sábado, 18 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿La Mente Humana? ¡Un prodigio de la Naturaleza!

Autor por Emilio Silvera    ~    Archivo Clasificado en Cosas curiosas    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 Tiempo de Planck
Téngase en cuenta que este es un tiempo característico, por lo que su orden de magnitud es lo que debe tenerse en cuenta. A veces se define con la longitud de onda de arriba dividida por 2π, así que no se debe preocupar por el número de dígitos significativos

 

Antes del tiempo clasificado como tiepo de Planck, 10-43 segundos, todas las cuatro fuerzas fundamentales se presumía que estaban unificadas en una sola fuerza. Toda la materia, energía, espacio y tiempo se suponía que se dispararon hacia el exterior desde una singularidad original. No se sabe nada de este período.

Era del Tiempo de Planck

En la era de alrededor del tiempo de Planck 1, 10-43 segundos, se proyecta por el modelado actual de las fuerzas fundamentales fuerzas, que la fuerza de la gravedad comienza a diferenciarse de las otras tres fuerzas. Esta es la primera de las roturas espontáneas de la simetría, que desembocan en los cuatro tipos de interacciones observadas en el universo actual.

Las Unidades de Planck

Tampoco es que sepamos mucho acerca de períodos posteriores, es sólo que no tenemos verdaderos modelos coherentes de lo que podría suceder bajo tales condiciones. La unificación electrodébil ha sido apoyada por el descubrimiento de las patículas W y Z, y se puede utilizar como una plataforma de debate sobre el siguiente paso, la Teoría de la Gran Unificación (GUT). La unificación final ha sido llamada “teoría de la super unificación”, y cada vez más popular es la denominada “Teoría del Todo” (TOE). Sin embargo, “las teorías del todo” están separadas por dos grandes saltos, más allá de los experimentos que se pueda desear hacer en la Tierra.

Max Planck - Wikipedia, la enciclopedia libre

           El joven Planck
La interpretación de las unidades naturales de Stoney y Planck no era en absoluto obvia para los físicos. Aparte de ocasionarles algunos quebraderos de cabeza para entender esos números tan endiabladamente pequeños.

El tiempo de Planck o cronón (término acuñado en 1926 por Robert Lévi) es una unidad de tiempo, considerada como el intervalo temporal más pequeño que puede ser medido. Se denota mediante el símbolo tP. En cosmología, el tiempo de Planck representa el instante de tiempo más pequeño en el que las leyes de la física pueden ser utilizadas para estudiar la naturaleza y evolución del Universo. Se determina como combinación de otras constantes físicas en la forma siguiente:

 

 t_P = \sqrt{\frac{\hbar G}{c^5}} \; \approx \quad 5,39106(32) \cdot 10^{-44} segundos

donde:

\hbar es la constante de Planck reducida (conocida también como la constante de Dirac). 
G es la constante de Gravitación Universal;  c es la velocidad de la luz en el vacío.

Los números entre paréntesis muestran la desviación estándar.

En este ámbito hablamos de las cosas muy pequeñas, las que no se ven

El Tiempo de Planck es:

Es el tiempo que necesita el fotón (viajando a la velocidad de la luz, c, para moverse a través de una distancia igual a la longitud de Planck.  Está dado por , donde G es la constante gravitacional (6, 672 59 (85) x 10-11 N m2 kg-2), ħ es la constante de Planck racionalizada (ħ = h/2л = 1,054589 x 10-34 Julios segundo), c, es la velocidad de la luz (299.792.458 m/s).

El valor del tiempo del Planck es del orden de 10-44 segundos.  En la cosmología del Big Bang, hasta un tiempo Tp después del instante inicial, es necesaria usar una teoría cuántica de la gravedad para describir la evolución del Universo. Todo, desde Einstein, es relativo.  Depende de la pregunta que se formule y de quién nos de la respuesta.

 

                   ¿El Tiempo? Muchos Filósofos lo quisieron explicar pero… ¡No pudieron!

Si preguntamos ¿Qué es el tiempo?, tendríamos que ser precisos y especificar si estamos preguntando por esa dimensión temporal que no deja de fluir desde el Big Bang y que nos acompaña a lo largo de nuestras vidas, o nos referimos al tiempo atómico, ese adoptado por el SI, cuya unidad es el segundo y se basa en las frecuencias atómicas, definida a partir de una línea espectral particular de átomo de cesio 133, o nos referimos a lo que se conoce como tiempo civil, tiempo coordinado, tiempo de crecimiento, tiempo de cruce, tiempo de integración, tiempo de relajación, tiempo dinámico o dinámico de Bari-céntrico, dinámico terrestre, tiempo terrestre, tiempo de Efemérides, de huso horario, tiempo estándar, tiempo local, tiempo luz, tiempo medio, etc. etc.  Cada una de estas versiones del tiempo, tiene una respuesta diferente, ya que, no es lo mismo el tiempo propio que el tiempo sidéreo o el tiempo solar, o solar aparente, o solar medio, o tiempo terrestre, o tiempo Universal.  Como se puede ver, la respuesta dependerá de cómo hagamos la pregunta.

 

           … Y que el mismo tiempo suele borrar

En realidad, para todos nosotros el único tiempo que rige es el que tenemos a lo largo de nuestras vidas, los otros tiempos, son inventos del hombre para facilitar sus tareas de medida, de convivencia o de otras cuestiones técnicas o astronómicas pero, sin embargo, el tiempo es solo uno; ese que comenzó cuando nació el Universo y que finalizará cuando este llegue a su final.

Lo cierto es que, para las estrellas supermasivas, cuando llegan al final de su ciclo y deja de brillar por agotamiento de su combustible nuclear, en ese preciso instante, el tiempo se agota para ella.  Cuando una estrella pierde el equilibrio existente entre la energía termonuclear (que tiende a expandir la estrella), y, la fuerza de gravedad (que tiende a comprimirla), al quedar sin oposición esta última, la estrella supermasiva se contrae aplastada bajo su propia masa.  Queda comprimida hasta tal nivel que llega un momento que desaparece,  para convertirse en un Agujero Negro, una singularidad, donde dejan de existir el “tiempo” y el espacio.  A su alrededor nace un horizonte de sucesos que, si se traspasa, se es engullido por la enorme gravedad del Agujero Negro.

 

       En la singularidad no se distorsiona, se para

El tiempo, de ésta manera, deja de existir en estas regiones del Universo que conocemos como singularidad.  El mismo Big Bang -dicen- surgió de una singularidad de energía y densidad infinitas que, al explotar, se expandió y creó el tiempo, el espacio y la materia.

Como contraposición a estas enormes densidades de las enanas blancas, estrellas de neutrones y Agujeros Negros, existen regiones del espacio que contienen menos galaxias que el promedio o incluso ninguna galaxia; a estas regiones las conocemos como vacío cósmico.  Han sido detectados vacíos con menos de una décima de la densidad promedio del Universo en escalas de hasta 200 millones de años luz en exploraciones a gran escala.  Estas regiones son a menudo esféricas.  El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra aproximadamente a 500 millones de años luz de la Vía Láctea.  La existencia de grandes vacíos no es sorprendente, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes.

Mientras que en estas regiones la materia es muy escasa, en una sola estrella de neutrones, si pudiéramos retirar 1 cm3 de su masa, obtendríamos una cantidad de materia increíble.  Su densidad es de 1017 kg/m3, los electrones y los protones están tan juntos que se combinan y forman neutrones que se degeneran haciendo estable la estrella de ese nombre que, después del agujero negro, es el objeto estelar más denso del Universo.

 

Es interesante ver cómo a través de las matemáticas y la geometría, han sabido los humanos encontrar la forma de medir el mundo y encontrar las formas del Universo.  Pasando por Arquímedes, Pitágoras, Newton, Gauss o Riemann (entre otros), siempre hemos tratado de buscar las respuestas de las cosas por medio de las matemáticas.

