaparezca.

 

                   

 

Nosotros mismos, si pensamos en el tiempo estelar o cósmico, llevamos aquí una mínima fracción de tiempo. Dadas las enormes escalas de tiempo y de espacio, es verdaderamente difícil coincidir con otras civilizaciones que, probablemente, existieron antes de aparecer nosotros o vendrán después de que estemos extinguidos. Por otra parte, el desplazarse por esas distancias galácticas de cientos de miles de millones de kilómetros, no parece nada fácil, si tenemos en cuenta la enorme barrera que nos pone la velocidad de la luz. Esta velocidad, según demuestra la relatividad especial de Albert Einstein, no se puede superar en nuestro universo.

Con este negro panorama por delante habrá que esperar a que un día en el futuro, venga algún genio matemático y nos de la fórmula para burlar esta barrera de la velocidad de la luz, para hacer posible visitar otros mundos poblados por otros seres. También cabe esperar que sean ellos los más adelantados y nos visiten a nosotros.

 

                     

          ‘El inca y el conquistador’, la exposición sobre Atahualpa y Francisco Pizarro

El ornitólogo e historiador Jared Diamond dedica el tercer capítulo de su best-seller Armas, Gérmenes y Acero a la “colisión de Cajamarca”, como él llama al encuentro entre Francisco Pizarro y el Inca Atahualpa en la ciudad andina. Según el autor, Atahualpa y la civilización incaica estaban condenados de antemano a ser conquistados por los españoles, merced a una combinación de superioridades en varios terrenos: armas, el fuego, etc.

De las visitas de gente de fuera de las que podemos tener conocimiento,  no parece que tengamos buenas experiencias, preferiría que seamos nosotros los visitantes. Me acuerdo de Colón, de Pizarro o Hernán Cortes e incluso de los ingleses en sus viajes de colonización,  todos, sin excepción, hicieron profundos estragos en aquellas culturas, y la verdad, lo traslado a seres extraños con altas tecnologías a su alcance y con el dominio de enormes energías visitando un planeta como el nuestro, y dicho pensamiento no me produce la más mínima gracia. Más bien un gélido escalofrío.

 

                   

 

A pesar de que hemos podido descubrir muchos centenares de nuevos planetas fuera de nuestro entorno local, el contactar con formas de vida inteligente de otros mundos, no será nada fácil a pesar de que la NASA en uno de sus anuncios dijera que en las dos próximas décadas se produciría ese contacto.

Según todos los indicios que la ciencia tiene en su poder, no parece que por ahora y durante algún tiempo, tengamos la posibilidad de contactar con nadie de más allá de nuestro sistema solar. Por nuestra parte existe una imposibilidad de medios. No tenemos aún los conocimientos necesarios para fabricar la tecnología precisa que nos lleve a las estrellas lejanas a la búsqueda de otros mundos. En lo que se refiere a civilizaciones extraterrestres, si las hay actualmente, no deben estar muy cerca; nuestros aparatos no han detectado señales que dejarían las sociedades avanzadas mediante la emisión de ondas de radio y televisión y otras similares. También pudiera ser, no hay que descartar nada, que estén demasiado adelantados para nosotros y oculten su presencia mientras nos observan, o atrasados hasta el punto de no emitir señales.

 

Esta es, entre otras muchas, una de las maneras en las que estudiamos el Cosmos “infinito” para tratar de desvelar sus secretosd. Los físicos que investigan los orígenes del cosmos esperan que en breve, podamos tener las primeras pruebas de la existencia de conceptos largamente acariciados por los escritores de ciencia ficción, como mundos ocultos y dimensiones adicionales.

 

Podrá la humanidad viajar a otras estrellas?

 

De cualquier manera, por nuestra parte, sólo podemos hacer una cosa: seguir investigando y profundizando en el conocimiento del universo para desvelar sus misterios y conseguir algún día (aún muy lejano), viajar a las estrellas, única manera de escapar del trágico e inevitable final de nuestra fuente de vida, el Sol. Dentro de unos 4.000 millones de años, como ya he dicho antes (páginas anteriores), el Sol se transformará en una estrella gigante roja cuya órbita irá más allá de Mercurio, Venus y seguramente la Tierra. Antes, la temperatura evaporará toda el agua del planeta Tierra, la vida no será posible. El Sol explotará como estrella nova y lanzará sus capas exteriores al espacio exterior para que su viejo material forme nuevas estrellas.  Después, desaparecida la fuerza de fusión nuclear, la enorme masa del Sol, quedara a merced de su propio peso y la gravedad que generará estrujará, literalmente, al Sol sobre su núcleo hasta convertirla en una estrella enana blanca de enorme densidad y minúsculo diámetro (en comparación con el original). Más tarde, la estrella se enfriará y pasará a engrosar la lista de cadáveres estelares.

 

 

 

Cómo construir una colonia en otro planeta — Astrobitácora

         Es el único camino que en el futuro tenemos: Colonizar otros mundos o morir en nuestro planeta

Para cuando ese momento este cercano, la humanidad, muy evolucionada y avanzada, estará colonizando otros mundos, tendrá complejos espaciales y ciudades flotando en el espacio exterior, como enormes naves-estaciones espaciales de considerables dimensiones que dará cobijo a millones de seres, con instalaciones de todo tipo que hará agradable y fácil la convivencia.

