lunes, 23 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




La búsqueda de lo desconocido

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las fuerzas que podemos sentir en la vida cotidiana, es decir, la Gravedad y el electromagnetismo, aumentan con la cercanía: así, cuando más cerca está un clavo de un imán o una manzana del suelo, más se verán atraídos.

 

                         Las fuerzas fundamentales de la naturaleza y su partícula mediadora.: Las fuerzas fundamentalesFuerzas fundamentales de la naturaleza by Camila Zárate

Por el contrario, la interacción fuerte disminuye cuanto más cerca y juntas están las partículas en el interior de los átomos, aumentando cuando las partículas se alejan las unas de las otras.

El descubrimiento de esta extraña propiedad, llamada libertad asintótica, supuso toda una revolución teórica en los años 70 (se publicó en 1.973), pero ya plenamente respaldada por los experimentos en los aceleradores de partículas, aconsejó, a la Academia, conceder 30 años más tarde, el Premio Nobel de Física a sus autores.

“Ha sido un gran alivio.  He estado pensando en ello durante mucho tiempo”, comentó al enterarse de la noticia Franck Wilczek, uno de los premiados. ä libertad asintótica de los Qurks es en el límite de distancias pequeñas entre quarks o, equivalentemente, de altas energías, que los quarks interactúan débilmente entre sí. La interacción fuerte puede estudiarse aproximada-mente en el límite de altas energías.

 

Bag Model of Quark ConfinementTrabajo de metodología 1Ocho piezas fáciles de Frank Wilczek - La Ciencia de la Mula Francis

“Frank Wilczek es Premio Nobel de Física 2004 por sus contribuciones a la cromodinámica cuántica (QCD), la teoría de la interacción fuerte, junto a David Gross y a David Politzer. En 1973, Wilczek, estudiante de doctorado, y Gross, su director de tesis en la Universidad de Princeton, descubrieron la libertad asintótica que afirma que mientras más próximos estén los quarks menor es la interacción fuerte entre ellos; cuando los quarks están muy próximos entre sí se comportan como partículas libres lo que permitió confirmar su existencia en los experimentos. Politzer descubrió la libertad asintótica de forma independiente.” Fuente: Ciencia de la Mula francis

“No estaba claro que fuera un adelanto en aquel momento. La teoría que propusimos era descabellada en muchos aspectos y tuvimos que dar muchas explicaciones”, reconoció el investigador.”

 

El Nobel de Física premia la explicación del comportamiento de los quarks | Sociedad | EL PAÍSDavid Gross

                Politzer                           Wilczek                            David J. Gross

Tanto Wilczek como Politzer eran aun aspirantes a doctores en 1.973, cuando publicaron su descubrimiento en Physical Review letters.  Junto a su informe, la misma revista incluyó el trabajo de David Gross, que unido al de los dos estudiantes ha dado lugar a la celebrada teoría de la Cromodinámica Cuántica (QCD).

Siguiendo una arraigada costumbre de la Física de partículas, los investigadores emplearon nombres comunes y desenfadados para señalar sus nuevos descubrimientos y llamaron “colores” a las intrincadas propiedades de los quarks.

 

30 Partículas elementales - Dinámica - Cromodinámica cuántica diagramas de Feynman fundamentales - YouTubeFísica de partículas quark color carga cromodinámica cuántica gluon, texto, logo png | PNGEgg

        Los Quarks confinados dentro de los nucleones (protones y neutrones) sujetos por los Gluones

Por ello, su teoría es conocida en la actualidad por el nombre de Cromo-dinámica (cromo significa “color” en griego), a pesar de que no tienen nada que ver con lo que entendemos y llamamos color en nuestra vida cotidiana, sino con el modo en que los componentes del núcleo atómico permanecen unidos.  En este sentido, resulta mucho más intuitiva, aunque no menos divertida, la denominación de las partículas que hacen posible la interacción fuerte, llamadas gluones (glue es “pegamento” en inglés).

Al igual que en la teoría electromagnética, las partículas pueden tener carga positiva o negativa, los componentes más diminutos del núcleo atómico pueden ser rojos, verdes o azules.

Además, de manera análoga a como las cargas opuestas se atraen en el mundo de la electricidad y el magnetismo, también los quarks de distinto color se agrupan en tripletes para formar protones y neutrones del núcleo atómico.

Pero estas no son las únicas similitudes, ni siquiera las más profundas, que existen entre las distintas fuerzas que rigen el Universo. De hecho, los científicos esperan que, en última instancia, todas las interacciones conocidas sean en realidad la manifestación variada de una sola fuerza que rige y gobierna todo el cosmos.

Cromodinámica Cuántica - StuDocuEl confinamiento de los quarks | Investigación y Ciencia | Investigación y Ciencia

 

Según la Academia Sueca, el trabajo premiado a estos tres Físicos, “constituye un paso importante dentro del esfuerzo para alcanzar la descripción unificada de todas las fuerzas de la Naturaleza”.  Lo que llamamos teoría del todo.