 

Almacenes inteligentes: optimizando la logística con tecnología avanzada

“Magia es cualquier tecnología suficientemente avanzada”

Arthur C. Clarke

Pero también es magia el hecho de que, en cualquier tiempo y lugar, de manera inesperada, aparezca una persona dotada de condiciones especiales que le permiten ver, estructuras complejas matemáticas que hacen posible que la Humanidad avance considerablemente a través de esos nuevos conceptos que nos permiten entrar en espacios antes cerrados, ampliando el horizonte de nuestro saber.

 

Espacio curvo de Riemann (II de III)Superficie de Riemann - Wikipedia, la enciclopedia libre

 

Recuerdo aquí uno de esos extraños casos que surgió el día 10 de Junio de 1.854 con el nacimiento de una nueva geometría: La teoría de dimensiones más altas que fue introducida cuando Georg Friedrich Bernhard Riemann dio su célebre conferencia en la facultad de la Universidad de Gotinga en Alemania.  Aquello fue como abrir de golpe, todas las ventanas cerradas durante 2.000 años, de una lóbrega habitación que, de pronto, se ve inundada por la luz cegadora de un Sol radiante.  Riemann regaló al mundo las sorprendentes propiedades del espacio multidimensional.

Su ensayo de profunda importancia y elegancia excepcional, “sobre las hipótesis que subyacen en los fundamentos de la geometría” derribó pilares de la geometría clásica griega, que habían resistido con éxito todos los asaltos de los escépticos durante dos milenios.  La vieja geometría de Euclides, en la cual todas las figuras geométricas son de dos o tres dimensiones, se venía abajo, mientras una nueva geometría riemanniana surgía de sus ruinas.  La revolución riemanniana iba a tener grandes consecuencias para el futuro de las artes y las ciencias.  En menos de tres decenios, la “misteriosa cuarta dimensión” influiría en la evolución del arte, la filosofía y la Literatura en toda Europa.  Antes de que hubieran pasado seis decenios a partir de la conferencia de Riemann, Einstein utilizaría la geometría riemanniana tetradimensional para explicar la creación del Universo y su evolución mediante su asombrosa teoría de la relatividad general Ciento treinta años después de su conferencia, los físicos utilizarían la geometría deca-dimensional para intentar unir todas las leyes del Universo.  El núcleo de la obra de Riemann era la comprensión de las leyes físicas mediante su simplificación al contemplarlas en espacios de más dimensiones.

 

 

Contradictoriamente, Riemann era la persona menos indicada para anunciar tan profunda y completa evolución en el pensamiento matemático y físico.  Era huraño, solitario y sufría crisis nerviosas.  De salud muy precaria que arruinó su vida en la miseria abyecta y la tuberculosis.

Riemann nació en 1.826 en Hannover, Alemania, segundo de los seis hijos de un pobre pastor luterano que trabajó y se esforzó como humilde predicador  para alimentar a su numerosa familia que, mal alimentada, tendrían una delicada salud que les llevaría a una temprana muerte.  La madre de Riemann también murió antes de que sus hijos hubieran crecido.

A edad muy temprana, Riemann mostraba ya los rasgos que le hicieron famoso: increíble capacidad de cálculo que era el contrapunto a su gran timidez y temor a expresarse en público.  Terriblemente apocado era objeto de bromas de otros niños, lo que le hizo recogerse aún más en un mundo matemático intensamente privado que le salvaba del mundo hostil exterior.

La Geometría de los espacios curvos de Riemann que dejó atrás a Euclides con sus líneas y puntos

Para complacer a su padre, Riemann se propuso hacerse estudiante de teología, obtener un puesto remunerado como pastor y ayudar a su familia.  En la escuela secundaria estudió la Biblia con intensidad, pero sus pensamientos volvían siempre a las matemáticas.  Aprendía tan rápidamente que siempre estaba por delante de los conocimientos de sus instructores, que encontraron imposible mantenerse a su altura.  Finalmente, el director de la escuela dio a Riemann un pesado libro para mantenerle ocupado.  El libro era la Teoría de números de Adrien-Marie Legendre, una voluminosa obra maestra de 859 páginas, el tratado más avanzado del mundo sobre el difícil tema de la teoría de números.  Riemann devoró el libro en seis días.

Legendre: Sobre la teoría de los números

Cuando el director le preguntó: “¿Hasta dónde has leído?”, el joven Riemann respondió: “Este es un libro maravilloso. Ya me lo sé todo”.

Sin creerse realmente la afirmación de su pupilo, el director le planteó varios meses después cuestiones complejas sobre el contenido del libro, que Riemann respondió correctamente.

Con mil sacrificios, el padre de Riemann consiguió reunir los fondos necesarios para que, a los 19 años pudiera acudir a la Universidad de Gotinga, donde encontró a Carl Friedrich Gauss, el aclamado por todos “Príncipe de las Matemáticas”, uno de los mayores matemáticos de todos los tiempos.   Incluso hoy, si hacemos una selección por expertos para distinguir a los matemáticos más grandes de la Historia, aparecerá indudablemente Euclides, Arquímedes, Newton y Gauss.

 

                                                  Hannover, Alemania

Los estudios de Riemann no fueron un camino de rosas precisamente.  Alemania sacudida por disturbios, manifestaciones y levantamientos, fue reclutado en el cuerpo de estudiantes para proteger al rey en el palacio real de Berlín y sus estudios quedaron interrumpidos.

En aquel ambiente el problema que captó el interés de Riemann, fue el colapso que, según el pensaba, suponía la geometría euclidiana, que mantiene que el espacio es tridimensional y “plano” (en el espacio plano, la distancia más corta entre dos puntos es la línea recta; lo que descarta la posibilidad de que el espacio pueda estar curvado, como en una esfera).

Para Riemann, la geometría de Euclides era particularmente estéril cuando se la comparaba con la rica diversidad del mundo.  En ninguna parte vería Riemann las figuras geométricas planas idealizadas por Euclides.  Las montañas, las olas del mar, las nubes y los torbellinos no son círculos, triángulos o cuadrados perfectos, sino objetos curvos que se doblan y retuercen en una diversidad infinita.  Riemann, ante aquella realidad se rebeló contra la aparente precisión matemática de la geometría griega, cuyos fundamentos., descubrió el, estaban basados en definitiva sobre las arenas movedizas del sentido común y la intuición, no sobre el terreno firme de la lógica y la realidad del mundo.

 

Dimensión - Wikipedia, la enciclopedia libre

Euclides nos habló de la obviedad de que un punto no tiene dimensión.  Una línea tiene una dimensión: longitud.  Un plano tiene dos dimensiones: longitud y anchura.  Un sólido tiene tres dimensiones: longitud, anchura y altura.   Y allí se detiene.  Nada tiene cuatro dimensiones, incluso Aristóteles afirmó que la cuarta dimensión era imposible.  En Sobre el cielo, escribió: “La línea tiene magnitud en una dirección, el plano en dos direcciones, y el sólido en tres direcciones, y más allá de éstas no hay otra magnitud porque los tres son todas.”  Además, en el año 150 d. C. el astrónomo Ptolomeo de Alejandría fue más allá de Aristóteles y ofreció, en su libro sobre la distancia, la primera “demostración” ingeniosa de que la cuarta dimensión es imposible.

 

El Hombre que visitó la cuarta dimensión

Hemos querido ver la cuarta dimensión pero… No deja ver. Sin embargo, su transcurrir se siente. En ella está la Entropía.

En realidad, lo único que Ptolomeo demostraba era que, era imposible visualizar la cuarta dimensión con nuestros cerebros tridimensionales (de hecho, hoy sabemos que muchos objetos matemáticos no pueden ser visualizados, aunque puede demostrarse que en realidad, existen).  Ptolomeo puede pasar a la Historia como el hombre que se opuso a dos grandes ideas en la ciencia: el sistema solar heliocéntrico y la cuarta dimensión.

La ruptura decisiva con la geometría euclidiana llegó cuando Gauss pidió a su discípulo Riemann que preparara una presentación oral sobre los “fundamentos de la geometría”.  Gauss estaba muy interesado en ver si su discípulo podía desarrollar una alternativa a la geometría de Euclides.

