martes, 17 de septiembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿El Universo? A veces pienso, ¡que sabe lo que hace!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Como se trata de una Ciencia que estudia la naturaleza Física del Universo y de los objetos contenidos en él, fundamentalmente estrellas, galaxias y la composición del espacio entre ellas, así como las consecuencias de las interacciones y transformaciones que en el Cosmos se producen, aquí dejamos una breve secuencia de hechos que, suceden sin cesar en el ámbito del Universo y, gracias a los cuales, existe la Tierra…y, nosotros.

La evolución cósmica de los elementos nos lleva a la formación de los núcleos atómicos simples en el Big Bang y a una posterior fusión de estos núcleos ligeros para formar otros más pesados y complejos en en el interior de las estrellas, para finalizar el ciclo en las explosiones supernovas donde se plasman aquellos elementos finales de la Tabla Periódica, los más complejos y pesados.

 

Tabla Periódica - Concepto, historia y organización

 

Hay procesos en el Universo que, si pudiera ser posible contemplarlos en directo, serían dignos del mayor asombro. Por ejemplo, a mí me maravilló comprender como se podía formar Carbono en las estrella y, de cómo éstas se valían del llamado “Efecto Triple Alfa” para conseguirlo.

 

             Efecto Triple Alfa

 

La fusión en el centro de las estrella se logra cuando la densidad y temperatura son suficientemente altas. Existen varios ciclos de fusión que ocurren en diferentes fases de la vida de una estrella. Estos diferentes ciclos forman los diferentes elementos que conocemos. El primer ciclo de fusión es la fusión del Hidrógeno  hacia Helio. Esta es la fase en la que se encuentra nuestro Sol.

En las estrellas con temperaturas muy altas ocurren otros ciclos de fusiones (ciclos CNO ). A temperaturas aún más altas , el helio que se quema produce Carbono. Finalmente, a temperaturas extremadamente altas se forman los elementos más pesados como el Hierro.

 

Resultado de imagen de La cadena protón-protón

                        Cadena Protón-Protón

 

La cadena protón-protón es una de las dos reacciones de fusión que se producen en las estrellas para convertir el hidrógeno en helio, el otro proceso conocido es el ciclo CNO. Las cadenas protón-protón son más importantes en estrellas del tamaño del Sol o menores. El balance global del proceso es el equivalente de unir cuatro nucleones y dos electrones para formar un núcleo de helio-4 (2 protones + 2 neutrones).

 

Ciclo CNO - Wikipedia, la enciclopedia libre

El ciclo Carbono Nitrógeno Oxígeno:

 

Las reacciones internas que ocurren en las estrellas forman a los neutrinos que llegan a la Tierra. Al detectar estos neutrinos, los científicos pueden aprender sobre las fusiones internas en las estrellas. En el proceso de fusión nuclear denominado reacción Protón-Protón las partículas intervinientes son el protón(carga positiva), el neutrón (carga neutra), el positrón (carga positiva, antipartícula del electrón) y el neutrino.

 

Archivo:Keplers supernova.jpg

Remanente estelar de supernova

En las explosiones supernovas que viene a ser el aspecto más brillante de estos sucesos de transformación de la materia, literalmente, es que la explosión de la estrella genera suficiente energía para sintetizar una enorme variedad de átomos más pesados que el hierro que es el límite donde se paran en la producción de elementos estrellas medianas como nuestro Sol.

Pero, en las estrellas masivas y supermasivas gigantes, con decenas de masas solares, cuando el núcleo de hierro se contrae emite un solo sonido estruendoso, y este retumbar final del gong envía una onda sonara hacia arriba a través del gas que entran, el resultado es el choque más violento del Universo.

 

 

La imagen es un zoom del centro de la galaxia M82, una de las más cercanas galaxias con estrellas explosivas a una distancia de sólo 12 millones de años luz. La imagen de la izquierda, tomada con el Telescopio Espacial Hubble (HST), muestra el cuerpo de la galaxia en azul y el gas hidrógeno expulsado por las estrellas explosivas del centro en rojo.