Modernas naves espaciales surcarán los espacios entre distintos sistemas solares y, como se ha escrito tantas veces, todo estará regido por una confederación de planetas en los que tomarán parte individuos de todas las civilizaciones que, para entonces, habrán contactado.

 

STAR TREK:FEDERACIÓN UNIDA DE PLANETAS (UFP) | LAS CRÓNICAS DE STAR TREK (THE CHRONICLES OF STAR TREK)

 

El avance en el conocimiento de las cosas está regida por la curiosidad y la necesidad. Debemos tener la confianza y la tolerancia, desechar los temores que traen la ignorancia, y, en definitiva, otorga una perspectiva muy distinta de ver las cosas y resolver los problemas. En tal situación, para entonces, la humanidad y las otras especie inteligentes tendrán instalado un sistema social estable, una manera de gobierno conjunto que tomará decisiones de forma colegiada por mayoría de sus miembros, y se vigilará aquellos mundos en desarrollo que, sin haber alcanzado el nivel necesario para engrosar en la Federación Interplanetaria de Mundos, serán candidatos futuros para ello, y la Federación vigilará por su seguridad y desarrollo en paz hasta que estén preparados.

 

Un científico pone fecha al fin de la humanidad - Cadena Dial

Sería bueno que, al fin, todos camináramos en la misma dirección. Si la Humanidad es una, si todos (de verdad) tenemos los mismos derechos básicos (independientemente del mérito de cada cual), si sentimos lo ajeno como propio… ¡Entonces sí, todo marchará como debería hacerlo!

¿Será posible que todo eso, algún día sea una realidad?

emilio silvera

Formamos parte de algo grande

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Sí, formamos parte de algo grande y, algunos, se empeñan en estropearlo todo.

¿Los vamos a dejar?

Nosotros y nuestra ignorancia

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Planetas que sobreviven a la fase de gigante roja - Eureka

               La Tierra será calcinada por la Gigante roja en la que se convertirá el Sol

 

“Dentro de miles de millones de años a partir de ahora, habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la evolución solar es inexorable.  Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.”

Carl Sagan

 Lo que entonces pueda quedar…¿Qué importa ahora? ?Será un nuevo comienzo?

Así se expresaba Carl Sagan al pensar en el futuro de nuestra Tierra cuando el Sol, agotado su combustible nuclear, llegara a su final.

 

Qué tan grande se volverá el Sol cuando alcance la forma de un gigante rojo? - Quora

Cuando el Sol aumente su tamaño a una Unidad Astronómica, La Humanidad (si aún sigue por aquí), habrá tenido que emigrar hacia otros mundos. La Empresa no será nada fácil pero, nos queda mucho tiempo por delante para solucionar los muchos problemas que tal empresa debe resolver. Claro que, eso si antes, no nos hemos detruidos nosotros mismos.

 

La humanidad no sobrevivirá si no huye de la Tierra" Stephen Hawking. ¿Tan grave es la situación? - muhimu.es

 

Es bueno para el ser humano que sepa el por qué de las cosas, que se interese por lo que ocurre a su alrededor, por su planeta que le acoge, por el lugar que ocupamos en el universo, por cómo empezó todo, cómo terminará y qué será del futuro de nuestra civilización y de la Humanidad en este universo que, como todo, algún día lejano del futuro el tiempo inexorable, llevará al final de sus días.

 

La expansión del Universo

Poco a poco, a medida que el Universo se expande, la Temperatura irá descendiendo más y más. Cuando llegue al Cero Absoluto… ¡Ni los átomos se moverán! Será la muerte térmica del Universo

El fin del universo es irreversible, de ello hemos dejado amplio testimonio a lo largo de muchos trabajos, su final estará determinado por la Densidad Crítica, la cantidad de materia que contenga nuestro universo que será la que lo clasifique como universo plano, universo abierto, o universo cerrado.

 

No hay ninguna descripción de la foto disponible.

 

En cada uno de estos modelos de universos, el final será distinto…,  claro que para nosotros, la Humanidad, será indiferente el  modelo que pueda resultar; en ninguno de ellos podríamos sobrevivir cuando llegara ese momento límite del fin. La congelación y el frío del cero absoluto o la calcinación del fuego final a miles de millones de grados, acabarán con nosotros, si para entonces, estuviéramos aún por aquí (que no es probable).

 

El universo en el hombre | ArchivoRevista Ideele

De todas las maneras, llegará un momento en el que no sea suficiente escapar del planeta Tierra

Para evitar eso se está trabajando desde hace décadas. Se buscan formas de superar dificultades que nos hacen presas fáciles de los elementos. La naturaleza indomable, sus leyes y sus fuerzas, hoy por hoy son barreras insuperables, para poder hacerlo, necesitamos saber.

Leer más

¿D-branas? ¡Las nuevas teorías!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                          No hay ninguna descripción de la foto disponible.

 

La teoría tipo I, donde aparecen tanto “cuerdas” y D-branas abiertas como cerradas, que se mueven sobre un espacio-tiempo de 10 dimensiones. Las D-branas tienen 1, 5, 9 dimensiones espaciales.