Riemann desarrolló su teoría de dimensiones más altas.

 

Parte real (rojo) y parte imaginaria (azul) de la línea crítica Re(s) = 1/2 de la función zeta de Riemann. Pueden verse los primeros ceros no triviales en Im(s) = ±14,135, ±21,022 y ±25,011. La hipótesis de Riemann, por su relación con la distribución de los números primos en el conjunto de los naturales, es uno de los problemas abiertos más importantes en la matemática contemporánea.

 

Fig.: Conceptos esenciales de la geometría riemanniana ilustrados. |  Download Scientific Diagram

Finalmente, cuando hizo su presentación oral en 1.854, la recepción fue entusiasta.  Visto en retrospectiva, esta fue, sin discusión, una de las conferencias públicas más importantes en la historia de las matemáticas.  Rápidamente se entendió por toda Europa la noticia de que Riemann había roto definitivamente los límites de la geometría de Euclides que había regido las matemáticas durante los milenios.

 

 

Riemann creó el tensor métrico para que, a partir de ese momento, otros dispusieran de una poderosa herramienta que les hacía posible expresar a partir del famoso teorema de Pitágoras (uno de los grandes descubrimientos de los griegos en matemáticas que establece la relación entre las longitudes de los tres lados de un triángulo rectángulo: afirma que la suma de los cuadrados de los lados menores es igual al cuadrado del lado mayor, la hipotenusa; es decir, si a y b son los longitudes de los dos catetos, y c es la longitud de la hipotenusa, entonces a2 + b2 = c2.  El teorema de Pitágoras, por supuesto, es la base de toda la arquitectura; toda estructura construida en este planeta está basada en él.  Claro que, es una herramienta para utilizar en un mundo tridimensional.)

El tensor métrico de Riemann, o N dimensiones, fue mucho más allá y podemos decir que es el teorema para dimensiones más altas con el que podemos describir fenómenos espaciales que no son planos, tales como un remolino causado en el agua o en la atmósfera, como por ejemplo también la curvatura del espacio en presencia de grandes masas.  Precisamente, el tensor de Riemann, permitió a Einstein formular su teoría de la gravedad y, posteriormente lo utilizo Kaluza y Klein para su teoría en la quinta dimensión de la que años más tarde se derivaron las teorías de super-gravedad, supersimetría y, finalmente las supercuerdas.

 

 

Para asombro de Einstein, cuando tuvo ante sus ojos la conferencia de Riemann de 1.854, que le había enviado su amigo Marcel Grossman, rápidamente se dio cuenta de que allí estaba la clave para resolver su problema.  Descubrió que podía incorporar todo el cuerpo del trabajo de Riemann en la reformulación de su principio.  Casi línea por línea, el gran trabajo de Riemann encontraba su verdadero lugar en el principio de Einstein de a relatividad general.  Esta fue la obra más soberbia de Einstein, incluso más que su celebrada ecuación E=mc2.  La reinterpretación física de la famosa conferencia de Riemann se denomina ahora relatividad general, y las ecuaciones de campo de Einstein se sitúan entre las ideas más profundas de la historia de la ciencia.

Emilio Silvera V.

El Universo es dinámico y, ¡misterioso!

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo dinámico    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Big Bang GIFs | Tenor

 

“El poeta romano Lucrecio expresó en su primer libro De Rerum Natura que “ninguna cosa nace de la nada ; no puede hacerlo la divina esencia.” Y, siendo así (que lo es, tenemos que pensar que el surgió surgió con una fluctuación del vacío que estaba lleno a rebosar.

En no pocas ocasiones uno se ha parado a pensar en cómo pudo surgir el Universo a partir de la “nada”. Si surgió es porque había. Y, desde luego, todo está directamente relacionado con eso que se conoce por fluctuaciones, esas desviaciones aleatorias en el valor de las cosas sobre su valor medio. No hay que perder de vista los sistemas descritos por la mecánica cuántica, en ellos están bien definidas esas fluctuaciones que, en esa infinitesimal región se llaman “fluctuaciones cuánticas” y, tienen mucho que ver con el Principio de Incertidumbre de Heisenberg.

 

Relación de indeterminación de Heisenberg - Wikipedia, la enciclopedia libreLa Mecánica Cuántica: El principio de incertidumbre II

En Cualquier sistema por encima del cero absoluto se pueden presentar dichas fluctuaciones. Es necesario que tengamos en cuenta dichas fluctuaciones para poder obtener una teoría cuantitativa de de las “transiciones de fase” en tres dimensiones. Incluso se puede llegar a pensar que las “fluctuaciones cuánticas” pudieron ser las responsables de la formación de las estructuras en el universo primitivo que pudo surgir de una “Fluctuación del Vacío” que rasgando el espacio tiempo en otro lugar, produjo la opción de crear nuestro universo, o, incluso, múltiples universos conectados al principio y separados más tarde para hacerse unidades independientes de universos.

 

El Vacío de Boötes”: El hoyo más misterioso del Universo

El vacío de Boötes o el Gran Vacío1 es una gigantesca y cuasi-esférica región del  espacio, que contiene muy pocas galaxias. Se encuentra en las cercanías de la constelación de Bot Boötes, de ahí su nombre. Su centro está localizado a 700 millones de años luz de la Tierra.

Lo que vemos arriba marcado dentro de un círculo es lo que se conoce como el Gran Vacío de Boötes, uno de los mayores “vacíos conocidos de nuestro Universo.  El  Tiene unos 250 millones de años luz de diámetro (casi el 0.27% del diámetro del universo visible), o unos 236,000 Mpc en el volumen. Se considera un super-vació y sólo tiene dentro de él a unas sesenta galaxias. Fue descubierto por Robert Kirshner (1981), como parte de un estudio de corrimientos al rojo galácticos. El centro del Vacío Boötes esta a aproximadamente 700 millones de años luz de la Tierra.

En astronomía, el vacío está referido a regiones del espacio con menor contenido de Galaxias que el promedio o ninguna galaxia.  También le solemos llamar vacío cósmico. Han sido detectados vacíos con menos de una décima de la densidad promedio del Universo en escalas de hasta 200 millones de años-luz en exploraciones a gran escala.

 

Un fuerte campo gravitatorio puede producir fuertes fluctuaciones cuánticas del  vacío

       Sabemos que la “Nada” no existe y que, a partir de las “Fluctuaciones de vacío” nace la materia

¡Las fluctuaciones de vacío! que, al igual que las ondas “reales” de energía positiva, están sujetas a las leyes de la dualidad onda/partícula; es decir, tienen tanto aspectos de onda como aspectos de partícula. Las ondas fluctúan de forma aleatoria e impredecible, con energía positiva momentáneamente aquí, energía negativa momentáneamente allí, y energía cero en promedio.  El aspecto de partícula está incorporado en el concepto de partículas virtuales, es decir, partículas que pueden nacer en pares (dos partículas a un tiempo), viviendo momentáneamente de la energía fluctuacional tomada prestada de regiones “vecinas del espacio”, y que luego se aniquilan y desaparecen, devolviendo la energía a esas regiones vecinas. Si hablamos de fluctuaciones electromagnéticas del vacío las partículas virtuales son fotones virtuales; en el caso de fluctuaciones de la Gravedad en el vacío, son gravitones virtuales.

 

 

Ni con los ojos abiertos como platos hemos podido “ver” lo que “hay” en esas “regiones vecinas” a nuestro mundo y que llamamos vacío en el que se producen fluctuaciones que hace surgir “cosas” que, de inmediato, desaparecen.  Insistimos en querer verlas para saber y no dejamos de preguntarnos… ¿Qué es lo que hay allí? ¿Vivirá en esa región la tan buscada partícula de Higgs, la “materia oscura” o las cuerdas? ¿Qué es lo que allí puede haber? En realidad sabemos que las fluctuaciones de vacío son, para las ondas electromagnéticas y gravitatorias, lo que “los movimientos de degeneración claustrofóbicos” son para los electrones.

