viernes, 27 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nosotros y nuestra ignorancia

Autor por Emilio Silvera    ~    Archivo Clasificado en Divagando    ~    Comentarios Comments (6)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Un remanente estelar es lo que queda cuando explosiona como Supernova una estrella masiva y, sus filamentos de plasma, forman imágenes imprevisibles que están conformadas por todos los elementos de la Tabla Periódica.

Sí, hay cosas malas y buenas  pero, todas deben ser conocidas para poder, en el primer caso aprovecharlas y en el segundo ptrvenirlas.

 

        Qué es el ciclo solar 25, la nueva inversión de los polos magnéticos del Sol  y qué consecuencias puede tener para la Tierra - BBC News Mundo

Espacio sol plasma GIF en GIFER - de Mirazius

En este impresionante proceso, el Sol transforma 700 millones de toneladas de hidrógeno en 695 millones de toneladas de helio cada segundo, Los cinco millones de toneladas que se pierden en la transición, son enviadas al Espacio Interestelar en forma de luz y calor, de lo que una pequeña parte llegue a la Tierra para hacer posible la Vida, la fotosíntesis…

Pero demos un salto en el tiempo y viajemos hasta los albores del siglo XX cuando se hacía cada vez más evidente que alguna clase de energía atómica era responsable de la potencia del Sol y del resto de las estrellas que más lejos, brillaban en la noche oscura. Ya en 1898, sólo dos años después del descubrimiento de la radiactividad por Becquerel, el geólogo americano Thomas Chrowder Chamberlin especulaba que los átomos eran “complejas organizaciones y centros de energías”, y que “las extraordinarias condiciones que hay en el centro del Sol pueden…liberar una parte de su energía”. Claro que, por aquel entonces, nadie sabía cual era el mecanismo y cómo podía operar, hasta que no llegamos a saber mucho más, sobre los átomos y las estrellas.

 

Todo Está Conectado: explorando el universo desde Átomos hasta Galaxias |  Pint of Science ES
Sí, los átomos forman las estrellas y demás cuerpos celestes, y, también a nosotros y al ,resto de los seres vivos. Las estrellas han tardado diez mil millones de años en “fabricar” los materiales de los que estamos hechos.
Resultado de imagen de EñUniversoResultado de imagen de EñUniverso

Lo cierto es que la curiosidad del Ser Humano fue siempre la impulsora de que pudiéramos ir avanzando en el saber del mundo, de la Naturaleza, del Universo mismo. Siempre hemos buscado el cómo el cuando y el por qué de las cosas que podríamos observar a nuestro alrededor sin comprenderlas. Ya desde los tiempos primitivos, nuestros ancestros, de alguna manera rústica, hicieron y dieron los primeros pasos en Ciencia, cuando llegaron a manejar el fuego o construyeron la rueda.

 

Astronomía china - Wikipedia, la enciclopedia libre

                                                    Mapa chino de registro de estrellas

Cuando nos ponemos a hablar de Ciencia en relación a su historia y los orígenes de la misma, la mayoría de las veces nos perdemos por vericuetos que nos llevan hasta callejones sin salida situados muy lejos en el tiempo y que no podemos ver con claridad. Así las cosas, nos vemos obligados a ser menos ambiciosos y mirar más cerca poder obtener algunos resultados más fiables de lo que pudo pasar en esos pueblos del mundo que, como Sumer, India, Egipto, China y más tarde Grecia, nos dejaron una buena colección de señales del saber que pudieron llegar hasta nuestros días. De todo eso hemos hablado aquí en diversos  trabajos presentados.

 

Hacia una Teoría de la conciencia desde la complejidadPuede explicarse la conciencia con física cuántica? - BBC News Mundo

Tenemos Teorías para todo pero… ¿Por qué no de la Conciencia?

El mundo que nos rodea parece ser un lugar complicado. Aunque hay algunas verdades sencillas que parecen eternas (las manzanas caen siempre hacia el suelo y no hacia el cielo; el Sol se levanta por el este, nunca por el oeste), nuestras vidas, a pesar de las modernas tecnologías, están todavía, con demasiada frecuencia, a merced de los complicados procesos que producen cambios drásticos y repentinos. La predicción del tiempo atmosférico tiene todavía más de arte adivinatorio que de ciencia; los terremotos y las erupciones volcánicas se producen de manera impredecible y aparentemente aleatorias; las fluctuaciones de la economía siguen ocasionando la bancarrota de muchos y la fortuna de unos pocos.

 
“Una inteligencia que conociese, en un momento determinado, todas las fuerzas que operan en la Naturaleza, así como las posiciones momentáneas de todas las cosas que constituyen el universo, sería capaz de condensar en una sola fórmula los movimientos de los cuerpos más grandes del mundo y los de los átomos más ligeros, siempre que su intelecto sea bastante  poderoso para someter a análisis todos los datos; para él nada sería incierto, el pasado y el futuro estarían presentes ante sus ojos.”
Conociendo el Universo : Blog de Emilio Silvera V.

En el Universo hemos podido localizar cosas muy extrañas pero… ¡La Vida!

 

El Universo y la Vida… ¡Nuestra imaginación! : Blog de Emilio Silvera V.

¿Cómo se formaron las moléculas de la Vida?

 

Todo tiene un Principio y un Final, incluso el Universo lo tendrá ¿Cómo? Esa es otra Historia

¿El destino final? Seguro no podemos estar de nada pero… ¡La muerte térmica, parece ser el final más probable! Lo cierto es que, ¡tampoco sabemos cuál será el final del Universo! Muchas son las versiones y, la muerte térmica… ¡Prevalece sobre todas las demás!

 

 

 

Es cierto que el sol en unos cuantos miles de años se volverá en una enana  blanca o solo es una hipótesis? - Quora

Arriba se escenifica el viaje del Sol desde su nacimiento hasta su muerte (Gigante roja, Nebulosa planetaria, y, finalmente, Enana Blanca).