                 

SUPERCORDAS: ONDE A GRAVITAÇÃO QUÂNTICA E A QCD NÃO PERTURBATIVA SE ENCONTRAM. - ppt carregar

¿Qué son las D-branas? ¿Por qué las requiere la teoría de cuerdas? La respuesta básica a la segunda pregunta es que dan sentido a las cuerdas abiertas que intervienen en la teoría tipo I: cada uno de los dos extremos de una cuerda abierta debe residir en una D-brana. Pero dos extremos de la cuerda abierta residen en un subespacio (q + 1)-dimensional de género tiempo llamado una D-brana, o D-q-brana que es una entidad esencialmente clásica (aunque posee propiedades de supersimetría), que representa una solución de la teoría de super-gravedad 11 dimensional.

Por que la teoría M es la candidata más importante a convertirse en la tan ansiada teoría del todo? – Blog de Divulgación Científica y Tecnológica

En respuesta a la primera pregunta, una D-brana es una estructura de género tiempo, como más arriba indico, 1 + q dimensiones espaciotemporales. Invocando una de las dualidades de la teoría M, alternativamente podemos considerar una D-brana como una solución de las ecuaciones de alguna otra versión de la teoría M de cuerdas.

Imagen

Claro, todo es pura conjetura. Increíblemente el mundo de las Branas es tan colosalmente extraño como lo es el infinitesimal mundo de las partículas quánticas, con la salvedad de que, al tratar de objetos aún más pequeños, es decir aquellos que posiblemente existan más allá de los Quarks, la fascinación sube de tono al topoarnos con un universo de cosas “imposibles”, bueno, mejor alejado de lo que nos dista el sentido común que, está visto, no es el mejor de los sentidos.

                              Cerebro Digital - Actualmente, mediante la teoría de supercuerdas se enuncia la existencia de un espacio de 11 dimensiones, estas son las 3 de espacio que todos somos capaces de intuir, en

Las D-branas aparecen en muchas discusiones modernas relacionadas con las cuerdas (por ejemplo, en la entropía de los agujeros negros). Suelen tratarse como si fueran objetos clásicos que yacen dentro del espacio-tiempo completo 1 + 9 (o 1 + 10) dimensiones. La “D” viene de “Dirichlet”, por analogía con el tipo de problema de valor de frontera conocido como un problema de Dirichlet, en el que hay una frontera de género tiempo sobre la que se especifican datos (según Peter G. Lejeune Dirichlet, un eminente matemático francés que vivió entre 1.805 y 1.859).

Problemas de la física matemática: problema de Dirichlet para la ecuación estacionaria - YouTubeFunción de Green para el problema de Dirichlet de la ecuación de Laplace - YouTube

Con la introducción de tales D-branas, varios teóricos han expresado una “filosofía de cuerdas” que parece representar un profundo cambio respecto a lo anterior. En efecto, se afirma con cierta frecuencia que podríamos “vivir en” esta o esa D-brana, lo que significa que nuestro espacio-tiempo percibido podría yacer realmente dentro de un D-brana, de modo que la razón de que no se perciban ciertas “dimensiones extra” se explicaría por el hecho de “nuestra” D-brana no se extiende a esas dimensiones extra.

                               

                                                       Cosmología De Branas

 

                                INSTITUTO POLIT´ECNICO NACIONAL Soluciones cosmológicas en un sistema de dos mundos Brana.

La última posibilidad sería la postura más económica, por supuesto, de modo que “nuestra” D-brana (una D-3-brana) sería de 1 + 3 dimensiones. Esto no elimina los grados de libertad en las dimensiones extra, pero los reduce drásticamente. ¿Por qué es así?

                            Branas multidimensionales - Mentes Curiosas

                                                 Branas multidimensionales

Nuestra perspectiva ahora es que somos “conscientes” de los grados de libertad que están implicados en el interior profundo del espacio de mayores dimensiones entre las D-branas, y es en esto donde se está dejando sentir la excesiva libertad funcional.

d-brana

 

Sólo vamos a ser conscientes de dimensiones extra allí donde inciden directamente sobre las D-brana en la que “vivimos”. Más que una imagen de tipo “espacio cociente” que evoca la analogía de Kaluza-Klein original:

El gráfico representa un modelo de manguera de un espacio-tiempo de dimensiones más altas de tipo Kaluza-Klein, donde la longitud, o mejor, la dimensión a lo largo de la longitud de la manguera representa el 4-espacio-tiempo normal, y la dimensión alrededor de la manguera representa la dimensión extra “pequeñas” (quizá escala de Planck). Imaginemos un “ser” que habite en este mundo, que rebasa estas dimensiones extra “pequeñas”, y por ello no es realmente consciente de ellas.

Así, nuestro espacio-tiempo observado aparece ahora como un subespacio 4-dimensional del espacio real de dimensiones más altas. Con algo de imaginación, lo podemos visualizar en nuestra mente.

¿Podría ser nuestro universo una membrana flotando en un espacio de más dimensiones, que se rompe muchas veces en un universo circundante? Según una rama de la teoría de las cuerdas llamada braneword, hay una gran cantidad de dimensiones extra de espacio, y aunque la gravedad puede llegar a salir, nosotros estamos confinados a nuestro propio universo “brana”, con sólo tres dimensiones. Neil Turok, de la Universidad de Cambridge en el Reino Unido, y Paul Steinhardt, de la Universidad de Princeton en Nueva Jersey, EE.UU., han trabajado en cómo el Big Bang se podría haber provocado cuando nuestro universo se enfrentó violentamente con otro. Se repite el enfrentamiento, produciendo un nuevo Big Bang de vez en cuando, por lo que si el modelo del universo cíclico es correcto, el cosmos puede ser inmortal. ¡Por imaginar que no quede!