 

La velocidad de la Luz, ¿Será siempre un muro infranqueable? : Blog de  Emilio Silvera V.

Viaja a la velocidad de la luz, y, es inalcanzable

Si confinamos un electrón a una pequeña región del espacio, entonces, por mucho que un trate de frenarlo y detenerlo, el electrón está obligado por las leyes de la mecánica cuántica a continuar moviéndose aleatoriamente, de forma impredecible.  Este movimiento de degeneración claustrofóbico que produce la presión mediante la que una estrella enana blanca se mantiene contra su propia compresión gravitatoria o, en el mismo caso, la degeneración de los neutrones, mantiene estable a la estrella de neutrones que, obligada por la fuerza que se genera de la degeneración de los neutrones, es posible frenar la enorme fuerza de gravedad que está comprimiendo a la estrella.

 

Gif Animados Abstractos Para BBM | BlackBerry, Android e iOS

 

 

De la misma forma, si tratamos de eliminar todas las oscilaciones electromagnéticas o gravitatorias de alguna región del espacio, nunca tendremos éxito.  Las leyes de la mecánica cuántica insisten en que siempre quedarán algunas oscilaciones aleatorias impredecibles, es decir, algunas ondas electromagnéticas y gravitatorias aleatorias e impredecibles. Estas fluctuaciones del vacío no pueden ser frenadas eliminando su energía (aunque algunos estiman que, en promedio, no contienen energía en absoluto).

Claro que, aún nadie ha podido medir de ninguna manera la cantidad real de energía que se escapa de ese supuesto “vacío”, como tampoco se ha medido la cantidad de fuerza gravitatoria que puede salir de ese mismo espacio “vacío”. Si la energía es masa y si la masa produce gravedad, entonces ¿Qué es lo que hay en ese mal llamado “espacio vacío”?

 

 

Podemos imaginar que el vacío es un depósito de energía: las partículas virtuales surgen del vacío, tomando prestada temporalmente parte de su energía. En física, lo normal es sorprenderse y leer cosas como esta:

“Así, como entramos en una nueva era para comprender el tiempo, también hemos entrado a una nueva era de comprender el espacio.  Se ha descubierto que lo que llamamos espacio vacío, el vacío, en realidad está repleto de inmensa energía potencial.  La conclusión ordinaria de considerar el espacio como la nada, el lugar donde se sitúa la materia, evidentemente se ha convertido en nuestro espacio.  Pero el vacío tiene más energía que la materia que está en ese vacío y de hecho, la materia y el vacío son una misma cosa, hay una continuidad.  Se ha descubierto que hay más energía en un centímetro cúbico de vacío que en todo el Universo manifiesto.”
La física moderna sugiere que el tiempo no avanza, es sólo una ilusión

Lo cierto es que estamos en un momento crucial de la Física, las matemáticas y la cosmología, y debemos, para poder continuar avanzando, tomar conceptos nuevos que, a partir de los que ahora manejamos, nos permitan traspasar los muros que nos están cerrando el paso para llegar a las supercuerdas, a la posible  “materia oscura” o a una “teoría cuántica de la gravedad” que, también está implícita en la teoría M.

 

El estado actual de la teoría M - La Ciencia de la Mula Francis

 

Claro que esto estuvo bien pero… Habrá que buscar cosas nuevas que nos lleven más allá. Llevamos más de cien años utilizando las mismas herramientas (el cuanto de Planck y la relatividad de Einstein), sería la hora de que alguien iluminado tenga esa idea que nos haga dar ese gran paso hacia la física del futuro.

 

Las 10 nuevas tecnologías que cambiarán el mundo

    Las nuevas tecnologías cambiaran el futuro

Estamos anclados, necesitamos nuevas y audaces ideas que puedan romper las cadenas “virtuales” que atan nuestras mentes a ideas del pasado que, como la relatividad y la mecánica cuántica llevan cien años predominando sobre la física. ¿No es tiempo ya de andar otros caminos que nos lleven más lejos, que nos enseñen otros horizontes? ¿Dónde están las ideas? ¿Dónde nuestra imaginación?

 

El Kybalion (en Catalá)El Kybalion

Como nos dicen en este anuncio del Kybalion, nada es estático en el Universo y, todo está en continuo movimiento o vibración. Habréis oído hablar de la energía de punto cero que permanece en una sustancia en el cero absoluto (cero K). Está de acuerdo con la teoría cuántica, según la cual, una partícula oscilando con un movimiento armónico simple no tiene estado estacionario de energía cinética nula. Es más, el Principio de Incertidumbre no permite que esta partícula esté en reposo en el punto central exacto de sus oscilaciones. Del vacío surgen sin cesar partículas virtuales que desaparecen en fracciones de segundo, y, ya conocéis, por ejemplo, el Efecto Casimir en el que dos placas pueden producir energía negativa surgidas del vacío.

 

El Efecto Casimir y algunos misterios por desvelar : Blog de Emilio Silvera  V.

                    Efecto Casimir

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío; esas oscilaciones aleatorias, impredecibles e in-eliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.

 

El sonido sí se transmite en el vacío

 

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas. En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor infinita. En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2 – 10-7 pascales. Por debajo de 10-7 pascales se conoce como un vacío ultra-alto. Tenemos que llegar a la conclusión de que el “vacío” y la “nada” no existen realmente. ¡Siempre hay!

“La raíz etimológica de «nada»: res nata, es contradictoria del significado actual, pues significa cosa nacida. Quizás este -para muchos- insospechado y contundente hecho justifique las tal vez permanentes e irreconciliables concepciones antagónicas, y la reificación no incurra ya en falacia.

 

Por qué surge la filosofía precisamente en Grecia? | Heródoto & Cía

 

En contraste, en la filosofía griega la idea de la nada surgió con los problemas de la negación del ser, de la conservación del ser y de la imposibilidad de afirmar la nada. En particular, Parménides creyó que del «no ser» (la nada) no se puede hablar. Epicuro y Lucrecio aseveraron que la materia no se puede crear de la nada, ni destruir a nada”. Hasta los antiguos sospechaban esa verdad.

 

             Fuí a una charla de Álvaro Rújula del CERN y, entre otras cosas decía:

“Saquemos los muebles de la habitación, apaguemos las luces y vayámonos. Sellemos el recinto, enfriemos las paredes al cero absoluto y extraigamos hasta la última molécula de aire, de modo que dentro no quede nada. ¿Nada? No, estrictamente hablando lo que hemos preparado es un volumen lleno de vacío. Y digo lleno con propiedad. Quizás el segundo más sorprendente descubrimiento de la física es que el vacío, aparentemente, no es la nada, sino una substancia. Aunque no como las otras…”

 

 

 

El hombre lleva toda la razón y es cierto que en física, la “nada” no existe y es simplemente una abstracción, un concepto, una manera de hablar para entendernos en ciertos aspectos de la conversación. Como antes he dicho por ahí arriba, existe ese algo que surge del “espacio vacío” y que conocemos como partículas virtuales, las que constantemente se crean y se destruyen y aunque no son observables de manera directa, los efectos que dichas partículas generan si que lo son. En ese sentido la física curiosamente se alinea con la etimología de la palabra nada. Todo esto, ese fenómeno que no hemos llegado a comprender nos lleva a sospechar que, ahí reside un a “identidad secreta” que nos pone delante de “la nada y el nacer”, es decir, nos pone delante del plano que nos dice que… !la nada puede ser el nacimiento! Lo que hace posible el propio proceso de nacer, o, dicho de otra manera, la “nada” podría ser la perenne potencia de ser.

 

En su forma más básica, el P. de I. establece que no se puede simultáneamente determinar la posición y el momento de una partícula, con una precisión arbitrariamente alta. Otra forma de establecerlo es, que no se puede determinar simultáneamente la energía y el tiempo de una partícula.