“Dentro de miles de millones de años a partir de la “muerte del Sol, habrá un último día perfecto en la Tierra… Las capas de hielo Ártica y Antártica se fundirán, inundando las costas del mundo. Las altas temperaturas oceánicas liberarán más vapor de agua al aire, incrementando la nubosidad y escondiendo a la Tierra de la luz solar retrasando el final. Pero la evolución solar es inexorable.  Finalmente los océanos hervirán, la atmósfera se evaporará en el espacio y nuestro planeta será destruido por una catástrofe de proporciones que ni podemos imaginar.”

 

Cuándo y por qué el Sol se “comerá” al planeta Tierra

Los océanos se evaporarán y la vida, tal como la conocoemos, dejará de existir en este mundo

 Lo que entonces pueda quedar…¿Qué importa ahora? ¿Será un comienzo?

Así se expresaba Carl Sagan al pensar en el futuro de nuestra Tierra cuando el Sol, agotado su combustible nuclear, llegara a su final.

Es bueno el ser humano que sepa el por qué de las cosas, que se interese por lo que ocurre a su alrededor, por su planeta que le acoge, por el lugar que ocupamos en el universo, por cómo empezó todo, cómo terminará y qué será del futuro de nuestra civilización y de la Humanidad en este universo que, como todo, algún día lejano del futuro el tiempo inexorable, llevará al final de sus días.

El fin del universo es irreversible, de ello hemos dejado amplio testimonio a lo largo de muchos trabajos, su final estará determinado por la Densidad Crítica, la cantidad de materia que contenga nuestro universo que será la que lo clasifique como universo plano, universo abierto, o universo cerrado. En uno de estos modelos de universos, el final será distinto…,  claro que para nosotros, la Humanidad, será indiferente el  modelo que pueda resultar; en ninguno de ellos podríamos sobrevivir cuando llegara ese momento límite del fin. La congelación y el frío del cero absoluto o la calcinación del fuego final a miles de millones de grados, acabarán con nosotros, si para entonces, estuviéramos aún por aquí (que no es probable).

 

Para evitar eso se está trabajando hace décadas. Se buscan formas de superar dificultades que nos hacen presas fáciles de los elementos. La naturaleza indomable, sus leyes y sus fuerzas, hoy por hoy son barreras insuperables, para poder hacerlo, necesitamos saber.

El saber nos dará soluciones para conseguir más energías, viajar más rápido y con menos riesgos, vivir mejor y más tiempo, superar barreras hoy impensables como las del límite de Planck, la barrera de la luz (para poder viajar a las estrellas) y el saber también posibilitará, algún día, que nuestras generaciones futuras puedan colonizar otros mundos en sistemas solares de estrellas lejanas, viajar a otras galaxias, viajar a otro tiempo y, finalmente, viajar para escapar de nuestro destino, a otros universos.

 

              http://farm3.static.flickr.com/2442/4168315983_aca8e27301.jpg

                          ¿Cómo serían esos otros universos?

Sí, lo sé, algunos de los que esto puedan leer pensarán que estoy fantaseando, pero la verdad es que no he hablado con más seriedad en mi vida, ya que, si no fuera como estoy diciendo, entonces, ¿ qué tantas calamidades, desvelos y sufrimientos? Creo que la Humanidad tiene que cumplir su destino, primero en las estrellas lejanas, en otros mundos dentro y fuera de nuestra galaxia, y después…, ¿quién sabe? Claro que, a todo esto, debemos contar con eso que denominamos TIEMPO.

Nos referimos al tiempo en múltiples ocasiones y para distintas situaciones y motivos, como al referirnos a la duración de las cosas sujetas a cambios, época durante la cual ocurrieron unos hechos, edad de los objetos, estación del año, el período de vida de alguien desde que crece hasta que deja de existir, ocasión o coyuntura de hacer algo, cada uno de los actos sucesivos en que dividimos la ejecución de un , y otros mil temas que requieren la referencia temporal.

 

 

Dicen que va unido al espacio. Pero, también que es relativo. Pero, también que es una abstracción y que no existe en realidad. Pero, todos queremos disponer de él. Pero, vemos los efectos de su transcurrir. Pero, sin tiempo no podemos hacer nada ni tener esperanzas de futuro. ¿Qué será, en realidad el Tiempo?

En física, el tiempo es la cuarta coordenada espacial en el continuo espacio-tiempo. En gramática es la categoría que indica el momento relativo en que se realiza o sucede la acción del verbo: pretérito, lo que ha sucedido; presente, lo que sucede en ese momento y futuro, lo que aún no ha sucedido. Nos referimos al tiempo meteorológico para explicar el estado del clima (hace mal tiempo; qué tiempo más bueno hace hoy, etc). En mecánica, el tiempo puede estar referido a las fases de un motor. También están los tiempos referidos a cada una de las partes de igual duración en que se divide el compás musical. En astronomía nos referimos al tiempo de aberración en relación al recorrido de un planeta hasta llegar a un observador terrestre. El tiempo está también en la de cálculo horario que empleamos en nuestra vida cotidiana para controlar nuestros actos y evitar el caos (¿Qué haríamos sin horario de trenes, de comercio, bancos, oficinas, etc?).

 

Cómo serían estas 7 antiguas ruinas

En ese espacio temporal que se nos da, alguna huella habremos dejado por el camino andado. Claro que, más que los hechos materiales, lo que prevalecen son las ideas, los descubrimientos y lo que hayamos podido desvelar de los secretos de la naturaleza

El tiempo es tan importante en nuestras vidas que está presente siempre, de mil formas diferentes, desde que nacemos (cuando comienza “nuestro tiempo”), hasta que morimos (cuando “nuestro tiempo ha terminado”). El tiempo siempre está. Es algo que, simplemente, está ahí.

Sin embargo, a pesar de lo importante que es el TIEMPO, no he podido leer nunca una explicación satisfactoria sobre el mismo; una explicación que lo defina con sencillez y claridad sin restarle la importancia que tiene para todos y lo que en realidad es dentro del contexto – no ya de nuestras vidas, simples e insignificantes puntos en la inmensidad del universo – de la naturaleza cósmica de la que formamos .