 

Una teoría sobre el origen del Universo - El DíaSin lugar para el 'qué había antes': incluso el Universo cíclico tuvo que tener un comienzo

Un nuevo estudio demuestra que por ahora no es posible librarse de una singularidad en el principio del Universo. Sin embargo, tampoco descarta el universo cíclico

¿Cuánta libertad funcional esperamos ahora? La situación es ahora algo parecida a la imagen geométrica que hemos adoptado en el gráfico para obtener una perspectiva más convencional con respecto a la “super-geometría”. Puesto que ahora estamos interesados solo en el comportamiento en la D-brana (que suponemos que es geométricamente una (1 + 3)-superficie ordinaria), podemos imaginar que nuestra libertad funcional se ha convertido en una aceptable , aunque para un M bastante grande. Sin embargo, incluso esto supone que la restricción de la dinámica en el 10-espacio (un 11-espacio) completo nos proporciona ecuaciones dinámicas dentro de “nuestra” D-brana 4-dimensional que son del tipo convencional, de modo que bastarán los datos iniciales en una 3-superficie para determinar el comportamiento en todo el 4-espacio. Esto es difícilmente probable, en general, de modo que aún cabe esperar un excesivo . ¡El problema no ha desaparecido todavía!

Tal actitud hacia las D-branas se ha utilizado para intentar resolver el problema de la jerarquía del gráfico siguiente:

 

supersimetriaY qué hacemos con la jerarquía?: cuatro posibles soluciones - Juan Ferrer

               ¿Qué hacemos con la Jerarquía?

Según cierta perspectiva de “gran unificación”, las constantes de acoplamiento de las interacciones fuerte, débil y electromagnética, tratadas como constantes de acoplamiento móviles, deberían alcanzar exactamente el mismo valor a temperaturas suficientemente grandes, aproximadamente 1028 K, que se habrían dado alrededor de 10.000 instantes de Planck después del Big Bang (~10-39 s). Se ha visto que la supersimetría es necesaria para resolver que los tres valores coincidan exactamente.

                      gran-colisionador-de-particulas (1)

“Supersimetría (o como la conocen los físicos por sus siglas en inglés, SUSY) es una de las teorías más populares que postulan la existencia de física más allá del Modelo Estándar de Física de Partículas (teoría que describe las partículas elementales y sus interacciones). El Modelo Estándar se construye a partir de simetrías muy fundamentales que dan lugar a leyes de conservación: SUSY incluye todas las simetrías que ya contiene el Modelo Estándar y añade otra más que involucra a un número cuántico llamado espín (en inglés spin, ‘giro’), una propiedad de las partículas elementales que hace referencia a su momento angular intrínseco.

En busca de SUSY: Supersimetría, cuerdas y teoría del todo: 1 (Drakontos Bolsillo) : Gribbin, John, Riera, Joan Lluís: Amazon.es: Libros

Este número cuántico divide a todas las partículas conocidas en dos tipos: fermiones (con espín semi-entero) y bosones (con spin entero). Los fermiones en el Modelo Estándar son los quarks y los leptones (como por ejemplo el electrón), mientras que los bosones son los mediadores de las interacciones (como por ejemplo el fotón).”

                                                Acercándonos al LHC - Supersimetría

Lo que postula SUSY es que a cada partícula del Modelo Estándar le corresponde un compañero super-simétrico que tiene el espín contrario. Es decir, por cada fermión, SUSY añade un bosón y por cada bosón añade un fermión. Por tanto, el número de partículas predicho por SUSY es el doble que en el Modelo Estándar.

 

El fin de la supersimetría?

No se ha podido confirmar su existencia, porque aún no se ha encontrado su señal, pero hay grandes experimentos que lo están intentando.

 

 

En concreto, esta es la cuestión de por qué las interacciones gravitatorias son tan minúsculas comparadas con las demás fuerzas importantes de la naturaleza o, de manera equivalente, por qué es la masa de Planck tan enormemente mayor que las masas de las partículas elementales de la naturaleza (en un factor de, aproximadamente, 1020). La aproximación de la D-brana a este problema parece requerir la existencia de más de una D-brana, una de las cuales es “grande” y la otra “pequeña”. Hay un factor exponencial involucrado en cómo se estira la geometría desde una D-brana hasta la otra, y esto se considera una ayuda para abordar la discrepancia en 1040, más o menos, entre las intensidades de la fuerza gravitatoria y las otras fuerzas.

Qué es la materia oscura? 💡 El Universo en 1 Minuto - YouTube

 

La materia oscura podría no ser una “cosa”, podría ser un un nombre engañoso para un extraño comportamiento de la gravedad. La teoría llamada MOND (Dinámica de Newton Modificada), sugiere que la gravedad no se debilita con tanda rapidez como lo predice la teoría actual. Esta gravedad más fuerte puede llenar el rol de la materia oscura, uniendo galaxias y racimos que de otro modo deberían volar separados. Una nueva formulación de MOND, consistente con la relatividad, ha reavivado el interés en la idea, aunque no se ajusta al patrón de puntos de la radiación de fondo de microondas cósmicas.