Más arriba decíamos que aquí está el choque más violento del Universo. En un momento se forjan en la ardiente región de colisión toneladas de oro, plata, mercurio, hierro y plomo, yodo, estaño y cobre. La detonación arroja las capas exteriores de la estrella al espacio interestelar, y la nube, con su valioso cargamento, se expande, deambula durante largo tiempo y se mezcla con las nubes interestelares circundantes.

 

Nebulosa del Cangrejo (esconde en sus entrañas a un púlsar

El más conocido remanente estelar, la Nebulosa del Cangrejo cuyos filamentos nos hablan de complejos materiales que la explosión primaria formó hace ya mucho tiempo, y, que actualmente, sirve de estudio para saber sobre los procesos estelares en este tipo de sucesos.

 

El pulsar de la nebulosa del cangrejo, en rojo del hubble

 

Antes dejámos una relación de materriales que pueden ser formados en las explosiones supernovas y, cuando se condensan estrellas nuevas a partir de esas nubes, sus planetas heredan los elementos forjados en estrellas anteriores y durante la explosión. La Tierra fue uno de esos planetas y éstos son los antepasados de los escudos de bronce y las espadas de acero con los que los hombres han luchado, y el oro y la plata por los que lucharon, y los clavos de hierro que los hombres del Capitán Cook negociaban por el afecto de las tahitianas.

 

 

La muerte de una estrella súper-gigante, regenera el espacio interestelar de materiales complejos que, más tarde, forjan estrellas nuevas y mundos ricos en toda clase de elementos que, si tienen suerte de caer en la zona habitable, proporcionará a los seres que allí puedan surgir, los materiales y elementos necesarios para el desarrollo de sus ideas mediante la construcción de máquinas y tecnologías que, de otra manera, no sería posible. Incluso, sin estos materiales, ni esos seres podrían surgir a la vida.

¿No os parece una maravilla? Comenzando con el Hidrógeno, Helio Berilio y Litio en el Big Bang, se continuó con el Carbono, Nitrógeno y Oxígeno en las estrellas de la secuencia principal, y, como más arriba explicaba, se continúa en las estrellas moribundas con el Sodio, Magnesio, Aluminio, Silicio, Azufre, Cloro, Argón, Potasio, Titanio, Hierro, Cobalto, Níquel, Cobre, Cinc…Uranio. ¡Que maravilla!

El Hubble ha captado en los cielos profundos las más extrañas y variadas imágenes de objetos que en el Cosmos puedan estar presentes, sin embargo, pocas tan bellas como las de nuestro planeta Tierra que, es tan rico y especial, gracias a esos procesos que antes hemos contado que ocurren en las estrellas, en las explosiones de supernovas y mediante la creación de esos materiales complejos entre los que se encuentran la química biológica para la vida.

 

 

 

Si a partir de las Nebulosas que se forman cuando las estrellas masivas llegan al final de sus vidas, pueden surgir planetas como la Tierra, y, si la Tierra contiene la riqueza de todos esos materiales forjados en las estrellas y en el corazón de esas inmensas explosiones, y, si el Universo está plagado de galaxias en las que, de manera periódica suceden esas explosiones, nos podríamos preguntar: ¿Cuántas “Tierras” podrán existir incluso en nuestra propia Galaxia? Y, ¿Cuántos seres pueden haberse formado a partir de esos materiales complejos forjados en las estrellas?

¡Qué gran secreto tiene el Universo! ¿Cómo se las arregla para crear, las precisas condiciones que dan lugar al surgir de la Vida?

Emilio Silvera V.

Evolución por la energía

Autor por Emilio Silvera    ~    Archivo Clasificado en Energía = Materia    ~    Comentarios Comments (15)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Estructuras fundamentales : Blog de Emilio Silvera V.Nanopartículas y lubricantes – Rc Machines Blog

 

 

Descubren cómo viajar a través de un agujero de gusano y no morir en el intento

Cualquier cosa que podamos imaginar… ¡Podría estar en nuestro Universo!

El universo entero es energía. En sus formas diferentes la energía cambia continuamente y lo mismo hace que brillen las estrellas del cielo, que los planetas giren, que los estables átomos formen moléculas y materia, que las plantas crezcan o que las civilizaciones evolucionen.

