martes, 07 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La Química, la complejidad del átomo II

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Horizontal

 

 

Marie Curie y Pierre Curie 

 

El 18 de julio de 1898, en la Escuela de Física y Química de París, Pierre Curie, y su esposa, Marie, presentaron una importante Memoria en la Academia francesa de Ciencias. En ella recogieron especialmente las experiencias de Marie, que en su tesis doctoral estudiaba específicamente los llamados “rayos de Becquerel” (radiaciones de naturaleza desconocida, emitidas espontáneamente por algunos metales como el uranio). Esta investigación dio pie al descubrimiento de un metal desconocido, al que decidieron llamar “polonio”, basándose en el nombre del país de origen de Marie.

Marie Curie. Foto: Wikimedia Commons / Henri Manuel

 

Horizontal

Marie Curie. Foto: Wikimedia Commons / Henri Manuel

En el campo teórico, los progresos en el estudio de la radiactividad, conseguidos gracias al talento y a los esfuerzos de Henri Becquerel y del matrimonio Curie, hicieron posibles los trabajos posteriores de Rutherford, Geiger, Soddy y Villardy para identificar las radiaciones alfa, beta y gamma producidas espontáneamente en los cuerpos radiactivos; y muy pronto la concepción de los modelos atómicos, las teorías atómicas de De Broglie y Schrodinger y la decisiva fisión del núcleo del uranio por Otto Hahn y Fritz Strassman en el año 1939.

 

Qué son los isótopos y qué se puede hacer con ellos? - YouTube

 

En realidad, los químicos descubrieron que aunque las sustancias diferían entre sí por su radiactividad, algunas tenían propiedades químicas idénticas. Por ejemplo, ya en 1.907 los químicos americanos Herbert Newby McCoy y W. H. Ross descubrieron que el radiotorio (uno entre los varios productos de la desintegración del torio) mostraba el mismo comportamiento químico que el torio, y el radio D, el mismo que el plomo, tanto que a veces era llamado radioplomo. De todo lo cual se infirió que tales sustancias eran en realidad variedades de mismo elemento: el radiotorio, una forma de torio; el radioplomo, un miembro de una familia de plomos; y así sucesivamente.

 

Thorium en Venezuela? - AgatonTorio - Tabla periódica y propiedades atómicas

Torio

En 1.913, Soddy esclareció esta idea y le dio más amplitud. Demostró que cuando un átomo emitía una partícula alfa, se transformaba en un elemento que ocupaba dos lugares más abajo en la lista de elementos, y que cuando emitía una partícula beta, ocupaba, después de su transformación, el lugar inmediatamente superior. Con arreglo a tal norma, el radiotorio descendía en la tabla hasta el lugar del torio, y lo mismo ocurría con las sustancias denominadas uranio X y uranio Y, es decir, que los tres serían variedades del elemento 90. Así mismo, el radio D, el radio B, el torio B y el actinio B compartirían el lugar del plomo como variedades del elemento 82.

 

Isótopos: los gemelos gordos de los elementos químicos - RDU UNAM

 

Soddy dio el nombre de isótopos (del griego iso y topos, “el mismo lugar”) a todos los miembros de una familia de sustancias que ocupaban el mismo lugar en la tabla periódica. En 1.921 se le concedió el premio Nobel de Química.

El modelo protón-electrón del núcleo concordó perfectamente con la teoría de Soddy sobre los isótopos. Al retirar una partícula alfa de un núcleo, se reducía en dos unidades la carga positiva de dicho núcleo, exactamente lo que necesitaba para bajar dos lugares en la tabla periódica. Por otra parte, cuando el núcleo expulsaba un electrón (partícula beta), quedaba sin neutralizar un protón adicional, y ello incrementaba en una unidad la carga positiva del núcleo, lo cual era como agregar una unidad al número atómico, y por tanto, el elemento pasaba a ocupar la posición inmediatamente superior en la tabla periódica de los elementos. ¡Maravilloso!

 

 

Desintegración alfa - Wikipedia, la enciclopedia libre

 

¿Cómo se explica que cuando el torio se descompone en radiotorio después de sufrir no una, sino tres desintegraciones, el producto siga siendo torio? Pues bien, en este proceso el átomo de torio pierde una partícula alfa, luego una partícula beta, y más tarde una segunda partícula beta. Si aceptamos la teoría sobre el bloque constitutivo de los protones, ello significa que el átomo ha perdido cuatro electrones (dos de ellos contenidos presuntamente en la partícula alfa) y cuatro protones. (La situación actual difiere bastante de este cuadro, aunque en cierto modo, esto no afecta al resultado).

El núcleo de torio constaba inicialmente (según se suponía) de 232 protones y 142 electrones. Al haber perdido cuatro protones y otros cuatro electrones, quedaba reducido a 228 protones y 138 electrones. No obstante, conservaba todavía el número atómico 90, es decir, el mismo de antes.