Teoría MOND y la materia oscura — AstronooInvestigadores analizan la teoría MOND como alternativa a la hipótesis del Planeta Nueve

Investigadores analizan la teoría MOND como alternativa a la hipótesis del Planeta Nueve

Investigadores analizan la teoría MOND como alternativa a la hipótesis del Planeta NueveInvestigadores analizan la teoría MOND como alternativa a la hipótesis del Planeta Nueve

 

“MOND propone que la ley de gravitación de Newton es válida hasta el punto en el que la aceleración gravitacional se vuelve suficientemente pequeña para que un régimen diferente de comportamiento gravitacional tome control. Brown y Mathur, quienes habían estudiado previamente el efecto de MOND en la dinámica galáctica, encontraron un interés renovado en la teoría después de que los astrónomos anunciaran en 2016 que algunos objetos en el sistema solar exterior mostraban anomalías orbitales que podrían ser explicadas potencialmente por la presencia de un noveno planeta.”

 

Espacio tiempo fotos de stock, imágenes de Espacio tiempo sin royalties | DepositphotosLa Quinta Perspectiva: trascender el espacio y el tiempo | Space pictures, Hubble space telescope images, Hubble images

Buscamos esas otras dimensiones que no podemos ver para cuadrar las cuentas

Se puede decir que este tipo de imagen de espacio-tiempo de dimensiones más altas, que se estira desde la frontera de una D-brana hasta la otra, es uno de los tipos de geometría sugeridos por las teorías 11 dimensionales, tales como la teoría M, donde la undécima dimensión tiene la forma de un segmente abierto, y la geometría de cada frontera tiene la forma topológica (por ejemplo, M×V) de los 10 espacios considerados antes. En otros modelos, la undécima dimensión es topológicamente S1.

¿Qué harán de todo esto los físicos con respecto al estatus de la teoría de cuerdas como una teoría física para el futuro?

 

Qué es la teoría de cuerdas? – Ciencia de Sofá

Dibuja bellos escenarios pero… ¡La Teoría de Cuerdas es inverificable (Por el momento)

La situación tiene aspectos muy enigmáticos y notables, y otros aspectos parecen inconsistentes y sería un error, en este momento, que los demos por buenos; mejor esperemos a que maduren. Pese a todo, muchas de las afirmaciones de los teóricos de cuerdas se hacen con gran seguridad y aparente confianza. Es indudable que estas afirmaciones deben ser suavizadas hasta que se adquiera más certeza en el conocimiento de los múltiples aspectos de la teoría que deben ser tomados con cierta reserva antes de ser lanzadas alegremente al mundo.

La cosmología moderna no consigue responder a las dudas sobre la existencia

Tres misterios de la cosmología moderna podrían enmarcarse en una presencia fantasmal. Después de unos ajustes en la teoría general de Einstein, un equipo de físicos encontraron una extraña sustancia que surgía de su nueva teoría el “condensado fantasma“. Produce la gravedad repulsiva que genera la inflación cósmica en el Big Bang, más tarde podría generar una aceleración más tranquila que se le asigna a la energía oscura. Por otro lado, si esta resbaladiza sustancia se agrupara, formaría la materia oscura.

Roger Penrose afirma que algunas de las afirmaciones de más peso pueden ser descartadas (tal es el caso de que la teoría de cuerdas ha proporcionado una teoría completa y consistente de la gravedad cuántica). En mi modestia, estoy totalmente de acuerdo con él, y según lo poco que sé al respecto, me hace pensar que la teoría de cuerdas es una firme candidata para llegar a esa teoría cuántica de la gravedad, aunque de momento, le queda inalcanzable.

                      Gravedad Cuántica | Posters de ciencias, Enseñanza de química, Paginas de matematicas

Según todos los indicios, parece que, en la Teoría de Cuerdas, subyace una Teoría Cuántica de la Gravedad. Ya que, cuando los físicos trabajan con las ecuaciones de campo de esta teoría, sin que nadie las llame, allí aparecen las ecuaciones de campo de la Relatividad General de Einstein. ¿Por qué será?

El viejo Einstein, allá donde se pueda encontrar, mirará para nuestro mundo sonriendo al ver que, en eso, también llevaba razón.

No obstante, sería injusto no admitir que parece haber algo de auténtica trascendencia “entre bastidores” en algunos aspectos de la teoría M de cuerdas. Claro que podría resultar que ese algo sea de interés puramente matemático, sin que haya ninguna razón real para creer que nos acerca más a los secretos de la naturaleza.

La teoría M de cuerdas es una teoría muy adelantada a su tiempo; incluso las matemáticas necesarias para desarrollarla al completo nos son desconocidas. Por otra parte, la energía necesaria para verificarla no está a nuestro alcance.

La fuerza del argumento a favor de la teoría de cuerdas parece residir en varias relaciones matemáticas notables entre “situaciones físicas” en apariencia diferentes, normalmente, algo alejadas de la física del mundo real de la naturaleza. ¿Son una coincidencia estas relaciones, o hay alguna razón más profunda tras ellas?