La ciencia del siglo XIX reconoció la universalidad de la energía y supo ver que la Humanidad sin energía que hiciera el trabajo más duro, no evolucionarían en el bienestar social y el saber.

De todas maneras, aún hoy día, a comienzos del siglo XXI, no tenemos un conocimiento unificado de todos los ámbitos y disciplinas, que relacionados de una u otra manera con la energía, nos presente una visión global y completa de este problema. Los estudios energéticos modernos se presentan fragmentados, divididos en disciplinas, y los científicos que trabajan en cada una de ellas están muy ocupados para leer el resultado obtenido en los otros estudios.

 

Resultado de imagen de Los geólogos, por ejemplo, al tratar de entender las grandes fuerzas que transforman la superficie del planetaResultado de imagen de Los geólogos, por ejemplo, al tratar de entender las grandes fuerzas que transforman la superficie del planeta

 

Los geólogos, por ejemplo, al tratar de entender las grandes fuerzas que transforman la superficie del planeta por el movimiento de las placas tectónicas, rara vez están al día de los descubrimientos en las otras ramas de la energética moderna, donde se estudia desde el esfuerzo de un corredor de élite hasta el vuelo de un colibrí.

Los ingenieros se preocupan por las plantas generadoras de electricidad y piensan poco en las constantes fundamentales de la energía o en los cambios que determinaron la evolución de las sociedades antes de la llegada de la civilización de los combustibles fósiles.

 

Capta las mejores puestas de sol con tu móvil gracias a esta appSiete riesgos en el embarazo que debes conocer - Policlínica Metropolitana

 

Energía es todo, desde el Sol hasta un embarazo; desde el pan que comemos hasta un microchip. Sin embargo, es difícil que un técnico pueda pensar en ello cuando está centrado en resolver el problema del momento.

La progresión lógica se realiza siguiendo una secuencia progresiva desde los flujos de energía planetarios a la vida de las plantas y los animales, siguiendo con la energía humana, la energía en el desarrollo de las sociedades preindustriales y modernas, y concluyendo con el transporte y los flujos de información, que son las dos características más importantes de la civilización de los combustibles fósiles.

 

Resultado de imagen de Entropíaque es ENTROPIA?Tema 6: Las fuerzas de la naturaleza | Biología y Geología "Amor de Dios" ValladolidLamina Interactiva: El Átomo - Rincón educativo

 

Los que han leído algunos de mis trabajos saben que aquí podrán encontrarse con datos y materias diversas, y aunque el tema central, como he reseñado por título, es la evolución por la energía, también podrán leer sobre la entropía, las fuerzas de la naturaleza, el átomo, o incluso, del Sol, los vientos, radiación solar o cualquier dato que, en realidad, pueda estar conectado con el concepto de energía.

Operamos con unidades

 

Resultado de imagen de Resultado de imagen de E = mc2

 

El conocimiento, las peculiaridades y las complejidades de las diferentes formas de energías, así como su almacenamiento y transformación, requiere que cuantifiquemos esas cualidades y procesos. Para ello debemos introducir cierto número de conceptos científicos y medidas, así como sus unidades correspondientes.

Al hablar sobre energía nos encontramos con el problema de que el uso en el habla común de muchos términos científicos está equivocado. Como dice Henk Tennekes, “hemos creado una terrible confusión con los conceptos físicos simples en la vida ordinaria”. Pocos de esos malentendidos son tan generales y molestos como los relacionados con los términos energíapotencia y fuerza.

 

Resultado de imagen de Empujar un bloque de piedra

Definimos fuerza como la intensidad con la que intentamos desplazar – empujar, tirar, levantar, golpear… – un objeto. Podemos ejercer una fuerza enorme sobre la roca que sobresale en una montaña incluso si ésta permanece inmóvil. Sin embargo, sólo realizamos trabajo cuando el objeto que empujamos se mueve en la dirección de la fuerza aplicada. De hecho, se define el trabajo realizado como el producto de la fuerza aplicada por la distancia recorrida. La energía, como se define en los libros de texto, es “la capacidad de hacer trabajo”, y así, ésta se medirá con las mismas unidades que el trabajo.