Así pues, el radiotorio, a semejanza del torio, posee 90 electrones planetarios, que giran alrededor del núcleo. Puesto que las propiedades químicas de un átomo están sujetas al número de sus electrones planetarios, el torio y el radiotorio tienen el mismo comportamiento químico, sea cual fuere su diferencia en peso atómico (232 y 228 respectivamente).

 

Geoquímica isotópica del plomo

 

Geoquímica isotópica del plomo | Isobar Science

 

Los isótopos de un elemento se identifican por su peso atómico, o número másico. Así, el torio corriente se denomina torio 232, y el radiotorio, torio 228. Los isótopos radiactivos del plomo se distinguen también por estas denominaciones: plomo 210 (radio D), plomo 214 (radio B), plomo 212 (torio B) y plomo 211 (actinio B).

Se descubrió que la noción de isótopo podía aplicarse indistintamente tanto a los elementos estables como a los radiactivos. Por ejemplo, se comprobó que las tres series radiactivas anteriormente mencionadas terminaban en tres formas distintas de plomo. La serie del uranio acababa en plomo 206, la del torio en plomo 208 y la del actinio en plomo 207. cada uno de estos era un isótopo estable y corriente del plomo, pero los tres plomos diferían por su peso atómico.

Mediante un dispositivo inventado por cierto ayudante de J. J. Thomson, llamado Francis William Aston, se demostró la existencia de los isótopos estables. En 1.919, Thomson, empleando la versión primitiva de aquel artilugio, demostró que el neón estaba constituido por dos variedades de átomos: una cuyo número de masa era 20, y otra con 22. El neón 20 era el isótopo común; el neón 22 lo acompañaba en la proporción de un átomo cada diez. Más tarde se descubrió un tercer isótopo, el neón 21, cuyo porcentaje en el neón atmosférico era de un átomo por cada 400.

Entonces fue posible, al fin, razonar el peso atómico fraccionario de los elementos. El peso atómico del neón (20, 183) representaba el peso conjunto de los tres isótopos, de pesos diferentes, que integraban el elemento en su estado natural. Cada átomo individual tenía un número másico entero, pero el promedio de sus masas (el peso atómico) era un número fraccionario.

 

Los isótopos de cloro. Ilustración que muestra los principales dos isótopos estables de cloro: el cloro-35 y el cloro-37. Los isótopos son formas de un elementos Fotografía de stock - Alamy

 

Aston procedió a mostrar que varios elementos estables comunes eran, en realidad, mezclas de isótopos. Descubrió que el cloro, con un peso atómico fraccionario de 35’453, estaba constituido por el cloro 35 y el cloro 37, en la proporción de cuatro a uno. En 1.922 se le otorgó el premio Nobel de Química.

En el discurso pronunciado al recibir el premio, Aston predijo la posibilidad de aprovechar la energía almacenada en el núcleo atómico, vislumbrando ya las futuras y nefastas bombas y centrales nucleares. Allá por 1.935, el físico canadiense Arthur Jeffrey Dempster empleó el instrumento de Aston para avanzar sensiblemente en esa dirección; demostró que 993 de cada 1.000 átomos de uranio eran de uranio 238 (no válido para combustible nuclear). Y muy pronto se haría evidente el profundo significado de tal descubrimiento.

Así, después de estar siguiendo huellas falsas durante un siglo, se reivindicó definitivamente la teoría de Prout. Los elementos estaban constituidos por bloques estructurales uniformes; si no átomos de hidrógeno, sí, por lo menos, unidades con masa de hidrógeno.

¿Qué no será capaz de inventar el hombre para descubrir los misterios de la naturaleza?

 

Partículas Alfa, Beta y Gamma: el gran descubrimiento de Rutherford y Soddy - Rincón educativo

              Rutherford

 

Ha pasado mucho tiempo desde que Rutherford identificara la primera partícula nuclear (la partícula alfa). El camino ha sido largo y muy duro, con muchos intentos fallidos antes de ir consiguiendo los triunfos (los únicos que suenan), y muchos han sido los nombres que contribuyen para conseguir llegar al conocimiento del átomo y del núcleo actual; los electrones circulando alrededor del núcleo, en sus diferentes niveles, con un núcleo compuesto de protones y neutrones que, a su vez, son constituidos por los quarks allí confinados por los gluones, las partículas mediadoras de la fuerza nuclear fuerte. Pero, ¿qué habrá más allá de los quarks?, ¿las supercuerdas vibrantes? Algún día se sabrá.

emilio silvera

 

 

“La ausencia de pruebas, no son pruebas de ausencia”

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

No dejamos de especular con lo que podría ser. Sin embargo, en el tema que tratan en el video… ¡Nada es científicamente  verificado! Y, siendo todos conjeturas, seguimos en la misma de siempre, y, nos acogemos a lo que nos aconseja la lógica.

Sabemos que el Universo es igual en todas partes, que está regido por las leyes fundamentales y las constantes universales, y, sabiendo esto… ¿Cómo no vamos a pensar que, lo que ha sucedido aquí no haya sucedido en muchos otros mundos?