Principio de incertidumbre

Así, podemos llegar a la conclusión de que debido a la extraña mecánica cuántica, “la nada” se puede transformar en “algo” de manera constante. El Principio de Incertidumbre de Heisenberg señala que un sistema nunca puede tener exactamente cero energía y como la energía es masa -la relatividad especial nos demostró que son dos caras de una misma moneda-, podríamos llegar a entender el por qué, pares de partículas se pueden formar espontáneamente siempre y cuando se aniquilen rápidamente para restablecer el equilibrio.

En mecánica cuántica, la Incertidumbre nos dice que hay una compensación entre energía y tiempo: Cuanta menor energía tiene un sistema, más tiempo podrá mantenerse. Lo mismo les pasa a las estrellas supermasivas que duran mucho menos que estrellas más pequeñas que consumen menos materia de fusión nuclear. Si pensamos en todo eso, incluso podríamos llegar a la conclusión final de que, el Universo, que tiene 13.700 millones de años, ha tenido el tiempo necesario para poder formar, a partir del “vacío cuántico” estrellas y galaxias llenas de mundos y de formas de vida complejas, gracias a que, su energía en conjunto, debe ser -teniendo en cuenta su extensión- demasiado baja, o, lo necesariamente baja para que eso sea posible.

 

Los secretos de la naturaleza : maravilloso mundoCuando la cultura se esconde en la naturaleza

                 Muchas son las cosas que no sabemos ver

Claro que, a pesar de todo lo que más arriba he dicho, debemos llegar a la conclusión de que “no sabemos”, y, el hecho cierto de que, hayamos sido capaces de desvelar “algunos” secretos de la Naturaleza, no debe ser suficiente para que se nos suban esos “pequeños” triunfos a la cabeza. Newton nos descubrió que la luz del Sol o luz blanca, era el producto de la mezcla de todos los componentes coloreados, hizo pasar un rayo de luz por un prisma y, la habitación donde hacía el experimento, sus paredes, se llenaron de luciérnagas luminosas de muchos colores, el arco iris estaba allí, del rojo al violeta, descompuestos en mariposas luminosas.

File:Generaciones delamateria.png

 

Planck nos habló del cuanto de energía, h. Einstein nos dijo que la energía y la masa eran la misma cosa y que la luz marcaba el límite al que podemos enviar la información en nuestro universo. Otros descubrieron de qué estaba formada la materia y cómo se transmitían las fuerzas fundamentales del nuestro Universo. Pudimos descubrir la existencia de unas constantes universales que hacían posible un Universo como el que nos acoge. Muchos otros secretos fueron desvelados y “arrancados” de la “gruta de los tesoros” que la Naturaleza esconde.

 

La región de formación estelar S106

Todo eso es cierto, y, nuestro cerebro, una obra de la Naturaleza que lo hizo surgir a partir de la materia “inerte”, que ha podido evolucionar para desvelar todos esos secretos y, sin embargo, no debemos confundir -para nuestro propio bien-, que unos pocos conocimientos son los conocimientos. Como decía el sabio:

cuanto más profundizo en el saber de las cosas, más consciente soy de lo poco que sé. Mis conocimientos son limitados pero, mi ignorancia, es infinita“.

 

“La ciencia no es otra cosa que la empresa de descubrir la unidad en la variedad  desaforada de la naturaleza, o más exactamente, en la variedad de nuestra experiencia que está limitada por nuestra ignorancia.”

 

Ciencia y naturaleza

 

Yo creo que la Ciencia es un proceso de ir descubriendo a cada paso un orden nuevo que nos lleve a unir lo que parecía desunido. Todo en el Universo tiene una relación y, lo que pasa “aquí”, de alguna manera, influye en lo que pasará “allí”. Todo parece estar conectado por hilos invisibles de la Gravedad y el electromagnetismo que tienen alcance infinito y están presentes en todas partes, también en nosotros influyen esas y las otras fuerzas fundamentales del Universo para que seamos como somos y no de otra manera.

Emilio SilveraV.

La Complejidad de la Vida

Autor por Emilio Silvera    ~    Archivo Clasificado en La complejidad de la Vida    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 «

 

 

Nuestros cuerpos contienen algunos miles de millones de unos bichitos llamados mitocondrias, que invadieron a los antepasados de nuestras células hace ahora alrededor de mil millones de años. Las mitocondrias están acostumbradas a vivir dentro de nosotros, y nosotros nos hemos acostumbrado de tal manera a tenerlas por todas partes, que ahora no podemos vivir separados. Ellas forman parte de nosotros y nosotros formamos parte de ellas. Producen casi toda nuestra energía y nosotros nos encargamos de alimentarlas y cobijarlas.

 

En otros trabajos lo hemos comentado aquí ampliamente, nuestras mitocondrias tienen su propio ADN, heredado sólo de nuestras madres, por lo que este ADN podría proceder  de una única mujer que estaría en el origen de los seres humanos actuales: una Eva mitocondrial.

La bioenergética, las mitocondrias y la fosforilación oxidativaCRECES

Mitocondria observada bajo el microscopio electrónico

Pero estos huéspedes celulares que parecen vivir pacíficamente en simbiosis con el resto de las células, pueden ser también un enemigo que mata silenciosamente desde dentro. Siempre que una célula muere, hay una serie de pistas que nos conducen hasta las mitocondrias y que nos muestran cómo están implicadas en enfermedades devastadoras e incapacidades físicas o mentales, así como en el propio proceso de envejecimiento. El invitado indispensable se puede convertir en un asesino de monstruosas proporciones.

Casi todas las células de nuestro cuerpo contienen mitocondrias -alrededor de mil en cada célula- El “mitocondrión” es una bestia incansable que no cesa de adoptar formas distintas. Si se captara su aspecto en una única foto instantánea poco favorecedora, se vería algo parecido a un gusano, pero un gusano que se retuerce, se divide en dos y se fusiona con otros gusanos. Así pues, en ocasiones podemos captar un mitocondrión que parece un zepelín, y otras veces algo parecido a un animal con múltiples cabezas o colas.

 

micro_empire-1

         Dentro de nuestros cuerpos conviven “seres” que, de poderlos contemplar, nos asombrarían.

El mitocondrión es un monstruo antiguo y maternal -un dragón con un apetito monstruoso, que se come a su vez todo lo que nosotros nos hemos comido y lo respira a continuación en forma de fuego.Las mitocondrias consumen practicamente todo el alimento y el oxígeno que se produce en el cuerpo, y producen la mayor parte del calor que este genera. Sin embargo, este monstruo es diminuto -su tamaño es de una micra, es decir, una milésima de milímetro: mil millones de mitocondrias cabrían en el interior de un grano de arena. Menos mal que no están a la vista y lo que por fuera podemos ver de nuestros cuerpos, no resulta tan desagradable. Como consecuencia de ello…

 

Que Existe en el Interior de tu Mente? - Psicólogo Kevin López

 

    No siempre la realidad es lo que vemos. El interior de las cosas es muy importante para poder emitir un juicio sobre cualquier cosa inanimada o viva que pretendamos calificar en función de sus valores físicos o mentales.

Las mitocondrias tienen su propio ADN y la principal función de las mitocondrias es generar energía para mantener la actividad celular mediante procesos de respiración aerobia. Los nutrientes se escinden en el citoplasma celular para formar ácido pirúvico que penetra en la mitocondria. En una serie de reacciones, parte de las cuales siguen el llamado ciclo de Krebs o del ácido cítrico, el ácido pirúvico reacciona con agua para producir dióxido de carbono y diez átomos de hidrógeno. Estos átomos de hidrógeno se transportan hasta las crestas de la membrana interior a lo largo de una cadena de moléculas especiales llamadas coenzimas. Una vez allí, las coenzimas donan los hidrógenos a una serie de proteínas enlazadas a la membrana que forman lo que se llama una cadena de transporte de electrones.

La cadena de transporte de electrones separa los electrones y los protones de cada uno de los diez átomos de hidrógeno. Los diez electrones se envían a lo largo de la cadena y acaban por combinarse con oxígeno y los protones para formar agua.