La materia oscura podría estar hecha de las partículas más elusivas jamás imaginadas: los neutrinos estériles. Ellos son los hipotéticos primos más pesados de los neutrinos ordinarios y podrían interactuar con otra materia sólo a través de la fuerza de la gravedad, haciéndolos esencialmente imposibles de detectar. Pero tienen la propiedad correcta de “calentar” la materia oscura, zumbando a velocidades de unos pocos kilómetros por segundo, lo que forma los grandes grupos de materia oscura que fueron mapeadas en observaciones recientes. Los neutrinos estériles podrían ayudar a formar las estrellas y los agujeros negros en el universo temprano y dio el impulso que envió a las estrellas de neutrones con exceso de velocidad alrededor de nuestra galaxia.

Si hablamos de matemáticas, las coincidencias sin una razón determinada suelen ser más bien escasas. Me inclino y apuesto por el hecho de que para muchas de estas “coincidencias” hay realmente una razón, todavía no descubierta. Algunos, no sé si calificarlos de envidiosos o de tener carencia de ilusiones, han llegado a decir que, los teóricos de cuerdas no es seguro que estén haciendo física, o si la hacen, ¿qué área de la física están explorando realmente? Se me ocurre pensar que el mismo escepticismo encontró a Einstein en su tiempo, al formular sus famosas teorías relativistas, y sin embargo, nos trajo hasta aquí.

No parece que se pueda hacer una valoración adecuada de estas cuestiones sin mencionar el papel concreto de Edward Witten. Él es aceptado generalmente como la figura con más responsabilidad en la dirección de la investigación en la teoría de cuerdas (y la teoría M) desde finales de la década de los 80. Ha tenido un papel primordial en el lanzamiento de la “segunda revolución en supercuerdas” en 1.995, pero ya entonces había establecido su preeminencia al iniciar varios desarrollos importantes en la teoría de cuerdas, y en muchas otras áreas que tienen cierta relación (no siempre obvia) con la teoría de cuerdas. Sin duda, Witten ha sido hasta el momento el mejor conductor de la teoría de cuerdas.

 

Así, Witten dice:

Los seres humanos en el planeta tierra nunca dispusieron del marco conceptual que les llevara a concebir la teoría de cuerdas de manera intencionada, surgió por razones del azar, por un feliz accidente. Por sus propios méritos, los físicos del siglo XX no deberían haber tenido el privilegio de estudiar esta teoría muy avanzada a su tiempo y a su conocimiento. No tenían (ni tenemos ahora mismo) los conocimientos y los prerrequisitos necesarios para desarrollar dicha teoría, no tenemos los conceptos correctos y necesarios.

 

 

Nuevos resultados que apoyan la conjetura AdS/CFT de Maldacena - La Ciencia de la Mula Francis

Nuevos resultados que apoyan la conjetura AdS/CFT de Maldacena

Yo no perdería de vista tampoco, lo que nos dice la Conjetura de Maldacena. Lo que Maldacena encontró es que, cuando se describe el comportamiento de cuerdas en un espacio tiempo curvado de una forma muy particular (concretamente un Anti DeSitter tensoriado a otro espacio), el sistema es completamente equivalente al que describe una teoría de campos sobre la frontera conforme del espacio-tiempo, frontera que resulta ser… ¡¡un espacio de Minkowsky!! En palabras cotidianas, cada cosa que ocurre en el interior de una esfera de cristal se corresponde con algo que ocurre en su superficie.

 

Las teorías de cuerdas y la Conjetura de Maldacena (por Iñaki Ascacibar) – Roberto Colom

La teoría de la relatividad general no puede explicar una singularidad como el big bang, porque no contempla el azar, ni tampoco los misteriosos agujeros negros; por lo tanto para explicar el universo es necesario tener en cuenta también la teoría de cuerdas, porque en algunos casos, las leyes del cosmos parecen no comportarse en forma clásica sino de manera cuántica.

Sabias que...?

 

Las consecuencias de esta conjetura son muy importantes, pues existe la posibilidad de que el resto de interacciones (electromagnéticas y nucleares) sean tan sólo una ilusión, el reflejo sobre el cristal de un escaparate del contenido de la tienda. Así, podría ser que el electromagnetismo tan sólo sea la imagen proyectada de la interacción de algunas cuerdas en un supuesto interior del espacio-tiempo. De la misma manera, la necesidad de compactificar las dimensiones adicionales desaparece en cierto modo si consideramos que, quizás, nuestro mundo sea solamente la frontera; siendo el interior del espacio-tiempo inaccesible.

 

Es interesante que en un nuevo trabajo que parece bastante importante, Witten ha vuelto a consideraciones dentro de un espacio-tiempo 4-dimensional estándar (aunque sigue habiendo supersimetría). Combinando ideas de la teoría de twistores y la teoría de cuerdas, Witten es capaz de obtener algunos resultados fascinantes concernientes a las interacciones de Yang-Mills de varios gluones. Este trabajo es particularmente importante desde una perspectiva orientada a los twistores, y bien podría llevar a nuevos desarrollos.