 

                               Santo Tomás, cuando hablaba del Tiempo, decía cosas como éstas:

¿Que explique que es el Tiempo?

“Si nadie me lo pregunta, lo sé.
Pero si quiero explicárselo al que me lo pregunta, no lo sé.
Lo que sí digo sin vacilación es que sé que si nada pasase no habría tiempo pasado,
y si nada sucediese no habría tiempo futuro,
y si nada existiese no habría tiempo presente.
Pero aquellos dos tiempos,pasado y futuro,
¿cómo pueden ser, si el pasado ya no es él y el futuro todavía no es?
Y en cuanto al presente,
si fuese siempre presente y no pasase a ser, pasado
ya no sería tiempo, sino eternidad.
Si, pues, el presente para ser tiempo es necesario que pase a ser pasado,
¿cómo decimos que existe este, cuya causa o razón de ser está en dejar de ser,
de tal modo que no podemos decir con verdad que existe el tiempo en cuanto tiende a no ser?”
Lo cierto es que se nos escurre de entre los dedos y, cuando venimos a darnos cuenta… ¡Se esfumó!

Como nos ocurre con tantas otras cosas y conceptos, debemos saber, de una vez por todas qué es, en realidad el Tiempo. Creo que cuando sepamos comprender lo que el Tiempo es, la Humanidad habrá dado un paso tan importante en su caminar por el Mundo que, a partir de ese momento, lo podremos “ver” todo de otra manera, con otra perspectiva más amplia y que nos permitirá “ver” más lejos en la comprensión del Universo Universo mismo.

¡Saber lo que es el Tiempo! ¡Un dolor de cabeza!

Emilio silvera V.

Si la respuesta es…¡El Universo! ¿Cuál es la pregunta?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (2)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

El pensamiento “generalizado” hoy en día en la mayoría de los astrónomos, astrofísicos y demás científicos afines a la ciencia del Universo, es que, pueden existir miles de planetas habitados dentro de nuestra propia Galaxia, la Vía Láctea. Ahora sabemos que el Universo no conoce límite alguno ni en el espacio ni en el tiempo que, según todos los indicios, ha estado expandiéndose durante 13.700 millones de años que, es un período de tiempo más que suficiente para que las estrellas que han exisitido desde entonces, tuvieran el tiempo necesario para producir todos los elementos que conocemos y que hicieron posible el surgir de la vida aquí en la Tierra y…probablemente, en “otras Tierras” que en la Galaxia Vía Láctea estén, y, de la misma manera, en los miles de millones de galaxias que pueblan el vasto universo que hemos llegado a conocer.

Resultado de imagen de =los mundos habitados

 

Más allá de la meta-galaxia, a la que pertenecen todos los sistemas galácticos que conocemos, tienen, necesariamente, que existir otros mundos que, como el nuestro, estén habitados por seres de toda índole y pelaje, inteligentes también. La metagalaxia consta de hiper-galaxias, es decir, de grupos de sistemas galácticos. Nuestro sistema galáctico cuenta con dos “satélites”: la Gran Nebulosa de Magallanes, distante 38.000 Parsec de nosotros y la Pequeña Nebulosa de Magallanes, a 36.000 Parsecs. La Nebulosa de Andrómeda es un sistema compuesto por cinco galaxias. Por lo general existen “puentes” de estrellas entre galaxias que constituyen un grupo. Se podría decir que que los grupos de galaxias estarían unidos por hilos de estrellas de manera tal que, muchas veces, nos cuesta trabajo asegurar a qué galaxia pertenece una estrella determinada.

 

http://apod.nasa.gov/apod/image/1108/NGC7331_crawford900c.jpg

 

Tengo la suerte de que, Ken Crawford (Rancho Del Sol Obs.), me envíe regularmente imagines que obtiene en su Observatorio, y, en esta ocasión, recibí la imagen de la gran y bella galaxia espiral NGC 7331 que es a menudo vendida como una análoga a nuestra Vía Láctea. Está situada a 50 millones de años luz de distancia en la norteña constelación de Pegaso. En la imagen podemos vislumbrar otras galaxias que achican su imagen debido a que sus distancias están mucho más alejadas de nosotros.

 

Virgo | Comprarunaestrella.es Blog

 

Virgo (la virgen) es una extensa constelación ubicada entre Leo hacia el oeste y Libra hacia el este, siendo la segunda más grande después de Hidra, y la mayor de las constelaciones del Zodiaco. Carta celeste de la constelación de Virgo en la que aparecen sus principales estrellas.

 

CONSTELACIÓN CABELLERA DE BERENICE Antonio Alcántara Carballido -  Artelista.com

 

 

La Constelación de Virgo cuenta con más de 3.000 galaxias, la Cabellera de Berenice con más de 10.000. Las super-galaxias tienen un diámetro de 30 o 40 mega-parsecs. No conocemos el número exacto de supe-rgalaxias cuyos conjuntos constituyen las megagalaxias. Y, sin embargo, la meta-galaxia es sólo una pequeña fracción del “universo infinito” de un universo que, para nuestro tiempo, se podría decir que existe desde la eternidad y que existirá también eternamente (aunque sabemos que no es así), al menos nos lo puede parecer.

 

 

Nuestro Universo está cuajado de maravillas como ésta. La Galaxia de la rueda de la carreta (también conocido bajo el nombre de ESO 350-40) es una galaxia lenticular o anular situada a cerca de 500 millones de años luz de distancia en la constelación del escultor en el hemisferio meridional. Es rodeada de un anillo de 150 000 años de luz de diámetro, compuesto de estrellas jóvenes y brillantes. Esta galaxia era una galaxia idéntica a la Vía láctea antes de que sufra una colisión frontal con una galaxia vecina. Cuando galaxia vecina atravesó la Galaxia Cartwheel, la fuerza de la colisión causó una onda de choque poderosa sobre la galaxia, como una piedra echada en las tranquilas aguas de un estanque. Desplazándose a gran velocidad, este onda de choque barrió el gas y el polvo, creando así un halo alrededor de la parte central de la galaxia quedada indemne. Esto explica la nube azul alrededor del centro, la parte más brillante.