 

Resultado de imagen de Unidades que tiene nombres especiales

 

Si medimos la fuerza en unidades denominadas newton (N), llamada así en honor de Isaac Newton, y la distancia en metros (m), el trabajo se mide en la malsonante unidad de newton-metro. Para simplificar, los científicos llaman al newton-metro julio (J), en honor de James Prescot Joule (1818 – 1889), quien publicó el primer cálculo preciso de la equivalencia entre trabajo y energía. El julio es la unidad estándar de trabajo y energía.

La potencia es simplemente la tasa de trabajo, es decir, un flujo de energía por unidad de tiempo. A un julio por segundo lo llamamos vatio (W) en honor de James Watt (1736 – 1819), inventor de la máquina de vapor mejorada y el hombre que estableció la primera unidad de potencia, que no fue el vatio sino el caballo de vapor (CV), una unidad aproximadamente igual a 750 W.

Seguimos con algunas tablas para documentarnos:

Resultado de imagen de Reservas mundiales de material energético

 

Almacenamiento de energía
Energía de Magnitud
Reservas mundiales de carbón 200.000 EJ
Reservas mundiales de masa vegetal 10.000 EJ
Calor latente de un tormenta 5 PJ
Carga de carbón de un camión de 100 t 2 TJ
Barril de petróleo crudo 6 GJ
Botella de vino de mesa blanco 3 MJ
Garbanzo pequeño 5 KJ
Mosca en la mesa de la cocina 9 mJ
Gota de agua de 2 mm en una hoja de árbol 4 μJ
Flujos de energía
Energía de Magnitud
Radiación solar 5.500.000 EJ
Fotosíntesis mundial neta 2.000 EJ
Producción mundial de combustibles fósiles 300 EJ
Huracán típico en el Caribe 38 EJ
La mayor explosión de bomba H en 1961 240 PJ
Calor latente de un tormenta 5 PJ
Bomba de Hiroshima en 1945 84 TJ
Metabolismo basal de un caballo grande 100 MJ
Ingesta diaria de un adulto 10 MJ
Pulsación de una tecla del ordenador 20 mJ
Salto de una pulga 100 nJ

Resultado de imagen de Energía cinéticaResultado de imagen de Energía cinética

 

Para avanzar un poco más tenemos que pasar de empujar y tirar (lo que llamamos energía mecánica o energía cinética) a calentar (energía térmica). Definimos una unidad llamada caloría como la cantidad de calor necesario para elevar la temperatura de un gramo de agua desde 14’5 a 15’5 ºC. Usando esta unidad podemos comparar energías térmicas, pero una vez más, esta unidad no nos permite comparar todas las clases diferentes de energías.

Si nos preguntamos ¿qué es la energía?, esta pregunta no es fácil de contestar. Incluso uno de los más grandes físicos modernos resulta de poca ayuda: “es importante darse cuenta de que en física, en realidad, no se sabe muy bien qué es la energía. No tenemos una idea de por qué la energía está formada por pequeños pulsos de una cantidad definida”, decía Richard Feynman en su libro Lectures on Physics.

David Rose, para definir la energía, decía: “es un concepto abstracto inventado por los físicos en el siglo XIX para describir cuantitativamente una amplia variedad de fenómenos naturales”.

Explicación del principio de equivalencia masa-energía

 

Masa y energía son equivalentes. En la ecuación:

E: representa la energía

m: la masa

c: la velocidad de la luz en el vacío ¡casi 300 000 km/s!

Einstein nos dijo: “la masa y la energía son manifestaciones de una misma cosa”.

El conocimiento moderno de la energía incluye un número de descubrimientos fundamentales: la masa y la energía son equivalente; los diferentes tipos de energía están relacionados por muchas transformaciones; durante esas transformaciones, la energía no se destruye (primer principio de la termodinámica) y esta conservación de la energía está inexorablemente acompañada por una pérdida de utilidad (segundo principio de la termodinámica).

El primer descubrimiento, descrito en una carta de Einstein a un amigo suyo como una “idea atrevida, divertida y atractiva”, se resume en su ecuación m = E/c2, que en su versión más famosa se escribe como E = mc2; la ecuación más conocida de la física.