La calidad de los logros intelectuales de Witten es extraordinaria. Se puede comentar, por ejemplo, sobre los seminarios de matemáticas de Oxford (en la serie de geometría y análisis), en los que se ha anunciado algún informe nuevo y muy original de algún problema, y ha resultado que la idea seminal procedía en realidad de Witten. A menudo, tales enfoques han abierto un nuevo campo, donde estas ideas imprevistas y nuevas han arrojado un potente fogonazo de luz original sobre problemas matemáticos difíciles (a veces problemas que previamente parecían intratables). Sin duda, Witten posee una extraordinaria intuición y unos conocimientos matemáticos que sobrepasan a los de primer orden; su medalla Field de 1.990 es más que justificada. Sin embargo, sus capacidades, según las ideas que expone, están más cerca de la observación profunda de la naturaleza. Si él tiene razón, entonces quizá éste sea uno de los argumentos más contundentes para aceptar sus opiniones de que la supersimetría y la teoría de cuerdas encuentran un profundo favor en la naturaleza. Por otra parte, ¡quizá sea un matemático más notable de lo que él mismo admite!

emilio silvera

Hay partículas muy importantes en nuestras vidas (sin ellas, no seríamos)

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

         ¿Por qué la materia no puede moverse más deprisa que la velocidad de la luz?

 

             Fotones que salen disparados a la velocidad de c. ¿Qué podría seguirlos?

 

Qué le sucede al átomo cuando absorbe fotones y no son reemitidos? - Quora

 

 

Para contestar esta pregunta hay que advertir al lector que la energía suministrada a un cuerpo puede influir sobre él de distintas maneras. Si un martillo golpea a un clavo en medio del aire, el clavo sale despedido y gana energía cinética o, dicho de otra manera, energía de movimiento. Si el martillo golpea sobre un clavo, cuya punta está apoyada en una madera dura e incapaz de moverse, el clavo seguirá ganando energía, pero esta vez en forma de calor por rozamiento al ser introducido a la fuerza dentro de la madera.

Albert Einstein demostró en su teoría de la relatividad especial que la masa cabía contemplarla como una forma de energía (E = mc2.) Al añadir energía a un cuerpo, esa energía puede aparecer en la forma de masa o bien en otra serie de formas.

 

demo tunnel GIF

 

De forma similar a nuestro análisis de la expresión para los intervalos de tiempo, encontramos que, a medida que aumenta la velocidad de un objeto, la masa observada a partir de un marco de referencia estacionario también aumenta. Alcanzará una masa infinita (o indefinida) si alcanza la velocidad de la luz

En condiciones ordinarias, la ganancia de energía en forma de masa es tan increíblemente pequeña que sería imposible medirla. Fue en el siglo XX (al observar partículas subatómicas que, en los grandes aceleradores de partículas, se movían a velocidades de decenas de miles de kilómetros por segundo) cuando se empezaron a encontrar aumentos de masa que eran suficientemente grandes para poder detectarlos. Un cuerpo que se moviera a unos 260.000 Km por segundo respecto a nosotros mostraría una masa dos veces mayor que cuando estaba en reposo (siempre respecto a nosotros).

 

                                             

                                      No un pulsar tampoco puede ser más rápido que la luz

La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:

  1. En forma de velocidad, con lo cual aumenta la rapidez del movimiento.
  2. En forma de masa, con lo cual se hace “más pesado”.

La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros).

Si el cuerpo se mueve a velocidades normales, prácticamente toda la energía se incorpora a él en forma de velocidad: se moverá más aprisa sin cambiar su masa.

A medida que aumenta la velocidad del cuerpo (suponiendo que se le suministra energía de manera constante) es cada vez menor la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que, aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida, notamos que gana más masa a un ritmo ligeramente mayor.

 

                               

En gracia quizás podamos superarla pero, en velocidad…no creo, c es el tope que impone el Universo para la velocidad.

 

La sorprendente relación entre la Gran Pirámide y la velocidad de la luz-0

                Sí, hemos encontrado extrañas coincidencias

Sucede que la latitud de la pirámide de Guiza es 29º 58’ 45,02” N; al expresarse en sistema decimal, es igual a 29,9791722º N, es decir, una magnitud que transformada en diezmilésimas de grado da como resultado 299.791,722. Esto supone una aproximación del 99.99 por ciento a la velocidad de la luz, que es de 299.792,458 kilómetros por hora.

 

 

Demostración fehaciente de que la velocidad de la gravedad es más de diez mil veces la velocidad de la luz | TARDÍGRADOS

Demostración fehaciente de que la velocidad de la gravedad es más de diez mil veces la velocidad de la luz ¿Cómo se explica eso?

Al aumentar aún más la velocidad y acercarse a los 299.792’458 Km/s, que es la velocidad de la luz en el vacío, casi toda la energía añadida entra en forma de masa. Es decir, la velocidad del cuerpo aumenta muy lentamente, pero la masa es la que sube a pasos agigantados. En el momento en que se alcanza la velocidad de la luz, toda la energía añadida se traduce en masa que, llegado a cierto límite, podría ser infinita y, como infinito no hay nada, nos quedamos con que nunca, nada, podrá sobrepasar esa velocidad.

El cuerpo no puede sobrepasar la velocidad de la luz porque para conseguirlo hay que comunicarle energía adicional, y a la velocidad de la luz toda esa energía, por mucha que sea, se convertirá en nueva masa, con lo cual la velocidad no aumentaría ni un ápice.