Observando la imagen con su colalr de perlas azulado compuesto por brillantes y radiantes estrellas, nos hablan de una ingente producción de elementos complejos que, en el futuro, pasarán a formar parte de los mundos nuevos y, en ellos, con el tiempo, surgirá también la vida nueva de vaya usted a saber qué criaturas.

 

                              Resultado de imagen de Extraños objetos del Universo

                          Las imágenes más bellas que podamos imaginar, están en el Universo

El Universo es una maravilla, y, cualquier objeto que podamos mirar nos podrá llevar al más alto grado de éstaxis. A mí me pasó con la luna Titán que visto a contraluz por la nave Cassini en órbita alrededor de Saturno. La atmósfera dispersa la luz del Sol mostrando un anillo completo mientras se filtra por las capas más altas. En este pequeño mundo de ríos de metano y atmósfera imposible, se han puesto altas esperanzas de que, en un futuro, pudiera surgir allí la vida. Es similar a nuestra Tierra de hace algunos millones de años.

cúmulo galáctico MACS J0717

 

El cúmulo de galaxias MACS J0717 localizado a 5400 millones de años luz, en una imagen lograda combinando datos ópticos del Hubble y en rayos-x del Chandra, muestra a cuatro cúmulos colisionando. Si hemos podido llegar hasta aquí, una voz en nuestra mente pregunta: ¿Hasta dónde podremos llegar?

 

 

La galaxia NGC 55, fotogafiada por el observatorio de La Silla utilizando el Wide Field Imager del telescopio de 2.2 metros MPG/ESO. ¿Cuántos mundos estarán ahí presentes? y, ¿tendrá alguno presencia de vida?

 

 

Arp 261, un par de galaxias localizadas a 70 millones de años luz, fotografiadas por el instrumento FORS2 del VLT en Cerro Paranal. La riqueza de la imagen nos puede llevar (mediante un estudio profundo) a saber lo mucho que en ella está presente, estrellas surgidas de inmensas nubes de gas interestelar, mundos nuevos llenos e promesas futuras y, otros, más viejos que, pudieran tener los vestigios de Civilizaciones perdidas.

 

http://chandra.harvard.edu/photo/2009/medusa/medusa.jpg

 

NGC 4194, la Galaxia Medusa, el resultado de la colisión entre dos galaxias, mostrada con datos ópticos del Telescopio Hubble y datos en rayos-x del Telescopio Chandra. La imagen nos habla de vestigios que están en el universo y nos cuentan dramáticas historias de galaxias que dejaron de existir para convertirse en otra nueva que, conteniendo materiales más compkejos que aquellas primarias, hacen posible el surgir de estrellas cuyos materiales son más sofisticados que el simple hidrógeno, y, de esas estrellas descendientes de algunas generaciones anteriores…qué materiales podrán salir?

 

Archivo:Rupes Tenuis ESA214031.jpg - Wikipedia, la enciclopedia libre

Archivo:Rupes Tenuis ESA214031.jpg

Hemos podido admirar, la región de Rupes Tenuis fotografiada por la Mars Express de la ESA, mostrando gran cantidad de nieve sobre el polo marciano. Marte, el planeta hermano, nos tiene que dar muchas sorpresas y, a no tardar mucho (menos de 30 años), podremos por fín cobrar la apuesta del café que hice con algunos amigos sobre si había o no alguna clase de vida en aquel mundo.

 

Resultado de imagen de El trío de galaxias Hickson 90

 

El trío de galaxias Hickson 90, un grupo compacto localizado en la constelación de Piscis Austrinus a 100 millones de años luz del Sol. Fotografiado por el Telescopio Espacial Hubble. Viendo objetos como los de arriba, podríamos preguntarnos: ¿Cuándo dejará de sorprendernos el Universo? ¡Es tanta su riqueza!

 

Tycho's Supernova Remnant

 

La supernova de Tycho, localizada en Cassiopeia y mostrada en una imagen tomada en rayos-x por el telescopio Chandra y en luz infrarroja por el telescopio Spitzer. No por haberla visto muchas veces deja de sorprendernos, esa masa inmensa que, como remanente de los restos de una estrella masiva, nos muestra los filamentos de plasma que crean campos magnéticos a su alrededor sin importar el tiempo transcurrido desde el suceso. En dicha explosión se produjeron miles de toneladas de oro y plantino que regaron el espacio interestelar para formar parte, más tarde, de algún mundo perdido.

 

 

La siempre fascinante Eta Carinae está escondida detrás de una de las nebulosas más grandes y brillantes del cielo en una imagen tomada desde La Silla utilizando el ESO/MPG de 2.2 metros. Aquí contemplamos parte de la Nebulosa, la estrella, una de las más grandes conocidas (unas 100 masas solares) parece que está a punto de explotar, y, sus consecuencias, podrían ser impredecibles.

 

M101

 

La galaxia espiral M 101, localizada a 22 millones de años luz, en una imagen compuesta por datos del telescopio Chandra, el telescopio Hubble y el telescopio Spitzer. La bella y enorme galaxia está cuajada de estrellas nuevas y otras que no lo son tanto. El conjunto parece una luminaria de feria, la radiación que se expande por toda la galaxia no parece que sea un lugar muy seguro. Prefiero nuestra Vía Láctea.

 

Unusual Spiral NGC 4921 in the Coma Galaxy Cluster

 

Atípica y extraña Galaxia. Una nueva imagen del Telescopio Espacial Hubble revela finos detalles de la galaxia espiral NGC 4921 y los objetos circundantes de fondo. La diversidad en el Universo es la norma y, por mucho que podamos pensar en objetos extraños que puedan existir, ahí estarán.