 

Sistema solar GIF - Encontrar en GIFER

Así viaja el Sol llevando a los planetas consigo, alrededor de la Galaxia

El segundo descubrimiento se demuestra continuamente en miles de trasformaciones energéticas que se producen en el universo. La energía gravitatoria mantiene las galaxias en movimiento, a la Tierra girando alrededor del Sol y confinada la atmósfera que hace nuestro planeta habitable. La transformación de la energía nuclear en el interior del Sol produce el continuo flujo de energía electromagnética, llamada radiación solar. Una pequeña parte de esa energía llega al planeta Tierra que, a su vez, libera energía geotérmica. El calor producido en ambos procesos pone en movimiento la atmósfera, los océanos y las gigantescas placas tectónicas terrestres.

 

Resultado de imagen de la energía del Sol se transforma en en energía química

Una pequeña parte de la energía radiante del Sol se transforma, a través de la fotosíntesis, en reservas de energía química, que son utilizadas por muchas clases de bacterias y plantas. Los seres heterótrofos (organismos que van desde las bacterias, los protozoos y los hongos hasta los mamíferos), ingieren y reorganizan vegetales de las plantas en nuevos enlaces químicos y los utilizan para crear energía mecánica (cinética).

La energía química almacenada durante millones de años en los combustibles fósiles se libera por combustión en calderas y máquinas como energía termal (térmica), la cual, a través de muchos procesos se convierte en energía mecánica, química o electromagnética.

Resultado de imagen de TerremotosResultado de imagen de VolcanesTectónica de placas - Wikipedia, la enciclopedia librePlacas tectónicas, corrientes de convección y límites divergentes on Make a GIF

 

La colisión entre las placas terrestres lleva a que las rocas conformantes de la corteza puedan romperse (fallarse) o bien plegarse. Este último proceso ocurre en aquellos estratos rocosos que se ven sometidos a altas presiones y temperaturas, que permiten que las rocas se tornen dúctiles. Las cadenas montañosas o cordilleras se generan por la colisión de las placas tectónicas y, por lo general, se localizan cerca de sus márgenes.

 

Potencia de fenómenos de corta duración
Flujos de energía Duración Potencia
Terremoto de magnitud 8 en la E. Richter 30 s 1’6 PW
Gran erupción volcánica 10 h 100 TW
Energía cinética de una tormenta 20 min 100 GW
Gran bombardeo de la 2ª Guerra Mundial 1 h 20 GW
Tornado medio en EE.UU. 3 min 1’7 GW
Los cuatro motores del Boeing 747 10 h 60 MW
La mayor máquina de vapor de Watt 10 h 100 KW
Carrera de 100 m 10 s 1’3 KW
Lavadora doméstica 20 min 500 W
Audición de un CD 60 min 25 W
Una vela 2 h 5 W
El vuelo de un colibrí 3 min 0’7 W

Resultado de imagen de El segundo principio de la termodinámica

 

El segundo principio de la termodinámica se refiere a la inevitable realidad de que a lo largo de la cadena de transformación de la energía se va perdiendo la capacidad de realizar un trabajo útil. Hay una magnitud asociada con esta pérdida de utilidad de la energía que se llama entropía; en cada transformación la energía se conserva, pero la entropía del sistema en su conjunto sólo puede aumentar. No hay nada que podamos hacer contra esta disminución de utilidad. Un barril de petróleo es un almacén de energía muy útil y de baja entropía que se puede transformar en calor, electricidad, movimiento y luz. Las moléculas calientes de aire emitidas por el tubo de escape de un motor o la luz que rodea una bombilla representan un estado de alta entropía en el que se producen irrecuperables pérdidas de utilidad.

 

Resultado de imagen de El Universo como sistema cerrado

El Universo se puede considerar como un sistema cerrado

En un sistema cerrado, este proceso unidireccional de disipación entrópica tiene la inevitable consecuencia de una pérdida de la complejidad y un aumento de la homogeneidad. Esto se puede ver si usted compara la multitud de moléculas orgánicas que componen el petróleo con la monotonía de unos pocos tipos de moléculas sencillas que forman los gases del tubo de escape.