Lo de las Civilizaciones son, como tantas otras… ¡Especulaciones!

A la pregunta de si hay vida en otros mundos, me decanto por la respuesta que le dió el viejo astrónomo al joven periodista:

  • Joven, el milagro sería que no hubiera vida en otros mundos.

Todo el Universo es una maravilla

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Cosas que debemos saber

 

Las nebulosas de la cabeza de caballo y las llamas |

En estas Nebulosas moleculares gigantes se forman las estrellas y surgen moléculas esenciales para la vida

 

 

 

 

Ni los grandes pensadores de todos los tiempos han podido explicar, científicamente, lo que en realidad es la luz

No me cabe la menor duda de que la luz, esa maravilla de la Naturaleza, encierra muchos secretos que nos gustaríoa conocer. Está presente en más lugares de los que podemos sospechar y, la partícula mediadora que la transporta y la conforma, el fotón, no tiene masa en reposo y, por eso precisamente, corre a la velocidad de 299.791.458 metros por segundo, el límite que nos pone el universo para enviar información de un lugar a otro y, también, para viajar en el espacio tiempo.

 

 

La remanente de supernova Cassiopeia A que se encuentra a 11.000 años luz de distancia. La luz de la supernova Cass A, que es la muerte explosiva de una estrella masiva, alcanzó la Tierra por primera vez hace sólo 330 años. de desechos en expansión ocupa ahora unos 15 años luz en esta composición de rayos X y luz visible, mientras que la brillante fuente cerca del centro es una estrella de neutrones, los restos colapsados increíblemente densos del núcleo estelar. Aunque está suficientemente caliente emitir rayos X, la estrella de neutrones de Cass A se está enfriando. De hecho, los 10 de observación del observatorio de rayos X Chandra averiguó que la estrella de neutrones se enfrió tan rápido que los investigadores sospechan que gran del núcleo de dicha estrella está formando un superfluido de neutrones sin fricción. Los resultados del Chandra representan la primera evidencia observacional para este extraño estado de la materia. ( : X-ray: NASA/CXC /UNAM / Ioffe /.

 

                                  20110219005420-tempel1-stardust-900.jpg

                                                El Cometa Tempel 1 desde la Sonda Stardust-NeXT

“Ningún cometa se ha visitado antes dos veces. Por tanto, el paso sin precedente de la sonda Stardust-NeXT  cerca del Cometa Tempel 1 hace algún tiempo ya,  nos proporcionó a los humanos una oportunidad única de ver cómo cambia el núcleo de un cometa a lo largo del tiempo. Los cambios en el núcleo del Cometa Tempel 1 eran de particular interés porque el cometa fue golpeado por un objeto cuando pasaba la sonda Deep Impact  en 2005.  La fotografía superior es una imagen digitalmente ensalzada del Cometa Tempel 1 cerca de su máxima aproximación a la Stardust-NeXT.  Se pueden ver muchas características retratadas en 2005, como cráteres, grietas, y también áreas muy suaves. Sólo se pueden sacar unas pocas conclusiones,  pero en los próximos años los astrónomos especializados  en cometas y en el entendimiento del Sistema Solar se servirán de estas imágenes para buscar nuevas pistas de la composición del Cometa Tempel 1, como se encuentra el lugar del impacto del 2005, y como han evolucionado los principales accidentes del mismo.”

Créditos: NASA, JPL-Caltech, Cornell

 

 

“Se trata de estrellas contra montañas de gas en NGC 2174, y las estrellas van ganando. Más en concreto, la luz energética y los vientos las estrellas masivas de formación reciente están evaporando y dispersando las oscuras guarderías estelares en que se formaron. Las estructuras de NGC 2174  son en realidad mucho menos densas que el aire, y sólo aparecen como montañas debido a cantidades relativamente pequeñas de polvo opaco interestelar. NGC 2174 es una vista poco conocida en la constelación de Orión, que puede encontrarse con binoculares cerca de la cabeza del cazador celestial. Está a unos 6.400 años luz de distancia, y la brillante nube cósmica entera cubre una zona más grande que la de la Luna llena, además de rodear diversos cúmulos abiertos de estrellas jóvenes. La imagen superior tomada desde el Telescopio Espacial Hubble,  muestra una densa región interior que extiende apenas unos tres años luz adoptando una gama de colores que muestra las emisiones de otra rojas del hidrógeno en tonos verdosos y resalta la emisión del azufre en rojo y el oxígeno en azul. En unos pocos millones de años, las estrellas probablemente ganarán de forma definitiva y toda la montaña de polvo será dispersada.”