 

 

Una imagen que combina luz visible y rayos-x muestra la actividad del agujero negro supermasivo en la galaxia Centaurus A. Los Agujeros Negros que pueden contener miles y millones de masas solares, son tan peligrosos que, nada de lo que deambule por sus alrededores estará seguro. Se engulle toda la materia que caiga en su radio de acción, su fuerza de gravedad es descomunal y, por mucho que queramos correr, nos atrapará. Ya sabeis, ni la luz es capaz de burlar su fuerza de atracción.

 

NGC 604

 

¡Increíble región de formación estelar! NGC 604, una zona formación estelar en la galaxia M 33. Imagen capturada en alta resolución por el telescopio espacial de rayos-x Chandra. No podéis ni imaginar la enorme cantidad de estrellas jóvenes y masivas que están ahí presentes, sus emisiones de radiación ultravioleta producen fuertes vientos solares que dibujan las formas de las nubes circundantes formando arabescas figuras de gas ionizado por el ultravioleta que tiñe de azul toda la región.

 

Qué son las estrellas rezagadas azules? - Quo

 

La variedad está servida, el prolífico Universo nos suministra de toda clase de objetos activos que, mediante transiciones de fase, pasen a convertirse en otros objetos distintos de lo que en un principio fueron. Nada permanece, todo se transforma. Es es la regla de oro que impone un Universo dinámico creador de materia en el espacio-tiempo infinito que nunca podremos dominar, y, si nos permite seguir en este maravilloso Sistema de Galaxias y mundos, podremos, en el futuro, conocer a nuestros hermanos inteligentes y, si las cosas salen como deberían salir, formaremos una Federación de mundos en la que, por fin, impere la igualdad para todos dentro de un clima de mutuo respeto y en el que, la sabiduría adquirida a través de muchas civilizaciones que fueron, nos habrá dado, ese algo del que ahora carecemos: Racionalidad y Temple, Sabiduría para poder discernir sobre lo que verdaderamente tiene valor y aquello que sólo es el falso brillo de la gloria y el poder que sólo puede traer destrucción y mal para muchos.

 

El Universo y la Mente? ¡Estrecha relación! : Blog de Emilio Silvera V.El Universo y la Mente? ¡Estrecha relación! : Blog de Emilio Silvera V.

 

Esperemos que, observando el Universo y mirando dentro de nuestras Mentes, podamos llegar a comprender que, nuestro destino, no depende de nosotros pero sí, podremos mejorarlo si nuestro comportamiento contribuye a que sea mejor.

Emilio Silvera V.

Siempre buscando respuestas

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Los trabajos que los físicos realizan en el LHC, son complejos y requieren de estudios laboriosos para llegar a comprender. Aquí algunas explicaciones.

Los diminutos y misteriosos objetos que conforman la materia

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Lo mejor en la categoría «Electron spin» de imágenes, fotos ...

El electrón es poseedor de una carga eléctrica negativa el protón positiva; y, al girar el electrón o el protón sobre su propio eje genera un campo magnético que denominamos espín. El espín proporciona una medida del momento angular intrínseco de toda partícula. Añadiendo el espín como un cuarto número cuántico, se logró dar una explicación más completa de las características de los espectros de átomos que poseen un solo electrón. Actualmente, la existencia del espín del electrón está confirmada por muchos resultados experimentales. Pronto, el concepto de espín se amplió a todas las partículas subatómicas, incluidos los protones, los neutrones y las antipartículas.

                                        Resultado de imagen de George Uhlenbeck, físico holandés

Ralph Kronig, físico alemán (1904-1996)
Samuel Goudsmit, físico holandés (1902-1978)
George Uhlenbeck, físico holandés (1900-1988)

 

Teoría Atómica | Modelos

 

Usualmente se ve cómo la partícula gira sobre su eje, a semejanza de un trompo, o como la Tierra o el Sol, o nuestra galaxia o, si se me permite decirlo, como el propio universo. En 1.925, los físicos holandeses George Eugene Uhlenbeck y Samuel Abraham Goudsmit aludieron por primera vez a esa rotación de las partículas. Éstas, al girar, generan un minúsculo campo electromagnético; tales campos han sido objeto de medidas y exploraciones, principalmente por parte del físico alemán Otto Stern y el físico norteamericano Isaac Rabi, quienes recibieron los premios Nobel de Física en 1.943 y 1.944 respectivamente, por sus trabajos sobre dicho fenómeno.

 

Significado de espín del electrón «Definición, y características»

 El Spín se mide en números mitad de las partículas

Esas partículas (al igual que el protón, el neutrón y el electrón), que poseen espines que pueden medirse en números mitad, se consideran según un sistema de reglas elaboradas independientemente, en 1.926, por Fermi y Dirac; por ello, se las llama y conoce como estadísticas Fermi-dirac. Las partículas que obedecen a las mismas se denominan fermiones, por lo cual el protón, el electrón y el neutrón son todos fermiones.

El condensado de Bose-Einstein — IV | Cuentos Cuánticos

Condensado de Bose-Einstein

Hay también partículas cuya rotación, al duplicarse, resulta igual a un número par. Para manipular sus energías hay otra serie de reglas, ideadas por Einstein y el físico indio S. N. Bose. Las partículas que se adaptan a la estadística Bose-Einstein son bosones, como por ejemplo la partícula alfa.

Las reglas de la mecánica cuántica tienen que ser aplicadas si queremos describir estadísticamente un sistema de partículas que obedece a reglas de esta teoría en vez de los de la mecánica clásica. En estadística cuántica, los estados de energía se considera que están cuantizados. La estadística de Bose-Einstein se aplica si cualquier número de partículas puede ocupar un estado cuántico dad. Dichas partículas (como dije antes) son bosones, que tienden a juntarse.

 

Constante de Planck - Wikipedia, la enciclopedia libre

 

Los bosones tienen un momento angular nh/2π, donde n es cero o un entero, y h es la constante de Planck. Para bosones idénticos, la función de ondas es siempre simétrica. Si sólo una partícula puede ocupar un estado cuántico, tenemos que aplicar la estadística Fermi-Dirac y las partículas (como también antes dije) son los fermiones que tienen momento angular (n + ½)h / 2π y cualquier función de ondas de fermiones idénticos es siempre antisimétrica. La relación entre el espín y la estadística de las partículas está demostrada por el teorema espín-estadística.