Fases de la cadena de transporte de electrones - Labster

Fases de la cadena de transporte de electrones

 

Transporte de electrones | CK-12 FoundationLa cadena de transporte de electrones y fosforilación oxidativa

  Cadena de Transporte de electrones y la ATP sintasa

La energía se libera a medida que los electrones pasan desde las coenzimas a los átomos de oxígeno y se almacena en compuestos de la cedena de transporte de electrones. A medida que estos pasan de uno a otro, los componentes de la cadena bombean aleatoriamente protones desde la matriz hacia el espacio comprendido entre las membranas interna y externa. Los protones sólo pueden volver a la matriz por una vía compleja de proteínas integradas en la membrana interior. Este complejo de proteínas de membrana permite a los protones volver a la matriz solo si se añade un grupo de fosfato al compuesto difosfato de adenosina (ADP) para formar ATP en el proceso llamado fosforilación.

 

ATP sintasa - LabsterIlustración de Los Componentes De La Atp Sintasa Un Motor Rotativo y más  Vectores Libres de Derechos de Trifosfato de adenosina - iStock

                                                        Estructura de la ATP sintasa

El complejo ATP sintasa es una enzima situada en la cara interna de la membrana interna de las mitocondrias y de la membrana de los tilacoides de los cloroplastos encargada de sintetizar ATP a partir de ADP y un grupo fosfato y la energía suministrada por un chorro de protones (H+). Responde a la síntesis de ATP según la hipótesis quimiosmótica de Mitchell. La síntesis de ATP gracias a este enzima se denomina fosforilación oxidativa del ADP.

Esta enzima está compuesta de dos subunidades. Una anclada a la mitocondria o al tilacoide llamada F0 (CF0 en caso de los tilacoides) y otra que sobresale por la cara interna de la estructura llamada F1 (CF1 en caso de los tilacoides).
ATP sintase - Wikipedia, a enciclopedia libre

  ATP syntasens mekanisme. ATP en rojo, ADP y fosfato en rosado y la propiedad γ rodando en negro

El ATP se libera en el citoplasma de la célula, que lo utiliza prácticamente en todas las reacciones que necesitan energía. Se convierte en ADP, que la célula devuelve a la mitocondria para volver a fosforilarlo.

Nadie cae en la cuenta de que, en parte, todos nosotros somos mitocondrias; ellas constituyen aproximadamente un décimo del volumen de todas nuestras células juntas, un décimo de cada uno de nosotros. Dado que son prácticamente la única parte de la célula que tiene color, las mitocondrias constituyen prácticamente el color de nuestras células y nuestros tejidos.

 

Melanina ¿Por qué unas personas se ponen más morenas que otras?Capas de la piel y melanina - Mayo ClinicA sensibilidade dos melanócitos e as discromias

 

La melanina de nuestra piel y la sensibilidad de los melanocitos y las discromias

Sino fuera por la melanina de nuestra piel , la mioglobina de nuestros músculos  y la hemoglobina de nuestra sangre, seríamos del color de las mitocondrias, es decir, rojo amarronado. Además, si esto fuera así, cambiaríamos de color cuando hiciéramos ejercicio o corriéramos hasta perder el aliento, de tal forma que podríamos decir si alguien está utilizando mucha o poca energía simplemente con mirar su color.

Pero no todo es perfecto y, las mitocondrias tienen fugas que se traduce en un defecto espectacular en el diseño de nuestras mitocondrias: La electricidad de electrones se esacapa de las mitocondrias para producir radicales libres no tóxicos, y la electricidad de protones se escapa produciendo calor: no se trata de figas pequeñas o insignificantes, sino que son grandes y constituyen una gran amenaza para la vida.

Los electrones se escapan de la cadena de transporte ubicada en las mitocondrias para producir “radicales libres” . Quizá la expresión pueda hacernos pensar en algo inocuo, pero en realidad se trata de un grupo suversivo formado por sustancias químicas tóxicas. El primer componente de este grupo es el “superóxido”, que se produce cuando hay una fuga de electrones de la cadena de transporte o de otras máquinas moleculares, y estos electrones van a parar al oxígeno. El superóxido no es ningún superhéroe, ni una marca de detergente para lavadoras, sino el oxígeno con un electrón más. Pero es este electrón suplementario el que causa problemas.

 

 

Radicales libres (medicina), cualquier molécula independiente que contiene uno o más electrones sin aparear. Los electrones sin aparear son aquellos que ocupan una órbita atómica o molecular de forma individual. Se puede considerar a los radicales libres como fragmentos de moléculas; por tanto son muy reactivos, y en consecuencia de vida media muy corta. Los radicales libres orgánicos fueron descubiertos por Gomberg en 1900 y, entonces, se postuló que podían tener alguna función biológica. En 1966, Slater propuso que el efecto tóxico del tetracloruro de carbono sobre las células del hígado se producía por una reacción de radicales libres; formuló la teoría de que los radicales libres son responsables de lesiones en los tejidos.

 

 

Los radicales libres se producen en la mayor parte de las células corporales como subproducto del metabolismo; algunas células producen mayores cantidades con propósitos específicos como por ejemplo, los macrófagos para la fagocitosis (véase Sistema inmunológico). Los radicales libres más importantes de las células aerobias (como las células humanas), son el oxígeno, el superóxido, los radicales de hidroxilo, el peróxido de hidrógeno y los metales de transición. Los radicales libres que se forman dentro de las células pueden oxidar las biomoléculas (moléculas empleadas dentro de las células, en especial los lípidos) y por tanto producir la muerte celular. Sin embargo, existen diferentes mecanismos corporales para proteger a las células de los efectos nocivos de los radicales libres; se trata de enzimas que descomponen los peróxidos y los metales de transición; otros radicales libres son neutralizados por proteínas y otras moléculas.

 

SportFarmaGlobal.comRadicales Libres | MED Medicina Estética

 ¿Qué son los Radicales Libres?  Causas y Consecuencias ✨ [Fácil y  Rápido] | QUÍMICA |

 

Es difícil estudiar los radicales libres puesto que sólo aparecen durante cortos periodos. En general reaccionan de forma rápida con otras moléculas. En los últimos años, se ha admitido que tienen un papel importante en diferentes situaciones médicas. El ADN (véase Ácidos nucleicos) es muy sensible a la oxidación por los radicales libres y éstos podrían jugar un papel importante en las mutaciones que preceden al desarrollo de un cáncer. Esto explicaría que algunos metales de transición como el níquel o el cromo son carcinógenos en ciertas circunstancias. También se ha implicado a los radicales libres en la aterosclerosis, las lesiones hepáticas, las enfermedades pulmonares, las lesiones renales, la diabetes mellitus y el envejecimiento. No siempre es fácil determinar si los radicales libres son la causa de un proceso o la consecuencia de la acción de algún otro agente causal.

 

A. Los radicales libres se producen dentro de la mitocondria.

B. Los radicales libres dañan el ADN celular, especialmente en la mitocondria

Los radicales libres no son más que formas muy reactivas de oxígeno. Cada día se forman billones de ellos dentro de las células, concretamente en unas estructuras que se llaman mitocondrias. Pero, a pesar de que son un producto normal que fabrica el cuerpo como combustible para quemar a fin de conseguir energía, su poder destructivo es enorme.

Pueden provocar arteroesclerosis cuando actúan en las paredes de los vasos sanguíneos. Y si lo hacen en el ADN que está en el núcleo celular, pueden provocar mutaciones que dencadenan el cáncer.

 

Y dañan el ADN mitocondrial diez veces más deprisa que el del núcleo celular. Todo el daño empieza a los 30 años, y se agrava tanto que la célula no puede producir la energía necesaria para vivir.Los radicales libres también atacan a las proteínas, transformándolas en desechos; y destruyen la capa protectora de la célula (la membraba)

Cada vez la sospecha crece en el sentido de que son, estos radicales libres los criminales o complices en una amplia gama de enfermedades: coronarias, cancerosas, inflamatorias y neurodegenerativas. Se les atribuye un record enorme de muerte y destrucción pero, esa es la soscpecha y aún, nos faltan las pruebas definitivas de su implicación.