Créditos: ESA, Hubble, NASA

 

          La radiación que emite la estrella dobla el material de la nebulosa

“Como un barco surcando los mares cósmicos, la estrella fugitiva Zeta Ophiuchi produce el arco de onda o choque interestelar que se ve en este impresionante retrato infrarrojo la nave espacial WISE. En la vista en falso color, la azulada Zeta Oph, una estrella unas 20 veces más masiva que el sol, aparece cerca del centro de la imagen, moviéndose hacia la parte superior a 24 kilómetros por segundo. Su fuerte viento estelar la precede, comprimiendo y calentando el polvoriento material interestelar y formando el frente de choque curvado. Alrededor hay nubes de material relativamente no afectado. ¿Qué mantiene a esta estrella en movimiento? Seguramente, Zeta Oph fue una vez miembro de un sistema estelar y su estrella compañera sería más masiva y por tanto de vida más corta. Cuando la compañera explotó como supernova catastróficamente, perdiendo masa, Zeta Oph fue arrjada fuera del sistema. Situada a unos 460 años luz de distancia, Zeta Oph es unas 65.000 veces más luminosa que el sol y podría ser una de las estrellas más brillantes del cielo si no estuviese rodeada de polvo oscuro. La imagen de la WISE abarca sobre 1,5 grados o 12 años luz a la distancia estimada de Zeta Ophiuchi.”

Créditos: NASA, JPL-Caltech,WISE Team

 

                         

 

“Aunque la fase de esta luna podría parecernos familiar, la luna como tal no lo es. De hecho, esta fase gibosa muestra parte de la luna de Júpiter llamada Europa.  La sonda robótica Galileo capturó  esta Imagen en mosaico durante su misión orbital en Júpiter entre 1995 y 2003. Se pueden ver planicies de hielo brillante, grietas  que llegan hasta el horizonte, y oscuros boquetes que probablemente contentan tanto hielo como suciedad. El terreno elevado es casi un hecho cerca del terminador, donde empieza la sombra. Europa  es casi del mismo tamaño que nuestra luna,  pero mucho menos abrupta, mostrando muy pocas altiplanicies o cráteres de impacto. Pruebas e imágenes de la sonda Galileo indican que pueden existir océanos océanos líquidos debajo de su helada superficie. Para poder especular de que estos mares pudieran contener alguna de vida, la ESA ha empezado ya el desarrollo de la Jovian Europa Orbitert,  una sonda que orbitará Europa. Si la capa helada es suficientemente delgada, una misión en el futuro podría soltar hidro robots en los océanos para buscar vida.”

Créditos: Galileo Project,JPL,NASA;reprocessed by Ted Stryk

 

                   

 

“M78 no se está escondiendo realmente en el cielo nocturno del planeta Tierra. Situada a unos 1.600 años luz de distancia y ubicada en la rica en nebulosas constelación de Orión, la grande y brillante nebulosa de reflexión, es bien conocida para los observadores del cielo con telescopio. Pero esta espléndida imagen de M78 fue seleccionada como ganadora de la competición de astrofotografía Tesoros ocultos 2010.  Celebrada por el European Southern Observatory (ESO), la competición retó a astrónomos aficionados a procesar del archivo astronómico del ESO para buscar gemas cósmicas ocultas. La Imagen ganadora muestra increíbles detalles dentro de la azulada  M78 (centro) abrazada por nubes de polvo oscuras, junto con otra nebulosa de reflexión más pequeña de la región, NGC 2071 (arriba). La recientemente descubierta Nebulosa McNeil,  amarillenta e incluso más compacta, llama la atención en la parte inferior a la derecha del centro. Basada en datos de la cámara WFI del ESO y el telescopio de 2,2 metros de La Silla en  Chile, esta imagen se extiende alrededor de apenas 0,5 grados en el cielo. Eso se corresponde con 15 años luz a la distancia estimada de M78.”

Créditos: ESO /Igor Chekalin

 

                             

 

“¿Qué está causando las pintorescas ondas del remanente de supernova SNR 0509-67.5? Las ondas, así la más grande nebulosa, fueron captadas con un detalle sin precedentes por el Telescopio Espacial Hubble en 2006 y otra vez a finales del año pasado. El color rojo fue recodificado por un un filtro del Hubble que dejó solamente la luz emitida por hidrógeno energético. La razón específica de las ondas sigue siendo desconocida, con dos hipótesis consideradas para su origen que las relacionan con porciones relativamente densas de gas expulsado o impactado. La razón del anillo brillante rojo más ancho está más clara, su velocidad de expansión y ecos de luz lo relacionan con una clásica explosión de supernova del Ia que ha debido ocurrir hace unos 400 años. SNR 0509 se extiende actualmente unos 23  años luz y se encuentra a unos 160.000 años luz de distancia hacia la constelación del Dorado-delfin (Dorado) en la Gran Nube de Magallanes.  Sin embargo, el anillo en expansión tiene también otro gran misterio: ¿Por qué su supernova no fue vista hace 400 años, cuando la luz del estallido inicial debió alcanzar la Tierra?”

Créditos: NASA,ESA, y theHubble Heritage Team(STScI/AURA); Acknowledgment: J. Hughes(Rutgers U.