 

 

Por el contrario, todos los organismos vivos (desde las bacterias hasta las civilizaciones humanas) son sistemas abiertos, que están importando y exportando energía constantemente; son capaces de mantenerse en estado de desequilibrio químico y termodinámico, creciendo y evolucionando hasta una mayor heterogeneidad y complejidad. Desafían temporalmente la tendencia entrópica.

No conviene utilizar unidades inadecuadas para medir esta gran variedad de procesos, porque casi siempre las cifras estarían seguidas o precedidas de muchos ceros. Tanto el julio como el vatio representan respectivamente cantidades muy pequeñas de energía y potencia. Aproximadamente 30 microgramos de carbón o 2 segundos de metabolismo de un ratón de campo equivalen a 1 julio. Un vatio es la potencia de una pequeña vela encendida o el vuelo rápido de un colibrí.

Emilio Silvera V.

¿El Misterio? Persistirá, ¡como el Tiempo!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Entradas anteriores

                         Tras un largo y penoso caminar por el planeta Tierra …

Los habitantes de este mundo, hemos conseguido construir un cuadro plausible del Universo, de la Naturaleza que tratamos de comprender. Hemos llegado a ser conscientes de que, en ella, en la Naturaleza, están todas las respuestas que buscamos y, nosotros mismos no hemos llegado a conocernos por ese mismo hecho de que, formando parte de la Naturaleza, y, también, somos parte del enigma que tratamos de desvelar.

Parece que ahora estamos entrando en la edad adulta, quiero significar que después de siglos y milenios de esporádicos esfuerzos, finalmente hemos llegado a comprender algunos de los hechos fundamentales del Universo, conocimiento que, presumiblemente, es un requisito de la más modesta pretensión de nuestra madurez cosmológica.

 

Resultado de imagen de El sistema solar

 

Sabemos, por ejemplo, dónde estamos, que vivimos en un planeta que gira alrededor de una estrella situada en el borde de la Galaxia espiral a la que llamamos Vía Láctea, cuya posición ha sido determinada con respecto a varios cúmulos vecinos que, en conjunto, albergan a unas cuarenta mil galaxias extendidas a través de un billón de años-luz cúbicos de espacio.

 

Resultado de imagen de El grupo local de galaxias

 

También sabemos más o menos, cuando hemos entrado en escena, hace unos cinco mil millones de años que se formaron el Sol yn los planetas de nuestro Sistema Solar , en un Universo en expansión que probablemente tiene una edad entre dos y cuatro veces mayor. Hemos determinado los mecanismos básicos de la evolución de la Tierra, hallado prueba también de evolución química a escala cósmica y hemos podido aprender suficiente física como para comprender e investigar la Naturaleza en una amplia gama de escalas desde los Quarks saltarines en el “mundo” microscópico hasta el vals de las galaxias.

 

Descubriendo a los Sumerios: Innovaciones, Cultura y Contribuciones a la  Civilización - educahistoria

Los sumerios eran un pueblo del sur de Mesopotamia cuya civilización floreció entre el 4100 y el 1750 a.C. Su nombre proviene de la región que, con frecuencia (e incorrectamente) se considera un país. Sumer nunca fue una entidad política cohesionada, sino una región de ciudades estado, cada cual con su propio rey.

En este pueblo se empleó por primera vez la ingeniería hidráulica, la astronomía, las matemáticas, la química, la medicina o la farmacopea, inventaron sus habitantes la enseñanza, la legislación, o la literatura.

Las dos primeras civilizaciones que surgieron en la historia fueron: La civilización mesopotámica, en un lugar llamado Mesopotamia (hoy Irak), entre los ríos Tigres y Éufrates. La civilización egipcia, en Egipto, alrededor del río Nilo.

Los sumerios inventaron jeroglíficos pictóricos que más tarde dieron lugar a la escritura cuneiforme propiamente dicha, y su lengua, junto con la del Antiguo Egipto, compiten por el crédito de ser la lengua más tempranamente documentada.

Mesopotamia es la civilización urbana alfabetizada más antigua del mundo , y los sumerios, que establecieron la civilización, establecieron las reglas básicas.,

Hace casi cinco mil años y más de mil antes de que se redactara la Biblia, los sumerios ofrecieron testimonio escrito del primer Job, del primer Moisés, el primer esbozo del paraíso, la primera resurrección de una divinidad y, cómo no, el primer diluvio universal.