 

Espacio euclidiano en dos dimensiones - Wikipedia, la ...Espacio en dos dimensiones | PPT

 

El espacio euclidiano bidimensional o simplemente espacio bidimensional (también conocido como espacio 2D o plano euclidiano) es un entorno geométrico en el que se requieren dos valores (llamados parámetros) para determinar la posición de un elemento (es decir, punto) en el plano.

En un espacio de dos dimensiones es posible que haya partículas (o cuasipartículas) con estadística intermedia entre bosones y fermiones. Estas partículas se conocen con el nombre de aniones; para aniones idénticos, la función de ondas no es simétrica (un cambio de fase de +1) o antisimétrica (un cambio de fase de -1), sino que interpola continuamente entre +1 y -1. Los aniones pueden ser importantes en el análisis del efecto Hall cuántico fraccional y han sido sugeridos como un mecanismo para la superconductividad de alta temperatura.

 

 

       

        El principio de exclusión de Pauli y el cuarto número cuántico, el spin

Debido al principio de exclusión de Pauli, es imposible que dos fermiones ocupen el mismo estado cuántico (al contrario de lo que ocurre con los bosones). La condensación Bose-Einstein es de importancia fundamental para explicar el fenómeno de la superfluidez. A temperaturas muy bajas (del orden de 2×10-7 K) se puede formar un condensado de Bose-Einstein, en el que varios miles de átomos dorman una única entidad (un superátomo). Este efecto ha sido observado con átomos de rubidio y litio. Como ha habréis podido suponer, la condensación Bose-Einstein es llamada así en honor al físico Saytendra Nath Bose (1.894 – 1.974) y a Albert Einstein. Así que, el principio de exclusión de Pauli tiene aplicación no sólo a los electrones, sino también a los fermiones; pero no a los bosones.

 

Trayectorias de las partículas cargadas en un campo magnético — Cuaderno de  Cultura CientíficaPráctica de simulación de magnetismo

La rotación forma el campo magnético

Si nos fijamos en todo lo que estamos hablando aquí, es fácil comprender cómo forma  un campo magnético la partícula cargada que gira, pero ya no resulta tan fácil saber por qué ha de hacer lo mismo un neutrón descargado. Lo cierto es que cuando un rayo de neutrones incide sobre un hierro magnetizado, no se comporta de la misma forma que lo haría si el hierro no estuviese magnetizado. El magnetismo del neutrón sigue siendo un misterio; los físicos sospechan que contiene cargas positivas y negativas equivalente a cero, aunque por alguna razón desconocida, logran crear un campo magnético cuando gira la partícula.

 

 

Particularmente creo que, si el neutrón tiene masa, si la masa es energía (E = mc2), y si la energía es electricidad y magnetismo (según Maxwell), el magnetismo del neutrón no es tan extraño, sino que es un aspecto de lo que en realidad es materia. La materia es la luz, la energía, el magnetismo, en  definitiva, la fuerza que reina en el universo y que está presente de una u otra forma en todas partes (aunque no podamos verla).

Sea como fuere, la rotación del neutrón nos da la respuesta a esas preguntas:

 

 

Antineutrón: Más de 5 ilustraciones y dibujos de stock con licencia libres  de regalías | Shutterstock

 

¿Qué es el antineutrón? Pues, simplemente, un neutrón cuyo movimiento rotatorio se ha invertido; su polo sur magnético, por decirlo así, está arriba y no abajo. En realidad, el protón y el antiprotón, el electrón y el positrón, muestran exactamente el mismo fenómeno de los polos invertidos.

Es indudable que las antipartículas pueden combinarse para formar la antimateria, de la misma forma que las partículas corrientes forman la materia ordinaria.

 

 

 

Los investigadores, de la organización europea de investigación nuclear (CERN), lograron atrapar 38 átomos de hidrógeno de antimateria en una fracción de segundo, un tiempo que permite comenzar a estudiar su estructura. Esto supone un hito histórico ya que, según explica el especialista en Ciencia de la BBC, Jason Palmer, pese a que antes se había logrado producir anti-hidrógeno, en las ocasiones anteriores se destruyó inmediatamente al entrar en contacto con la materia.

 

Proyecto Brookhaven: Buscando la antimateria

 

La primera demostración efectiva de antimateria se tuvo en Brookhaven en 1.965, donde fue bombardeado un blanco de berilio con 7 protones BeV y se produjeron combinaciones de antiprotones y antineutrones, o sea, un anti-deuterón. Desde entonces se ha producido el antihelio 3, y no cabe duda de que se podría crear otros anti-núcleos más complicados aún si se abordara el problema con más interés.

 

El experimento ALPHA del CERN observa el color de la antimateria por primera  vez | CPAN - Centro Nacional de Física de Partículas, Astropartículas y  Nuclear

El experimento ALPHA del CERN observa el color de la antimateria por primera vez

Pero, ¿existe en realidad la antimateria? ¿Hay masas de antimateria en el universo? Si las hubiera, no revelarían su presencia a cierta distancia. Sus efectos gravitatorios y la luz que produjeran serían idénticos a los de la materia corriente. Sin embargo, cuando se encontrasen las masas de las distintas materias, deberían ser claramente perceptibles las reacciones masivas del aniquilamiento mutuo resultante del encuentro. Así pues, los astrónomos observan especulativamente las galaxias, para tratar de encontrar alguna actividad inusual que delate interacciones materia-antimateria.

No parece que dichas observaciones fuesen un éxito. ¿Es posible que el universo esté formado casi enteramente por materia, con muy poca o ninguna antimateria? Y si es así, ¿por qué? Dado que la materia y la antimateria son equivalente en todos los aspectos, excepto en su oposición electromagnética, cualquier fuerza que crease una originaría la otra, y el universo debería estar compuesto de iguales cantidades de la una y de la otra.