 

                           

 

Alnitak, Alnilam y Mintaka son las brillantes estrellas azuladas desde el este al oeste (izquierda a derecha) a lo largo de la diagonal de esta maravillosa vista cósmica. Conocidas también como el Cinturón de Orión,  estas tres estrellas supergigantes azules son más calientes y mucho más masivas que el Sol. Se encuentran a alrededor de 1.500 años luz de distancia, nacidas de las bien estudiadas nubles interestelares de Orión. De hecho, las nubes de gas y polvo a la deriva en esta región tienen curiosas y algo sorprendentemente familiares apariencias, como la oscura nebulosa Cabeza de Caballo la nebulosa de la Llama,  cerca de Alnitak en la parte inferior izquierda. La propia famosa nebulosa de Orión se sitúa fuera de la parte inferior de este colorido campo estelar. Grabado el pasado Diciembre con una cámara digital SLR modificada y un pequeño telescopio, el bien planeado mosaico de dos fotogramas  se extiende alrededor de 4 en el cielo.

Alrededor de estas estrellas siempre surgieron muchas historias: “Todo comienza en la constelación de Orión que posee entre sus más importantes estrellas a Betelgeuse, Rigel, Bellatriz, Almitak, Almilan, Mintaka, Saiph, Meissa, Tabit, Atiza y Eta Orionis; siendo Betelgeuse el lugar de partida de la historia. Betelgeuse esta situada en lo que llamaríamos el hombro derecho de Orión. Posee un diámetro aproximado de 450 millones de kilómetros. Si la colocáramos en el centro de nuestro sol, su radio abarcaría a Mercurio, Venus y la Tierra. Se encuentra a 310 años luz de nuestro sistema y está en  vía de extinción  convirtiéndose poco a poco en una estrella súper-gigante roja.  Ella posee 33 planetas de alta vibración y ellos se manejan muchos designios que ocurren en el orden de los pléyades. Sus habitantes son amorosos, bondadosos, pero igualmente guerreros y en uno de esos planetas habita el señor EO disfrutando de todo el amor de la creación compuesto por la luz, la energía, y la fuerza.

 

                           

 

En esta hermosa naturaleza “muerta” celeste compuesta con un pincel cósmico, la nebulosa polvorienta NGC 2170 brilla en la parte superior izquierda. Reflejando la luz de las cercanas estrellas calientes, NGC 2170 está unida  a otras nebulosas de reflexión azuladas, una región compacta de emisión roja y serpentinas de polvo oscuro contra un telón de fondo de estrellas. Al igual que los pintores de naturalezas muertas habituales en el hogar a menudo escogen sus temas, las nubes de gas, el polvo y las estrellas calientes fotografiadas aquí son también comúnmente encontradas en este escenario; una masiva nubes moleculares de formación estelar en la constelación Monoceros. molecular gigante gigante, Mo R2, está impresionantemente cercana, estimándose  en solo 2 400 años luz de distancia más o menos. A esa distancia, este lienzo tendría 15 años luz de diámetro.

En lo único que difiero de la traducción que han hecho es, en la calificación de “naturaleza muerta”, ya que, nunca podríamos contemplar nada más “vivo” que lo que arriba se nos muestra. Siempre cambiante y en actividad lograr los elementos complejos de la vida.

 

                       

 

Una de las galaxias más brillantes en el cielo del planeta Tierra y de un tamaño semejante a la Vía Láctea,  la espiral M81,  grande y hermosa, se encuentra a 11,8 millones de años luz de distancia en la constelación meridional de Ursa Major (Osa Mayor). Esta imagen intensa  de la zona revela detalles del brillante núcleo amarillo, pero al mismo tiempo sigue características más tenues a lo largo de los espléndidos brazos espirales azules y los corredores que barren el polvo. También sigue el detalle en arco, de gran extensión, denominado bucle de Arp, que parece elevarse el disco galáctico, a la derecha. Estudiado en los 60 del siglo pasado, se ha pensado que el bucle de Arp era una cola de marea material retirado de M81 por la interacción gravitacional con su gran galaxia vecina M82. Pero una investigación reciente demuestra que gran parte del bucle de Arp posiblemente se encuentra en nuestra propia galaxia. Los colores del bucle en luz visible e infrarroja coinciden con los colores de las nubes de polvo dominantes,  cirros galácticos relativamente inexplorados  solo unos pocos centenares de años luz por encima del plano de la Vía Láctea. Junto con las estrellas de la Vía Láctea, las nubes de polvo se localizan en el primer plano de esta destacada imagen. La galaxia enana compañera de M81, Holmberg IX,  puede ser vista justo por encima y a la izquierda de la gran espiral.

Objetos el que arriba podemos contemplar, galaxias espirales, son como entes vivos y generan entropía negativa que hace posible la regeneración del Universo a través de los sistemas dinámicos de destrucción-construcción, es decir, algo muere que algo surja a la vida. Esa es la Ley que impera en todo nuestro Universo.