Según Frank Wiczek, que ahora pertenece al Instituto Tecnológico de Massachussets (MIT), su descubrimiento “reivindica la idea de que es posible comprender a la Naturaleza racionalmente”.  El físico también recordó que “fue una labor arraigada en el trabajo experimental, más que en la intuición”, y agradeció “a Estados Unidos por un sistema de enseñanza pública que tantos beneficios me ha dado”.

 

Quarks - Concepto, descubrimiento, modelo y característicasCómo son los quarks? - Quora

Quark - EcuRedQuark: imágenes, fotos de stock y vectores | Shutterstock

 

Sabemos que los quarks (hasta el momento) son las partículas más elementales del núcleo atómico donde forman protones y neutrones.  La interacción fuerte entre los quarks que forman el protón es tan intensa que los mantiene permanentemente confinados en su interior, en una región ínfima. Y, allí, la fuerza crece con la distancia, si los quarks tratan de separarse, la fuerza aumenta (confinamiento de los quarks), si los quarks están juntos los unos a los otros, la fuerza decrece (libertad asintótica de los quarks).  Nadie ha sido capaz de arrancar un Quark libre fuera del protón.

Con aceleradores de partículas a muy altas energías, es posible investigar el comportamiento de los quarks a distancias muchos más pequeñas que el tamaño del protón.

Así, el trabajo acreedor al Nobel demostró que la fuerza nuclear fuerte actúa como un muelle de acero, si lo estiramos (los quarks se separan), la fuerza aumenta, si lo dejamos en reposo, en su estado natural, los anillos juntos (los quarks unidos), la fuerza es pequeña.

 

Aporte 2 - Portafolio 2Fuerzas fundamentales de la Naturaleza: Fuerza Nuclear Fuerte

Así que la Cromo-dinámica Cuántica (QCD) describe rigurosamente la interacción fuerte entre los quarks y, en el desarrollo de esta teoría, como se ha dicho, jugaron un papel fundamental los tres ganadores del Nobel de Física de 2004 cuyas fotos y nombres hemos puesto antes.

Trabajos y estudios realizados en el acelerador LEP del CER durante la década de los 90 han hecho posible medir con mucha precisión la intensidad de la interacción fuerte en las desintegraciones de las partículas z y t, es decir a energías de 91 y 1,8 Gev, los resultados obtenidos están en perfecto acuerdo con las predicciones de ACD, proporcionando una verificación muy significativa de libertad asintótica.

Mini Big Bang a 100 metros bajo tierra

 

BIOGRAFÍAS DE ARTISTAS PLÁSTICOS ,ESCULTORES Y MUSEOS DEL MUNDO.: ¿Que simboliza Shiva, el dios destructor, en el acelerador de partículas del CERN?BIOGRAFÍAS DE ARTISTAS PLÁSTICOS ,ESCULTORES Y MUSEOS DEL MUNDO.: ¿Que simboliza Shiva, el dios destructor, en el acelerador de partículas del CERN?Misterios del Universo : Blog de Emilio Silvera V.

 

Habiendo mencionado el CER (Centro Europeo de Investigación Nuclear.), me parece muy oportuno recordar aquí que está a punto de finalizar la construcción del LHC (el Gran Colisionador de Hadrones, el acelerador de partículas más grande del mundo ).

Simular el nacimiento del Universo no resulta nada sencillo.  Primero hay que excavar un túnel subterráneo de 100 m. de profundidad, en cuyo interior se debe construir un anillo metálico de 27 kilómetros enfriado por imanes superconductores cuya función es mantener una temperatura bastante fresca, nada menos que 271 grados bajo cero.

 

Los haces de protones se preparan para circular por el LHC esta semanaCómo logran ver que chocan dos partículas en el colisionador de hadrones? ¿O que es lo qué pasa, le sacan como una foto? - Quora

 

Los haces de partículas lanzadas a la velocidad de la luz que chocan en un punto determinado y se rompen en mil pedazos para desentrañar los misterios que esconde la materia.

A continuación, hay que añadir a la ecuación dos puñados de protones, lanzados al vacío de este tubo subterráneo en direcciones opuestas, y a una velocidad inimaginable que prácticamente debe rozar la velocidad de c. la velocidad de la luz en el vacío.  Es solo entonces cuando los múltiples colisiones de partículas que se produzcan en el interior del anillo producirán condiciones que existían inmediatamente después del Big Bang, ese descomunal estallido cósmico que dio el pistoletazo de salida para el surgimiento de nuestro mundo y de la vida inteligente a partir de esta materia inerte creada y evolucionada después en las estrellas.

 

Frontera entre Francia y Suiza - Wikipedia, la enciclopedia libreEl Gran Colisionador de Hadrones (LHC) | CPAN - Centro Nacional de Física de Partículas, Astropartículas y Nuclear

             Frontera Francia – Suiza                       A 100 m bajo tierra la inmensa máquina LHC

En el corazón de la cordillera del Jura, justo en la frontera entre Francia y Suiza, el Centro Europeo de Investigaciones Nucleares (CERN), está ultimando la construcción de esta maravilla que, cuando se finalice de instalar todos los componentes de esta faraónica obra científica (cuyo coste está ya en 40.000 millones de euros y se ha tardado 15 años en construirse), unos 10.000 investigadores de 500 instituciones académicas y empresas esperan descubrir nuevas claves sobre la naturaleza de la materia y los ladrillos fundamentales de las que se compone el Universo.