 

Este es el dilema. La teoría nos dice que debería haber allí antimateria, pero las observaciones lo niegan, no lo respaldan. ¿Es la observación la que falla? ¿Y qué ocurre con los núcleos de las galaxias activas, e incluso más aún, con los quásares? ¿Deberían ser estos fenómenos energéticos el resultado de una aniquilación materia-antimateria? ¡No creo! Ni siquiera ese aniquilamiento parece ser suficiente, y los astrónomos prefieren aceptar la noción de colapso gravitatorio y fenómenos de agujeros negros, como el único mecanismo conocido para producir la energía requerida.

Con esto de la antimateria me ocurre igual que con el hecho, algunas veces planteado, de la composición de la materia en lugares lejanos del universo. “Ha caído una nave extraterrestre y nuestros científicos han comprobado que está hecha de un material desconocido, casi indestructible”. Este comentario se ha podido oír en alguna película de ciencia ficción. Podría ser verdad (un material desconocido), sin embargo, no porque la nave esté construida por una materia distinta, sino porque la aleación es distinta y más avanzada a partir de los materiales conocidos del universo. En cualquier parte del universo, por muy lejana que pueda estar, rigen los mismos principios y las mismas fuerzas: la materia y la energía son las mismas en cualquier parte. Lo único que puede diferir es la forma en que se utilice, el tratamiento que se le pueda dar, y sobre todo, el poseer el conocimiento y la tecnología necesarios para poder obtener el máximo resultado de las propiedades que dicha materia encierra, porque, en última instancia, ¿es en verdad inerte la materia?

 

 

 

Tiene y encierra tantos misterios la materia que estamos aún a años luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar. Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos, pero que tampoco sabemos, en realidad, a qué son debidas. Sí, sabemos ponerles etiquetas como la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio, y con mayor frecuencia, en los elementos que conocemos como transuránicos.

 

           Posición en la Tabla Periódica del Uranio

Los elementos transuránicos(conocidos también como elementos transuránidos) son elementos químicos con número atómico mayor que 92, el número atómico del elemento uranio. El nombre de trans-uránidos significa “más allá del Uranio”.

Estos elementos son:

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta. En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de su ruptura, sobrepasando a la emisión de partículas alfa. ¡Parece que la materia está viva! Son muchas las cosas que desconocemos, y nuestra curiosidad nos empuja continuamente a buscar esas respuestas.

 

 Resultado de imagen de Electrón y Positrón

El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o el antineutrón), y por lo tanto, han sido denominados leptones (de la voz griega leptos, que dignifica “delgado”).

Aunque el electrón fue descubierto en 1.897 por el físico británico Joseph John Thomson (1.856 – 1.940), el problema de su estructura, si la hay, aún no está resuelto. Conocemos su masa y su carga negativa que responden a 9’1093897 (54) × 10-31 Kg la primera, y 1’60217733 (49) × 10-19 culombios la segunda, y también su radio clásico r0 igual a e2/(mc2) = 2’82 × 10-13 cm. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve una carga eléctrica, sea la que fuese (sabemos cómo actúa y cómo medir sus propiedades, pero aún no sabemos qué es), que tenga asociada un mínimo de masa.

Cómo se explica que en las cámaras de niebla de un detector de partículas  aparezcan claramente las trayectorias de las partículas, pudiendo saberse  entonces su posición y velocidad? ¿No es un claroConstruye tu propia cámara de niebla en la cocina de tu casa

                           Detectanto electrones y positrones en la cámara de niebla

Lo cierto es que el electrón es una maravilla en sí mismo. El universo no sería como lo conocemos si el electrón fuese distinto a como es; bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.

¡No por pequeño se el insignificante!

 

Las estrellas de neutrones y quarks explicadas para todos los públicos: así  se forman dos de

 

Recordémoslo, todo lo grande está hecho de cosas pequeñas. En realidad, existen partículas que no tiene asociada ninguna masa en absoluto, es decir, ninguna masa en reposo. Por ejemplo, las ondas de luz y otras formas de radiación electromagnética se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones*). Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda, se denomina fotón, de la palabra griega que significa “luz”.

 

 

Funciones de onda del electrón en el átomo de hidrógeno

El fotón tiene una masa de 1, una carga eléctrica de 0, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín). La única forma de que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este término se reserva para la familia formada por el electrón, el muón y la partícula tau, con sus correspondiente neutrinos: υe, υμ y υτ.

 

Emitiendo fotones de luz

Existen razones teóricas para suponer que cuando  las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitaciones. Esas ondas pueden, así mismo, poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

La forma gravitatoria es mucho, mucho más débil que la fuerza electromagnética. Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón, y por tanto, ha de ser inimaginablemente difícil de detectar.

Emilio Silvera V.

Sí, la materia tiene memoria, y, además, no es inerte

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (7)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Los componentes elementales de las moléculas biológicas (video ...Qué Bonito es saber!! : Blog de Emilio Silvera V.La tiocoralina fortalece la doble hélice del ADN y dificulta el proceso tumoral |Como se forma la lluvia acida? - Cuidemos Nuestro Planeta!

 

Una parte del cerebro sigue creciendo durante la edad adulta

 

Cubanos vulnerables se quejan de la poca oferta en un comedor para asistenciados de Santiago | DIARIO DE CUBA
Las comunidades marginadas ¿vulnerables o vulneradas? Una responsabilidad compartida

Pero comencemos el trabajo.

 

                                 

 

Podríamos hablar del viaje de la luz, desde que surgió a partir del Big Bang (si fue ese el comienzo de todo), y suponiendo que ya tengamos los aparatos tecnológicos precisos para poder leer, los mensajes que la misma luz lleva escritos de lo que allí, en aquellos comienzos, pudo pasar. La Luz que es emitida por los cuerpos celestes y que nos trae su memoria que están recogidas en el interior de las partículas elementales que son las que dan forma a todos los objetos grandes constituídos en moléculas. Es realmente un canto a la Luz, a su compleja estructura que no hemos llegado a comprender. La luz nos trae mensajes y recuerdos de los orígenes en remanentes de estrellas supermasivas que dieron lugar a la creación de otras estrellas y sistemas planetarios y, ¿Quién sabe? si también formas de vida.