 

           

 

¿Qué veríamos si fuésemos directo un Agujero Negro? Lo cierto es que, como nadie estuvo nunca en tal situación, lo único que podemos hacer es especular y hacer una y otra vez las ecuaciones de los distintos momentos que se podrían producir en un viaje de tal calibre en el que, a medida que nos acercamos al agujero y pasamos esa línea prohibida del horizonte de sucesos, en algún momento tendríamos la sensación de que el tiempo se detendría, y, también sentiríamos que nuestros cuerpos sufrirían el efecto spaghetti, es decir, a medida que vamos hacia la singularidad, la masa de nuestros cuerpos se verán estiradas hacia ese lugar del que no se vuelve. Algunos ilusos, hablan de que, si la nave atraviesa el agujero por el mismo centro, se saldría por otro “universo”, es decir, sería un viaje alucinante hacia lo desconocido.

 

                         Qué pasaría si fueses succionado hacia un agujero negro? - Quora

                                         Menor será no probarlo ¿Qué se sentirá al caer en el A.N.?

La preguntita para finalizar el reportaje, tiene su guasa, y, desde luego, considerando que el agujero negro contiene el más denso de la materia que en el Universo pueda existir, la respuesta no resulta nada fácil, toda vez que, aunque nadie estuvo allí nunca para poder regresar y contarnos sus impresiones, lo cierto es que, según todos los indicios, la irresistible fuerza de Gravedad que emana del Agujero Negro, tiraría de nosotros con tal fuerza que nos espaguetizaría primero y pulverizaría después.

Mejor no pasarse por allí, por si acaso.

emilio silvera

¿Cuál es el Camino? No hay ningún camino.

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El Camino lo tenemos que hacer nosotros al andar. Lo mismo que se forma la vereda en la Montaña cuando los seres vivos pasan por el mismo sitio una y otra vez, dando lugar a que se forme una vereda por aquel lugar que los viandantes han creído el más idóneo para transitar hacia algún otro sitio. Lo tuvieron que elegir de manera racional al ser el más indicado y, por ese “camino” se creó el sendero por el que caminar. Antes allí, no había camino.

 

Infografías Científicas

El viaje de Colón

 

Vasco da Gama y su peligroso viaje hacia la India por el sur de África

Vasco da Gama y su peligroso viaje hacia la India por el sur de África.

 

James Cook rediscovered: the story of us | The AustralianJames Cook, el conquistador de las antípodas

James Cook, el conquistador de las antípodas

 

Was Ibn Battuta the greatest explorer of all time?

Ibn Battuta, el mayor viajero musulmán de todos los tiempos.

Ibn Battuta – The most famous explorer in the Muslim World.

Todos los tenemos en la Mente:

  • Cristóbal Colón (1451-1506) …
  • Vasco da Gama (1460-1524) …
  • James Cook (1728-1779) …
  • Charles Robert Darwin (1809-1882) …
  • Ibn Battuta (1304-1368/69) …
  • Sir Richard Francis Burton (1821 – 1890) …
  • Ryszard Kapuscinski (1932-2007) …
  • Jeanne Baret (1740-1807)

 

El Camino de Santiago Solo | Cómo Encontrarse a uno Mismo | PilgrimEl fin del mundo más bonito de la Tierra

Mirar hacia el Horizonte y dar el primer paso, sin saber hasta donde nos llevará

No pocas veces, el camino se crea a partir de una idea, una intuición, una ganas de saber lo que hay más allá de nuestros dominios, de explorar lo desconocido, de comprobar si la fascinación que presentimos por lo que pensamos que “allí” pueda existir, se debe a una certera intuición, o, por el contrario, es sólo un espejismo. No siempre el explorador encontró aquella civilización perdida que gritaba insistente en su mente llamándolo sin cesar, ni el científico encuentra la anhelada explicación a un secreto de la Naturaleza que, tan claramente  veía en sus sueños.

Está claro que el mismo acto de la exploración, modifica la perspectiva del explorador; Ni Ulises, Marco Polo o Colón podían ser los mismos cuando, después de sus respectivas aventuras regresaron a sus hogares. Lo mismo ha sucedido con la investigación científica en los extremos de las escalas, desde la grandiosa extensión del esapcio cosmológico… 

 