 

Babilonia, la historia de la ciudad desde Hammurabi a Ciro el Grande

La civilización babilónica fue una cultura antigua del Cercano Oriente que existió entre 2100 y 538 a. C. Los babilonios conquistaron a los pueblos vecinos y, dos veces en su historia, lograron construir un imperio y controlar toda la región.

Inventaron el sistema sexagesimal que creó un minuto de 60 segundos, una hora de 60 minutos y un círculo de 360 grados, así como la escritura cuneiforme que durante 3 mil años sería adaptada a unos doce idiomas.

Babilonia se fundó en algún momento antes del reinado de Sargón de Acad (el Grande, 2334-2279 a.C.) y parece haber sido una ciudad portuaria menor en el río Éufrates hasta el ascenso de Hammurabi quien reinó de 1792 a 1750 a.C. y la convirtió en la capital de su Imperio babilónico.

 

La civilización China es la más antigua del mundo, tiene una historia de más de 3,500 años. Su nombre “zhong guo” significa “país del centro” o “el reino central”; ellos creían que su país era el centro geográfico del mundo y que eran la única cultura civilizada.

China posee una cultura milenaria con una gran capacidad de invención. Algunos de los inventos de la ciencia china han supuesto cambios importantes en otras culturas. Veamos algunos de ellos. El papel apareció en el año 105 de nuestra era.

La cultura china era estable, impidiendo guerras y rebeliones que surgían de diferentes sistemas de creencias . Los grandes ríos de China ayudaron al comercio, las barreras naturales, la bebida, la siembra y el transporte. Muchos inventos en la antigua China la hicieron poderosa y cambiaron el resto del mundo, trayendo la civilización.

Las siete dinastias Chinas:

  • Dinastía conquistadora.
  • Dinastía Liang posterior.
  • Dinastía Liao.
  • Dinastía Qi del Sur.
  • Dinastía Shun.
  • Dinastía Zhou Oriental.
  • Dinastía Zhou Tardía.

La cultura china era estable, impidiendo guerras y rebeliones que surgían de diferentes sistemas de creencias . Los grandes ríos de China ayudaron al comercio, las barreras naturales, la bebida, la siembra y el transporte. Muchos inventos en la antigua China la hicieron poderosa y cambiaron el resto del mundo, trayendo la civilización.

 

Las civilizaciones más antiguas de la historia

El Tiempo inexorable nunca dejó de fluir y mientras eso pasaba, nuestra especie evolucionaba, aprendía al observar los cielos y cómo y por qué pasaban las cosas. Hay realizaciones humanas de las que, en verdad, podemos sentirnos orgullosos. Aquellos habitantes de Sumer y Babilonia, de Egipto o China y también de la India y otros pueblos que dejaron una gran herencia de saber a los Griegos que pusieron al mundo occidental en el camino de la ciencia, nuestra medición del pasado se ha profundizado desde unos pocos miles de años a más de diez mil millones de años, y la del espacio se ha extendido desde un cielo de techo bajo no mucho mayor que la distancia que nos separa de la Luna hasta el radio de más de diez mil millones de años-luz del universo observable.

Tenemos razones para esperar que nuestra época sea recordada (si por ventura queda alguien para recordarlo) por sus contribuciones al supremo tesoro intelectual de toda la Humanidad unida al contexto del Universo en su conjunto por unos conocimientos que, aunque no suficiente, sí son los necesarios para saber dónde estamos y, ahora, debemos buscar la respuesta a esa pregunta: ¿Hacia dónde vamos?

 

Resultado de imagen de Los robots del futuro que podrán pensar y sentir

                        Claro que…, ¡el futuro es incierto!

Como en la física, en el mundo y en nuestras vidas, también está presente el principio de incertidumbre y, de ninguna manera, podemos saber del mañana. Sin embargo, cuanto más sabemos del universo, tanto más claramente comprendemos lo poco que sabemos de él. La vastedad del Universo nos lleva a poder comprender algunas estructuras cósmicas y mecanismos que se producen y repiten como, el caso de la destrucción que nos lleva a la construcción. Es decir, una estrella masiva vieja explota y siembre el Caos y la destrucción en una extensa región del espacio, y, es precisamente ese hecho el que posibilita que, nuevas estrellas y nuevos mundos surjan a la vida. Sin embargo, la grandeza, la lejanía, esa inmensidad que se nos escapa a nuestra comprensión terrestre, nunca nos dejará comprender el universo en detalle y, siendo así, siempre tendremos secretos que desvelar y misterios que resolver.