 

 

Las mitocondrias son antiquísimas. Las células modernas, como las que se encuentran en todo nuestro cuerpo, surgieron hace mil millones de años de la fusión de dos tipos de células: una célula grande y muchas pequeñas. La grande (como siempre pasa) se tragó a las pequeñas o fue invadida por ellas, pero el caso es que las pequeñas acabaron viviendo dentro de la grande. Con el tiempo, las células pequeñas perdieron su independencia, cediendo la mayor parte de su ADN y de su maquinaria molecular, pero ganando un lugar seguro dentro de una célula mucho más grande y protectora. De todos los organismos vivos las mitocondrias son los que más se parecen a las antiguas bacterias, están envueltas en dos delgadas paredes similares a las membranas de las bacterias, y tanto la maquinaria como el ADN son parecidos en ambas. Estas similitudes no son meras coincidenciasd, ya que casi con toda certeza se puede afirmar que las mitocondrias evolucionaron a partir de bacterias que fueron tragadas por células de mayor tamaño.

 

 

Sabemos que la vida en sí m ismo empezó mucho antes de que existieran las mitocondrias, quizás hace unos tres mil quinientos millones de años (así lo dicen fósiles encontrados en rocas de esa edad), cuando los flujos de energía, las moléculas y la información se combinaron para formar la primera célula viva. Desconocemos en qué consistió aquella primera fuente de energía, pero hace unos quinientos millones de años las células habían desarrollado ya una maquinaria que podía recoger la luz de la estrella más cercana a nosotros, el Sol, la fuente última de toda energía que existe en la Tierra.  La luz se utilizaba para descomponer el agua (H2O), produciendo Oxígeno, que era emitido a la atmósfera, y liberando también protones y electrones que, al combinarse con el dióxido de carbono del aire, se utilizaban para formar las complejas moléculas de la vida. Este sencillo pero poderoso proceso de fotosíntesis hacia posible que la vida surgiera y se propagara rápidamente.

La primera contaminación global y los primeros desastres ecológicos tuvieron lugar hace dos mil millones de años, cuando el Oxígeno, ese residuo tóxico de la fotosíntesis, comenzó a concentrarse en la atmósfera terrestre. El Oxígeno, la sustancia fundamental de la vida animal, es una molécula relativamente inestable y tóxica. De hecho, en en sí misma un tipo de radical libre y puede arrebatar electrones a otras moléculas, descomponiéndolas para formar otros radicales libres aún más tóxicos. Es la razón por la que la mantequilla y otros alimentos se vuelven rancios, el hierro se oxida y algunos anumales mueren en una atmósfera de oxígeno puro.

De la relación del Oxigeno y nosotros podríamos hablar muy extensamente pero, nos salimos del tema que os quería comentar y que, a estas alturas está acabando.

 

De qué está hecho realmente el cuerpo humano? - BBC News Mundo

Cómo perciben y cómo se adaptan a la disponibilidad de oxígeno las células de nuestro cuerpo. Existen mecanismos moleculares de respuesta.

El exponer aquí todas las ramificaciones que la presencia de las mitocondrias en nuestros cuerpos implica, tendría que ser por medio de algunos grandes tomos en los que pudieran caber tantas explicaciones pero, una cosa es cierta, a pesar de que las mitocondrias puedan ser las causantes de algunos de nuestros trastornos físicos, también lo es que, son las responsables directas de la energía que necesitamos para vivir. Ellas están presentes en todos los sistemas eléctricos del cuerpo y son las responables de suministrar la energía que necesita nuestro cerebro.

 

Producen casi toda nuestra energía y nosotros nos encargamos de alimentarlas y cobijarlas. Nuestras mitocondrias tienen todavía su propia ADN, heredado sólo de nuestras madres, por lo que este ADN podría proceder de una única mujer que estaría en el origen de los seres humanos actuales: una Eva mitocondrial como al principio se decía.

 

Eva mitocondrial rejuvenecida – NeoTeoLas centrales eléctricas de las células: Las mitocondrias tienen un  mecanismo de eliminación de residuos para deshacerse del ADNmt mutado - Un  equipo de investigación ha identificado una diana molecular que podría

La Eva mitocondrial, de ella adquirimos las mitocondrias

Las mitocondrias son las centrales eléctricas de nuestras células y producen casi toda nuestra energía. No obstante, son unas centrales eléctricas con bastantes fugas de energía, lo cual tiene unas consecuencias terribles.

“Llegué a creer (dice Guy Brown, autor de todas estas ideas e investigaciones) que los productos del diseño biológico (evolutivo) –la vida y todas sus manifestaciones- eran mucho más eficientes y eficaces que algunos productos de la creatividad humana, tales como las máquinas y la cultura. Nos han enseñado que mil millones de años de evolución han perfeccionado el diseño de la célula hasta tal punto que ningún diseñador humano podría mejorarlo, ningún avaro podría economizar más en el uso de energía, ningún técnico de gestión podría mejorar la adjudicación de recursos, ningún ingeniero podría lograr que hubiera menos fallos en el funcionamiento. Está apliamente difundida la creencia de que la cultura humana no debería interferir con la naturaleza, porque la naturaleza está mejor diseñada que la cultura, y esta creencia causa el temor de que los científicos se entrometan en la naturaleza, como sucede en la medicina, la ingeniería genética, la clonación o los pesticidas.”

 

Estructura de un cloroplasto

 

Los cloroplastos son orgánulos aún mayores y se encuentran en las células de plantas y algas, pero no en las de animales y hongos. Su estructura es aún más compleja que la mitocondrial: además de las dos membranas de la envoltura, tienen numerosos sacos internos formados por membrana que encierran el pigmento verde llamado clorofila. Desde el punto de vista de la vida terrestre, los cloroplastos desempeñan una función aún más esencial que la de las mitocondrias: en ellos ocurre la fotosíntesis; esta función consiste en utilizar la energía de la luz solar para activar la síntesis de moléculas de carbono pequeñas y ricas en energía, y va acompañado de liberación de oxígeno. Los cloroplastos producen tanto las moléculas nutritivas como el oxígeno que utilizan las mitocondrias.

 

Cloroplastos: qué son, estructura y función - Resumen y esquema

Sean cuales sean los méritos de esas creencias, lo cierto es que, nuestras células ciertamente no son tan eficientes como creíamos que eran. Un ejemplo sería lo que parece un defecto espectacular en el diseño de nuestras mitocondrias: tienen fugas. La electricidad de electrones se escapan de las mitocondrias para producir radicales libres no tóxicos, y la electricidad de protones se escapan produciendo calor: no se trata de fugas pequeñas o insignificantes, sino que son grandes y constituyen una amenaza para la vida.

Niveles de organización

Lo que no podemos poner en duda es, el hecho cierto de que, nuestro complejo organismo está inmerso en una variedad y en una diversidad rica en parámetros que deben cumplir unos cometidos predeterminados que llevan a un todo simétrico de engranaje perfecto y, cuando algo falla en él, el sistema se reciente y el funcionamiento decae.

 

La celula La célula es una unidad mínima de un organismo capaz de actuar de manera autónoma. Todos los organismos vivos es...

 

La célula se define como la unidad mínima de un organismo capaz de actuar de manera autónoma. Todos los organismos vivos están formados por células, y en general se acepta que ningún organismo es un ser vivo si no consta al menos de una célula. Algunos organismos microscópicos, como bacterias y protozoos, son células únicas, mientras que los animales y plantas están formados por muchos millones de células organizadas en tejidos y órganos. Aunque los virus y los extractos acelulares realizan muchas de las funciones propias de la célula viva, carecen de vida independiente, capacidad de crecimiento y reproducción propios de las células y, por tanto, no se consideran seres vivos.