… hasta el mundo minúsculo y enloquecido de las partículas subatómicas
Estos viajes nos cambiaron y cambiaron muchos de los conceptos ancestrales que, en nuestras mentes,  estaban apaciblemente aposentados y, desafiaron muchas de las concepciones científicas y también filosóficas que más valorábamos. Algunas, ante aquella realidad nueva, tuvieron que ser desechadas, como el bagaje que se deja atrás en una larga y pesada travesía un desierto. Otras tuvieron que ser modificadas y reconstituidas hasta quedar casi irreconocibles.
                                http://maniaticos.files.wordpress.com/2009/11/cumulo_galaxias.jpg
La exploración en el ámbito de las galaxias y cúmulos de galaxias extendió el alcance de la visión humana en un factor de 1026 veces mayor que la propia escala humana, y produjo la revolución que identificamos con la relatividad, la cual reveló que la concepción newtoniana del mundo sólo era un provincianismo dentro de un universo más vasto donde el espacio es curvo y el tiempo se hace flexible.
https://youtu.be/0IuIcWK7eEE
https://youtu.be/HiXUSyhpjuk
https://youtu.be/-2_usIkkl7E
https://youtu.be/WnWJ7I3KrIQ
La exploración en el dominio subatómico nos llevó lejos en el ámbito de lo muy pequeño, a unos 10-15 de la escala humana, y también significó una revolución. Esta fue la física cuántica que transformó todo lo que abordó a partir de su nacimiento en 1900, cuando Max Planck, escribió aquel artículo de ocho páginas que fueron las semillas de las que más tarde, germinaron “las flores” de la M.C.. Planck, comprendió que sólo podía explicar lo que se llamaba la Curva del Cuerpo Negro -el espectro de energía que genera un objeto de radiación perfecta- si abandonaba el supuesto clásico de que la emisión de enetgía es continua, y lo reemplazó por la hipótesis sin precedentes de que la energía se emite en unidades discretas. Planck llamó cuantos a estas unidades y quedaron simbolizadas por la letra h.
{\displaystyle E=hf\,}
Dado que la frecuencia , la longitud de onda , y la velocidad de la luz  cumplen ��=� se puede expresar como:
{\displaystyle E={\frac {hc}{\lambda }}\,}
Constante universal, igual a 6.55×1027 ergios por segundo. El cuanto de acción es la magnitud fundamental, descubierta por Planck (1900), de la mecánica cuántica. Constituye un límite especial entre los micro y los macro-fenómenos.
Plan no era ningún revolucionario -a la edad de 42 años era un viejo, juzgado por los patrones de las ciencias matemáticas y, además, un pilar de la elevada cultura germana del siglo XIX-, pero se percató fácilmente de que el principio cuántico echaría abajo buena parte de la física clásica a la que había dedicado buena parte de su vida y de su carrera.
“Cuanto mayores sean sus dificultades -escribió-… tanto más importante será finalmente para la ampliación y profundización del conocimiento de la Física.” Aquellas palabras fueron proféticas: cambiando y desarrollándose constantemente, modificando su coloración de manera tan impredecible como una reflexión en una  burbuja de jabón, la física cuántica pronto se expandió prácticamente a todo el ámbito de la física, y el cuanto de acción de Planck, h, llegó a ser considerado una constante de la naturaleza tan fundamental como la velocidad de la luz, c, de Einstein.
http://www.mpe.mpg.de/410729/orbits3d_small_gif.gif
En una batalla entre los principios estrellas de la historia cuántica, sólo puede haber un ganador. O no puede? . En el invierno de 1926-1927, Werner Heisenberg el brillante joven alemán estaba trabajando como jefe asistente de Niels Bohr , alojado en un desván en la parte superior del instituto del gran danés de Copenhague. Después de un día de trabajo, Bohr se acercaba al encuentro con Heisenberg para hablar de física cuántica. A menudo se sentaban hasta altas horas de la noche, en un intenso debate sobre el significado de la teoría cuántica revolucionaria, entonces en su infancia.
https://youtu.be/Sj3LK5XZ3Lo
Construye tu propia cámara de niebla en la cocina de tu casa
Los físicos de partículas suelen encontrarse en sus vidas profesionales con el inconveniente de que aquello con lo que trabajan es tan sumamente pequeño que se vuelve indetectable tanto para el ojo humano como para los más avanzados sistemas de microscopía. Es cierto que en la actualidad se pueden conseguir imágenes en las que se distinguen átomos individuales cuando estos son lo suficientemente grandes, pero de ahí a poder visualizar un sólo protón, o un aún más pequeño electrón, hay un escalón insalvable para la técnica actual.
Cómo se explica que en las cámaras de niebla de un detector de partículas aparezcan claramente las trayectorias de las partículas, pudiendo saberse entonces su posición y velocidad? ¿No es un claro
Un rompecabezas que se ponderó eran los rastros de las gotitas que dejan los electrones al pasar a través de las cámara de niebla un aparato utilizado para rastrear los movimientos de partículas cargadas. Cuando Heisenberg trató de calcular estas aparentemente precisas trayectorias usando las ecuaciones de la mecánica cuántica,  no lo consiguió.
Una noche de mediados de febrero, Bohr había dejado la ciudad en un viaje de esquí, y Heisenberg se había deslizado a tomar un poco de aire de la noche en las amplias avenidas de Fælled Parque, detrás del instituto. Mientras caminaba, se le ocurrió. El rastro de los electrones no era preciso en lo absoluto: si uno lo mira de cerca, consiste en una serie de puntos difusos. Eso reveló algo fundamental sobre la teoría cuántica. De vuelta en su ático, Heisenberg escribió con entusiasmo su idea en una carta a su colega el físico Wolfgang Pauli. Lo esencial de esto apareció en un documento unas pocas semanas más tarde: “Mientras más precisa la posición es determinada, menor precisión, en el momento se conoce en este instante, y viceversa.”
Así el notorio principio de incertidumbre de Heisenberg había nacido. Una declaración de la incognoscibilidad fundamental del mundo cuántico, que se ha mantenido firme durante la mayor parte del siglo. Pero ¿por cuánto tiempo? Corren rumores de que un segundo principio cuántico – el entrelazamiento- puede sonar el tañido de muerte para la incertidumbre.
Sólo podemos obtener respuestas parciales, cuya naturaleza está determinada en cierta medida por las cuestiones que optamos por indagar. Cuando Heisenberg calculó la cantidad mínima ineludible de incertidumbre que limita nuestra comprensión de los sucesos de pequeña escala, halló que está definida que nada menos que por h, el cuanto de acción de Planck.
La indeterminación cuántica no depende del aparato experimental que podamos emplear para la investigación del mundo subatómico. Se trata, en la medida de nuestro conocimiento, de una limitación absoluta, que los más destacados sabios de una civilización extraterrestre avanzada compartirían con los más humildes físicos de la Tierra. En la física atómica clásica se suponía que se podía, en principio, medir las situaciones y trayectorias precisas de miles de millones de partículas -digamos, protones- y a partir de los datos resultantes hacer predicciones exactas de donde estarían los protones en determinado tiempo futuro.
Heisenberg demostró que tal supuesto era falso, que nunca podremos saberlo todo sobre la conducta de siquiera una sóla partícula, mucho menos de una gran cantidad de ellas, y, por lo tanto, nunca podremos hacer predicciones sobre el futuro que sean completamente exactas en todos los detalles. Esto marcó un cambio fundamental en la visión del mundo de la física. Revelaba que no sólo la materia y la energía sino también el conocimiento están cuantizados.
Índice de contenidos general - PDF Free Download
     Super-retículo curvo y micro-ejes curvos