 

 

Si añadimos a todo eso  que, si poseyésemos un atlas de nuestra propia Galaxia y que dedicase una sóla página a cada sistema estelar de la Vía Láctea (de modo que el Sol y sus planetas estuviesen comprimidos en una página), tal atlas tendría más de dies mil millones de volúmenes de dies mil páginas cada uno. Se necesitaria una biblioteca del tamaño de la de Harvard para alojar el Atlas, y solamente ojearlo al ritmo de una página por segundo nos llevaría más de diez mil años. Añádance los detalles de la cartografía planetaria, la potencial biología extraterrestre, las sutilezas de los principios científicos involucrados y las dimensiones históricas del cambio, y se nos hará claro que nunca aprenderemos más que una diminuta fracción de la historia de nuestra Galaxia solamente, y hay cien mil millones de galaxias más.

Sabiendo todo todo esto, siendo consciente de que, realmente, es así, tendremos que convenir con el físico  Lewis Thomas cuando dijo: “El mayor de todos los logros de la ciencia del siglo XX ha sido el descubrimiento de la ignorancia humana”.

 

 

La ignorancia, como todo en el Universo, es relativa. Nuestra ignorancia, por supuesto, siempre ha estado con nosotros, y siempre seguirá estando, es una compañera con la que cargamos toda nuestra vida y que nos pesa. Algunos procuramos que pese lo menos posible para hacer más llevadero el viaje. Lo nuevo está en nuestras consciencias y de ellas, ha surgido nuestro despertar al comprender de sus abismales dimensiones, y es eso más que otro cosa, lo que señala la madurez de nuestra especie. El espacio puede tener un horizonte y el tiempo un final pero la aventura del aprendizaje siempre será interminable y eterno, quizá (no me he parado a pensarlo) pueda ser esa la única forma de eternidad que pueda existir.

 

 

Noticias - Madrid Deep Space Communications Complex

¿Explicarlo todo? ¡Nunca podremos! La Naturaleza siempre irá por delante de nosotros

 

La dificultad de explicarlo todo no se debe a nuestra debilidad mental, sino a la estructura misma del universo. En los últimos siglos hemos descubierto que la trama del cosmos puede abordarse en varios niveles diferentes. Mientras no se descubre el siguiente nivel, lo que ocurre en el anterior no se puede explicar, sólo puede describirse. En consecuencia, para el último nivel que se conoce en cada momento nunca hay explicaciones, sólo puede haber descripciones.

Qué es la Ciencia: Exploración y Descubrimiento

 

La Ciencia es intrínsicamente abierta y exploratoria, y comete errores todos los días. En verdad, ese será siempre su destino, de acuerdo con la lógica esencial del segundo teorema de incompletitud de Kurt Gödel. El teorema demuestra que la plena validez de cualquier sistema, inclusive un sistema científico, no puede demostrarse dentro del sistema. Es decir, tiene que haber algo fuera del marco de cualquier teoría para poder comprobarla. La lección que podemos haber aprendido es que, no hay ni habrá nunca una descripción científica completa y comprensiva del universo cuya validez pueda demostrarse.

 

 No es que pertenezcamos al Universo, formamos parte de él

Y, a todo esto, debemos alegrarnos de que así sea, de que no podamos comprender el Universo en toda su inmensa dimensión y diversidad. Nuestras mentes necesitan que así sea y, tendrán, de esa manera, el escenario perfecto para seguir creciendo a medida que busca todas esas respuestas que nos faltan y, lo bueno del caso es que, cada respuesta que encontramos, viene acompañada de un montón de nuevas preguntas y, de esa manera, esa historia interminable de nuestra aventura del saber…llegará hasta la eternidad de nuestro tiempo que, necesariamente, no tiene por que ser el tiempo del universo.

Emilio Silvera V.