     La biología estudia las células en función de su constitución molecular y la forma en que cooperan entre sí para constituir organismos muy complejos, como el ser humano. Para poder comprender cómo funciona el cuerpo humano sano, cómo se desarrolla y envejece y qué falla en caso de enfermedad, es imprescindible conocer las células que lo constituyen.

Resultado de imagen de La principal función de las mitocondrias es generar energía para mantener la actividad celular

 La principal función de las mitocondrias es generar energía para mantener la actividad celular mediante procesos de respiración aerobia. Los nutrientes se escinden en el citoplasma celular para formar ácido pirúvico que penetra en la mitocondria. En una serie de reacciones, parte de las cuales siguen el llamado ciclo de Krebs o del ácido cítrico, el ácido pirúvico reacciona con agua para producir dióxido de carbono y diez átomos de hidrógeno. Estos átomos de hidrógeno se transportan hasta las crestas de la membrana interior a lo largo de una cadena de moléculas especiales llamadas coenzimas. Una vez allí, las coenzimas donan los hidrógenos a una serie de proteínas enlazadas a la membrana que forman lo que se llama una cadena de transporte de electrones.

 

 

La cadena de transporte de electrones separa los electrones y los protones de cada uno de los diez átomos de hidrógeno. Los diez electrones se envían a lo largo de la cadena y acaban por combinarse con oxígeno y los protones para formar agua.

No solo nosotros, también todo lo que arriba vemos y, mucho más, es la vida.

Si nos preguntan ¿qué es la vida?, por regla general la respuesta no plantea ningún problema. La vida, solemos contestar, es “materia animada” (ánima, alma, o espíritu vital), es decir, lo que en realidad no comprendíamos acerca de la vida.

Algunos hablaban de “élan vital”, un ímpetu vital, o, como decía Laconte: “tele-finalismo” para designar lo que él consideraba como la capacidad innata de los organismos vivos para actuar con un propósito determinado, en oposición a la segunda ley de la termodinámica.

En la actualidad el vitalismo tiene pocos adeptos, y los ha ido perdiendo a medida que las notables propiedades de los seres vivos se han ido explicando cada vez más en los términos de la Física y la Química.

A su vez, intentos por definir la vida apelan cada día más a estas disciplinas. En 1944, el físico austríaco Erwin Schrödinger, quien gozaba de fama mundial por el desarrollo de la mecánica ondulatoria haciendo una importante aportación con su función de onda (ψ), se planteó la cuestión en un librito titulado What is life?, que en su época tuvo mucha influencia. Destacó con perspicacia dos propiedades que son particularmente características de los seres vivos:

 

 

1) Su capacidad de crear orden a partir del desorden al explotar fuentes externas de energía y alimentarse de lo que él llamaba “entropía negativa”.

2) Su capacidad de transmitir su programa específico de generación en generación, propiedad que Schrödinger, que no sabía nada de DNA, atribuía a un “cristal aperiódico”.

 

                                                ADN
Este tipo de cristal aperiódico se diferencia de los cristales ordinarios (que presentan periodicidad y regularidad en su estructura), en el rol que juegan sus átomos y moléculas individuales que permiten codificar gran cantidad de información y mantenerla estable y duradera.
La vida se las arregla para mantener el orden en los organismos y evitar la extinción (entropía negativa). El orden y la coherencia no solo le permiten a un organismo existir, sino también potenciar su capacidad de adaptación y funcionamiento y reproducirse para que todo siga evolucionando mediante mutaciones periódicas que, por azar, se producen como consecuencia de factores imprevistos.

Son muchas las cosas que aún no hemos llegado a comprender, sin embargo, debemos prestar más atención a la Naturaleza que, con la mayor economía y siempre tratando de tomar el camino más sencillo, nos muestra como es el “mundo”, el Universo y, dentro de él, ¡la vida! que, muchas veces hemos tratado de crear sin ser conscientes de que, su ámbito está en la naturaleza dónde únicamente puede surgir, y, lo que nosotros podamos conseguir al querer imitarla, sólo será una simple simulación artificial que, no sabría yo sí, por muy adelantada y sofisticada que pueda ser, le podríamos llamar ¡Vida!

 

20110814094318--54542971-jex-1134130-de54-1.jpg

Por primera vez, un equipo de científicos ha logrado detectar y documentar todo el ciclo de la erupción de un volcán submarino, el Axial Seamount, a unos 400 kilómetros de la costa de Oregón, que ya había sido pronosticada desde hace cinco años y que, también por vez primera, ha cumplido con las fechas previstas. Se han detectado mecanismos químicos que nos llevan directamente a la evolución de la vida.

No puede haber un intento serio de comprender la vida sin el lenguaje de la química. Ello es más cierto todavía porque la información biológica depende de la Química. Por desgracia, pocos de nosotros estamos familiarizados siquiera con los elementos básicos de la química, a la que algunos nos hemos podido acercar de puntillas para conocerla sólo en la superficie y no tan profundamente como sería deseable para comprender, ya que, la Química, hoy en día, no sólo para la vida, sino que también está presente en las industrias químicas de nuestra civilización tecnológica, en las Nebulosas del espacio interestelar, en las estrellas, en las galaxias y, en el Universo entero. Sin la Química, amigos míos…¡Sería imposible la Vida!

 Si pensamos que a partir de esas células surgidas de la materia “inerte” gracias a una serie de procesos complejos, hemos podido llegar a constituirnos en seres que piensan y son conscientes de SER, no podemos más que maravillarnos de tan increible transformación que se hizo posible en un Universo dinámico que, con unas leyes determinadas permitieron que así pudiera ocurrir.

 

planeta-tierra-pequeno1.jpg

 

Aunque lo parezca, no tiene que ser, necesariamente la Tierra. Otros muchos mundos parecidos pululan por las galaxias del Cosmos y, como la Tierra, existen miles de planetas maravillosos capaces de albergar la vida

Nuestros sueños de visitar mundos remotos, y, en ellos, encontrar otras clases de vida, otras inteligencias, es un sueño largamente acariaciado por nuestras mentes que, se resisten a estar sólas en un vasto Universo que, poseyendo miles de millones de mundos, también debe estar abarrotado de una diversidad de clases de vida que, al igual que ocurre aquí en la Tierra, pudieran (algunas de ellas) estar haciéndose la misma pregunta: ¿Estaremos solos en tan inmenso Universo.?

 No, no creo que estemos solos. La vida, debe ser un principio ineludible del Universo, es decir, un Universo sin vida, ¿para qué? ¡Qué desperdicio de espacio y de mundos! Nadie podrá observar las maravillas que contiene y, precisamente por ello, surgieron los observadores que, como nosotros mismos, tratan de saber. Debe existir una forma ancestral de la que descienden todos los seres vivos conocidos y desconocidos del Universo.

Claro que, dar una respuesta convincente y científica a esta pregunta, nos resulta imposible, sólo podemos confiar en nuestra intuición que nos dice: ¡No estáis solos! ¡Todos somos uno! ¡La esencia de la vida son los pensamientos! ¡La vida surge en todas partes por igual y de la misma manera! ¡Todos somos UNO!

Emilio Silvera V.

Cuando la Naturaleza bosteza… ¡Nosotros a temblar!

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

https://www.youtube.com/shorts/K76fWT2C820?feature=share

Por muy grande que pueda ser la embarcación… ¡Está a merced de las Olas!

Recuerdo que de chaval, mi padre, viejo marinero, me llevó a pescar en un pequeño barquito de vela latina. El Mar se encrespó y… ¡Todavía tengo el susto en el cuerpo.

 

Ese es, el Mundo en el que “vivimos” ( O lo que sea)

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Eres valiente, y, teniendo en cuenta a los personajes que te enfrentas…

Es una pena. Sin embargo, ese es el panorama en el que encontramos. Y, tondo de mí, decía que llegará el momento en el que seremos todos iguales, y, que en ese Tiempo, sentiremos el dolor ajeno como propio.

¡Iluso! Esa gentuza a la que se refiera esta valiente, tratará por todos los medios de que las cosas vayan como ellos tienen planeado.