El principio de incertidumbre es aplicado a modelos del espacio 3D ordinario, donde el espacio tiempo es continuo. En los sistema cuantizados con retículos diminutos que conforman a los superejes, la información de las partículas pasa de un retículo a otro o a una zona cuántica distinta del mismo retículo. Dado que en el modelo de los eventos, los objetos no pertenecen a los eventos, simplemente evolucionan generando más información de nuevos eventos, la incertidumbre asociada a estos puede estar relacionada con radio del bucle de los retículos diminutos, y para el traslado de la información de un retículo a otro debe existir un nivel incertidumbre en cuanto a cual retículo pertenece el evento durante la transferencia de dicha información, o ¿a qué conjunto de valores cuánticos del mismo pertenece?

 

https://www.dailymotion.com/video/x397na1

 

La mecánica cuántica (el salto cuántico del electrón) nos desvelará el secreto de cómo el electrón puede, al recibir un fotón, desaparecer del nivel nuclear que ocupa para de manera instantánea, y sin necesidad de recorrer la distancia que los separa, aparecer como por arte de magia en un nivel superior. Copiaremos el salto cuántico para viajar. Nos introduciremos en un cabina, marcaremos las coordenadas, pulsaremos un botón y desapareceremos en Madrid y de manera instantánea, apareceremos de la nada en otra cabina igual situada en Nueva York a 6.000 Km de distancia.

 

 

 

¿Quién sabe lo que podemos extraer del salto cuántico? El efecto túnel nos podría dar la fórmula para viajar a lugares lejanos. Creo que todos nuestros sueños se podrían realizar si, en el momento adecuado, observando la Naturaleza, sabemos elegirt el camino que tenemos que andar para llegar a ese destino soñado,,  imaginado.

 

 

Nuestras Mentes buscarán las formas de solucionar todos esos problemas complejos que ahora inquietan a la Humanidad.

 

La Física cuántica nos obliga a tomarnos en serio lo que antes eran puramente consideraciones filosóficas: que no vemos las cosas en sí mismas, sino sólo aspectos de las cosas. Lo que vemos en la trayectoria de un electrón en la cámara de niebla no es un electrón, y lo que vemos en el cielo no son estrellas, como una grabación de la voz de Pavoroti no es Pavoroti. Al revelar que el observador desempeña un papel en la observación, la física cuántica hizo por la física lo que Darwin ha hecho por las ciencias de la vida: Echó abajo las paredes, reunificando la Mente con el Universo más vasto.

emilio silvera

 

 

 

Buscando la verdad

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Pero… ¿Existe la verdad? 

Hemos podido comprobar que lo que hoy es, mañana dejará de serlo, nuevos datos descubiertos lo cambia todo. Sin embargo, existen “verdades” inamovibles que están dentro de todos nosotros.