Tendrá Memoria el Universo? : Blog de Emilio Silvera V.Eternidad? : Blog de Emilio Silvera V.

Todo lo que podemos ver en el Universo, una vez estudiado a fondo, nos transmite un mensaje

Lo cierto es que, el Universo, como un todo, nos presenta y manifiesta correlaciones  bien afinadas que desafían cualquier explicación del sentido común y, desde luego, no es que nuestro sentido común no sea el más común de los sentidos, se trata simplemente de que, no llega a captar la esencia verdadera de lo que el Universo nos quiere transmitir.

 

Decir Universo es decirlo todo,

Inmensas galaxias cuajadas de soles,

Donde orbitan los mundos,

Donde, de la vida, surgen los crisoles.

Todo es fuerza y energía,

Inmersas en un espacio-tiempo,

Transiciones de fases que guían,

Grandes acontecimientos.

La Memoria del Universo,

La Huella que deja el Tiempo,

Quedan gravados los sucesos,

Que descubren el conocimiento.

 

 

Sí, el Universo es mucho más que simples estrellas o las galaxias que las acogen, el Universo es también el Tiempo y el Espacio, son Universo las interacciones fundamentales que hace que nuestros mundos sean tal como los conocemos y, gracias a la variedad, la diversidad, las fuerzas y las constantes que en él están presentes, podemos decir que, los muchos mundos que son, algún día lejano en el futuro, nos darán la oportunidad de conocernos, nosotros los humanos de la Tierra y otros seres de más allá de nuestras fronteras que ahora, por imposibilidades físicas y tecnológicas, no podemos hacer una realidad.

 

                           

¿Fue en los océanos donde grandes fumarolas emiten elementos primordiales, o, llegó del Espacio en esporas escondidas en un cometa?

El primer signo de vida en nuestro planeta data de 3,850 millones de años. Son simples formas fósiles encontradas en Groenlandia Sí, también eso de arriba es Universo. Cuando se creó la vida, surgieron unos seres que, evolucionados, llegaron a ser conscientes de su ser y pudieron desarrollar ideas y pensamientos y…también sentimientos que nos llevan de manera directa, mediante fuerzas irresistibles de la Naturaleza, a crear Entropía Negativa para compensar la que acompaña al Tiempo y que tanto daño hace en las cosas vivas o inertes.

Hemos realizado muchos estudios y llegado a muchas conclusiones que, finalmente, resultaron prematuras. Las mediciones actuales, por ejemplo, del fondo cósmico nos indican que, aun cuando toda la materia del Universo se hubiera originado en el (supuesto) big bang, sin embargo, el espacio-tiempo es plano: el universo se equilibraría con precisión entre la expansión y la contracción. Y, sin embargo, ¡las galaxias se están expandiéndo! Quizá después de todo, existe una constante cosmológica o fuerza similar no descubierta que es el que mantiene el cosmos en estado de expansión.

 

 

Los cosmólogos dudan del vacío cuántico y no creen que sea el origen de las energías extrañas representadas representadas por estas constantes. El espacio está lleno de partículas virtuales, en constante variación. La energía de las partículas virtuales concuerdan con los efectos que le atribuyen, incluso cuando tienen una existencia tan breve que no se puede medir. Se cree que esta energía, la “constante cosmológica positiva” es la responsable de la expansión acelerada de las galaxias. Esta suposición que no es nueva, es una más de las muchas que circulan por el mundo científico de la cosmología en el que, los “expertos” cosmólogos, andan locos por averiguar de qué se trata todo esto que no llegan a comprender.

 

 

 El problema del horizonte. La coherencia que presentan las relaciones numéricas se ve reforzada por la evidencia de la observación. Ésta última da lugar al llamado “problema del horizonte” : el problema de la uniformidad en la gran escala del Cosmos en todos los puntos del horizonte visto desde la Tierra. Este problema empezó a destacarse tanto en relación a la radiación del fondo del Universo, como en relación a la evolución de sus galaxias.

 

Resultado de imagen

                                                     La radiación cósmica de fondo

“Nuestro universo parece ser completamente uniforme. Si miramos a través del espacio desde un extremo del universo visible hacia el otro, se verá que la radiación de fondo de microondas que llena el cosmos presenta la misma temperatura en todas partes.”

 

Cómo es el universo: finito o infinito? – Ciencia de Sofá

 

Esto podría no parecer muy sorprendente, hasta que se considera que los dos bordes están separados por casi 28 mil millones de años luz y que nuestro universo tiene apenas algo menos de 14 mil millones de años de edad.

 

Luz

 

“Nada puede  más rápido que la  de la luz, de modo que no hay forma en que la radiación pueda haber viajado entre los dos horizontes para igualar los puntos calientes y los fríos creados en el Big Bang y dejar así el equilibrio termal que hoy vemos.”

 

Está claro que el problema del Horizonte se les ha ido de las manos a los Cosmólogos que no lo saben explicar y, para ello, tratan de hilvanar extrañas historias y exóticas teorías que, de ninguna manera nos satisfacen.

 

                                   

 

Como suele pasar siempre que mentes pequeñas quieren explicar cosas muy grandes, que no llegan a comprender, se limitan a inventar teorías y hacen conjeturas que, más o menos puedan estar acordes con la realidad que debería ser. El desarrollo de la cosmología física está lleno de enigmas que no podemos explicar y de anomalías que las teorías actuales tratan de desarrollar de la manera más coherente posible y, algunas se acercan y otras, quedan lejos de ser, ni siquiera admisibles por fantásticas e increíbles. Claro que, por otra parte… ¿Qué haríamos sin imaginación?

Lo dicho tantas veces…¡Nuestra ignorancia! Es infinita y, nuestros conocimientos muy limitados pero… ¡Tenemos que saber!

Emilio Silvera V.