Por aquel entonces decíamos:

¿Podremos encontrar por fin, en 2.008, cuando funcione este Gran Acelerador de Hadrones, esa esperada y soñada partícula, a la que algunos han llegado a llamar La “Partícula Divina”, conocida por partícula de Higgs y que se tiene por la partícula que proporciona las masas a todas las demás?

 

Observada una desintegración del bosón de Higgs buscada desde hace tiempo | CPAN - Centro Nacional de Física de Partículas, Astropartículas y NuclearDónde está el bosón de Higgs? Cinco pistas para que ayudes a tu pareja a encontrarlo | El Mundo Today

 

Este acelerador tan largamente esperado, comenzó a funcionar en 2.008 y, las partículas que se inyecten en su interior colisionaran aproximadamente seiscientos millones de veces por segundo, desencadenando la mayor cantidad de energía jamás observada en las condiciones de un laboratorio, aunque aun estará muy alejada de la energía necesaria para comprobar la existencia de las cuerdas vibrantes.  Pero eso sí, nos dejará ver otras partículas nuevas hasta ahora esquivas, pertenecientes al grupo más elemental de los componentes de la materia.

El LHC producirá tantos datos que necesitarán una pila de CD de 20 km. de altura para almacenar tanta información generada por los experimentos y, una legión de físicos para estudiar resultados. Será fascinante.

 

El bosón de Higgs podría haber sido descubierto (y no por el Gran Colisionador de Hadrones) | EngadgetLo que necesitas para entender el bosón de Higgs en cinco preguntas

           En la gran máquina colisiones que imitan un Big Bang en miniatura

El trabajo que se lleva a cabo en el CERN constituye una contribución muy importante al conocimiento de la Humanidad para comprender el mundo que nos rodea.

La pregunta clave: ¿De qué se compone la materia de nuestro Universo? Y ¿cómo llegó a convertirse en lo que es?

Es increíble el logro de conocimiento y tecnología que el hombre tiene conquistado a principios del siglo XXI, este mismo artilugio al que llaman acelerador LHC, es la mejor prueba de ello: Por ejemplo, los sistemas criogénicos que deben mantener ese inimaginable frío de 271 grados bajo cero o los campos electromagnéticos que deben asegurar que la aceleración de los haces de partículas las recorran los 27 km del anillo subterráneo a un 99,99% de la velocidad de la luz.

 

El bosón “de Higgs”El Gran Colisionador de Hadrones (LHC) | CPAN - Centro Nacional de Física de Partículas, Astropartículas y Nuclear

 

Si todo sale como está previsto y se cumplen todas las expectativas de los científicos, se calcula que cada segundo, un protón dará 11.245 vueltas al anillo del LHC.  Teniendo en cuenta que cada haz de estas partículas tendrá una duración de 10 horas, se estima que recorrerá un total de 10.000 millones de kilómetros (suficiente para llegar a Neptuno y volver).

La energía requerida por el haz de protones al viajar por el acelerador es el equivalente a un coche viajando a 1 .600 km/h por el carril rápido de una autopista imposible, o la cantidad de energía almacenada en los imanes superconductores que mantendrán la temperatura a-271° sería suficiente para derretir 50 toneladas de cobre.

 

Diapositiva 1Cern

 

El LHC está dividido en 8 sectores de 3,3 km cada uno, y, de momento, sólo se ha logrado el enfriamiento de uno de los sectores a la temperatura necesaria para llevar a cabo las colisiones que simularán, en miniatura, las condiciones del Big Bang.

El Bosón de Higgs, el tesoro más buscado, será el premio.  Una partícula que predice el modelo teórico actual de la Física, pero para el que hasta ahora no existe evidencia alguna.  Se supone que este “ladrillo” fundamental del cosmos (cuyo nombre proviene del físico escocés que propuso su existencia en 1.964, Peter Higgs) es crucial para comprender cómo la materia adquiere su masa.

 

In theory: John Ellis interview and portrait | CERN

John Ellis, uno de los investigadores del CERN, decía:

“Si no encontramos la partícula de Higgs, esto supondría que todos los que nos dedicamos a la Física teórica llevamos 35 años diciendo tonterías”.

Espero que no sea así y que la dichosa partícula aparezca.  Herman Tey Kate, otro físico del CERN, se atrevió a predecir que, la partícula de Higgs aparecería antes de ocho meses a partir del comienzo de la búsqueda en los primeros meses de 2.010.

Al final (parece) que se salieron con la suya.

Creo que me he extendido demasiado en el ejemplo, cuando me introduzco en temas de Física se me va el santo al cielo, pero estamos tratando sobre nosotros y la manera en que evolucionamos para adquirir los conocimientos y sensaciones que tenemos.

emilio silvera

 


Deja un comentario



Comentario:

XHTML

Subscribe without commenting