Todo esto no es pura teoría, sino que tal como ha sido comprobado, es la realidad de los hechos.

¿Que velocidad podría ser la de la luz en otros mundos paralelos que pudieran existir fuera de nuestro universo?

 

           

    Ninguna nave, por los medios convencionales, podrá nunca superar la velocidad de la luz

La velocidad de la luz es la velocidad límite en el universo. Cualquier cosa que intente sobrepasarla adquiriría una masa infinita, y, siendo así (que lo es), nuestra especie tendrá que ingeniarse otra manera de viajar para poder llegar a las estrellas, ya que, la velocidad de la luz nos exige mucho tiempo para alcanzar objetivos lejanos, con lo cual, el sueño de llegar a las estrellas físicamente hablando, está lejos, muy lejos. Es necesario encontrar otros caminos alejados de naves que, por muy rápida que pudieran moverse, nunca podrían traspasar la velocidad de la luz, el principio que impone la relatividad especial lo impide, y, siendo así, ¿Cómo iremos?

 

 

 

Agujero De Gusano Viaje En El - Imagen gratis en Pixabay - Pixabay

Es posible que algún día demos con la manera de abrir la puerta de un Agujero de Gusano

La velocidad de la luz, por tanto, es un límite en nuestro universo; no se puede superar. Siendo esto así, el hombre tiene planteado un gran reto, no será posible el viaje a las estrellas si no buscamos la manera de esquivar este límite de la naturaleza, ya que las distancias que nos separan de otros sistemas solares son tan enormes que, viajando a velocidades por debajo de la velocidad de la luz, sería casi imposible alcanzar el destino deseado.

 

El sábado fue lanzado el James Webb, el mayor telescopio enviado al espacio | AgendARSobre qué tratan las impresionantes y maravillosas imágenes del telescopio James Webb

De momento sólo con los Telescopios podemos llegar tan lejos.

 

 

CERN construirá un acelerador de partículas tres veces mayor al actual | Aristegui Noticias

                                   El LHC del CERN y el Fermilab

Los científicos, físicos experimentales, tanto en el CERN como en el FERMILAB, aceleradores de partículas donde se estudian y los componentes de la materia haciendo que haces de protones o de muones, por ejemplo, a velocidades cercanas a la de la luz choquen entre sí para que se desintegren y dejen al descubierto sus contenidos de partículas aún más elementales. Pues bien, a estas velocidades relativistas cercanas a c (la velocidad de la luz), las partículas aumentan sus masas; sin embargo, nunca han logrado sobrepasar el límite de c, la velocidad máxima permitida en nuestro universo.

Es preciso ampliar un poco más las explicaciones anteriores que no dejan sentadas todas las cuestiones que el asunto plantea, y quedan algunas dudas que incitan a formular nuevas preguntas, como por ejemplo: ¿por qué se convierte la energía en masa y no en velocidad?, o ¿por qué se propaga la luz a 299.793 Km/s y no a otra velocidad?

 

                                     

 

Sí, la Naturaleza nos habla, simplemente nos tenemos que parar para poder oír lo que trata de decirnos y, entre las muchas cosas que nos dice, estarán esos mensajes que nos indican el camino por el que debemos coger para burlar a la velocidad de la luz, conseguir los objetivos y no vulnerar ningún principio físico impuesto por la Naturaleza.

La única respuesta que podemos dar hoy es que así, es el universo que nos acoge y las leyes naturales que lo rigen, donde estamos sometidos a unas fuerzas y unas constantes universales de las que la velocidad de la luz en el vacio es una muestra.

 

Otro estudio demuestra que es posible superar la velocidad de la luz

 

A velocidades grandes cercanas a la de la luz (velocidades relativistas) no sólo aumenta la masa del objeto que viaja, sino que disminuye también su longitud en la misma dirección del movimiento (contracción de Lorentz) y en dicho objeto y sus ocupantes – si es una nave – se retrasa al paso del tiempo, o dicho de otra manera, el tiempo allí transcurre más despacio.

A menudo se oye decir que las partículas no pueden moverse “más deprisa que la luz” y que la “velocidad de la luz” es el límite último de velocidad. Pero decir esto es decir las cosas a medias, porque la luz viaja a velocidades diferentes dependiendo del medio en el que se mueve. Donde más deprisa se mueve la luz es en el vacío: allí lo hace a 299.792’458 Km/s. Este sí es el límite último de velocidades que podemos encontrar en nuestro universo.

 

File:Military laser experiment.jpg

   Fotones emitidos por un rayo coherente conformado por un láser

Tenemos el ejemplo del fotón, la partícula mediadora de la fuerza electromagnética, un bosón sin masa que recorre el espacio a esa velocidad antes citada. Hace no muchos días se habló de la posibilidad de que unos neutrinos hubieran alcanzado una velocidad superior que la de la luz en el vacío y, si tal cosa fuera posible, o, hubiera pasado, habríamos de relegar parte de la Teoría de la Relatividad de Einstein que nos dice lo contrario y, claro, finalmente se descubrió que todo fue una falsa alarma generada por malas mediciones. Así que, la teoría del genio, queda intacta.

¡La Naturaleza! Observémosla.

emilio silvera