sábado, 18 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Universo es una Maravilla

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

https://apod.nasa.gov/apod/image/1707/HybridSolarEclipse_Kamenew_1584.jpg

Sin tener que abandonar el planeta Tierra, podemos comprobar que el Universo es una maravilla. Aquí un eclipse parcial tomado desde Kenya, nos presenta el bello escenario que arriba podemos contemplar.

Fuente: Astronomía Pictures Of The Day

NASA Selecciona una Misión Para Estudiar los Agujeros Negros

Autor por Emilio Silvera    ~    Archivo Clasificado en Agujeros negros    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Qué son los agujeros negros y cómo se producen?

Los objetos más extraños del Universo: Horizonte de Sucesos y Singularidad

 

La NASA ha seleccionado una misión científica que permitirá a los astrónomos explorar, por primera vez, los detalles ocultos de los de algunos de los objetos astronómicos más extremos y exóticos, tales como agujeros negros estelares y supermasivos, estrellas de neutrones y púlsares.

 

Resultado de imagen de Púlsares

Los púlsares, son Estrellas de Neutrones girando a gran velocidad

Los objetos tales como los agujeros negros pueden calentar los gases circundantes a más de un millón de grados. La radiación de alta energía de rayos X de este gas puede ser polarizada, vibrando en una dirección particular. La misión Imaging X-ray Polarimetry Explorer (IXPE) transportará tres telescopios espaciales con cámaras capaces de medir la polarización de estos rayos X cósmicos, permitiendo a los científicos responder preguntas fundamentales sobre estos entornos turbulentos y extremos donde los campos gravitatorios, eléctricos y magnéticos están en sus límites.

“No podemos ver directamente lo que está pasando cerca de objetos como agujeros negros y estrellas de neutrones, pero estudiar la polarización de los rayos X emitidos desde sus entornos revela la física de estos enigmáticos objetos”, dijo Paul Hertz, director de división de astrofísica de la Dirección de Misiones Científicas de la NASA en Washington. “La NASA tiene una gran historia de lanzamiento de observatorios en el Programa de Exploración Astrofísica con nuevas y únicas capacidades de observación. IXPE abrirá una nueva ventana en el universo para que los astrónomos puedan mirar a través. Hoy, sólo podemos adivinar lo que vamos a encontrar”.

 

Los problemas del programa de exploración planetaria de la NASA - EurekaLos problemas del programa de exploración planetaria de la NASA - EurekaLas mejores webs para ver las estrellas y el espacio

 

El Programa de Exploración de Astrofísica de la NASA solicitó propuestas para nuevas misiones en Septiembre de 2014. Se presentaron 14 propuestas y se seleccionaron tres conceptos de misión para su revisión adicional por un grupo de expertos y científicos externos. La NASA determinó que la propuesta IXPE proporcionaba el mejor potencial científico y el plan de desarrollo más factible.

 

Agujero-negro-mas-ligero-o-estrella-de-neutrones-mas-pesadaLas estrellas de neutrones podrían estar capturando agujeros negros  primordiales - SKYCR.ORG: NASA, exploración espacial y noticias astronómicas

La NASA ha seleccionado una misión científica que permitirá a los astrónomos explorar, por primera vez, los detalles ocultos de los de algunos de los objetos astronómicos más extremos y exóticos, tales como agujeros negros estelares y supermasivos, estrellas de neutrones y púlsares. Image Credit: NASA

Fuente: NASA

 

Captan el nacimiento de un Agujero Negro

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo asombroso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

CIENCIA-El Español

Observan desde el Teide el ‘parto’ más nítido que nunca de un agujero negro

 

Recreación de una explosión de rayos gamma, fruto del colapso de una estrella masiva que dispara chorros de partículas y crea un agujero negro. NASA

 

Recreación de una explosión de rayos gamma, fruto del colapso de una estrella masiva que dispara chorros de partículas y crea un agujero negro. NASA

 

El Instituto de Astrofísca de Canarias (IAC) acaba de hacer público un hallazgo científico de carácter mundial logrado con un pequeño telescopio robótico de 40 centímetros de la Universidad de Moscú, instalado en el Observatorio del Teide, que revoluciona toda la información de la que se disponía hasta ahora sobre las circunstancias en las que se produce un agujero negro. Un satélite de la NASA lanzó la alerta de que una superestrella estaba colapsando el Universo, dando lugar a un agujero negro.

Resultado de imagen de Telescopios terrestres de Canarias

La investigación, encabezada por la Universidad de Maryland (EEUU), detectó esa emisión a través del uso de telescopios espaciales y terrestres y esos datos les permitió describir con gran precisión uno de los fenómenos astrofísicos más esquivos. El equipo de expertos, que ha bautizado esta emisión de rayos gamma como “GRB160625B”, obtuvo detalles clave sobre su fase inicial “rápida” de ráfagas, así como de la evolución de los grandes chorros de materia y energía que generan esas primeras explosiones.

“Las ráfagas de rayos gamma son eventos catastróficos, vinculados a las explosiones de estrellas enormes, cincuenta veces más grandes que nuestro sol”, explica en un comunicado Eleonora Troja, del departamento de astronomía de la UMD. Si se elaborase una lista de las explosiones más poderosas ocurridas en el Universo, indica la experta, las de rayos gamma se situarían “justo por detrás del Big Bang”.

 

Observatorio del Teide

El telescopio robótico del Teide MASTER-IAC fue el primero de mundo que captó la alerta y apuntó hacia el lugar del parto, teniendo la oportunidad providencial de vivir en el primer instancia, es decir, en los primeros segundos, qué ocurre cuando tal fenómeno se origina. Así pudo comprobar por primera vez que cuando la estrella colapsa y el agujero negro está en fase embrionaria se desata un fuerte chorro de material y energía, equivalente a toda la energía que libera el sol a lo largo de toda su existencia. Lo que es más importante del descubrimiento del telescopio del IAC es que pudo presenciar que en ese primer instante se origina un campo magnético, extremo desconocido hasta ahora, que condiciona la polarización de la luz. “El descubrimiento nos llena de orgullo, pero sobre todo es una gran aportación a la ciencia”, declaró a DIARIO DE AVISOS el director de IAC, Rafael Rebolo. “Nuestro pequeño telescopio robótico ha tenido el honor de captar la alerta y medir por primera vez en la historia la polarización de la energía, y averiguar cómo es el campo magnético en ese momento. Esto no es cualquier cosa, sino un gran avance, porque nos permitirá seleccionar los modelos para posteriores estudios de agujeros negros, pudiendo ir a partir de ahora con más precisión que nunca”.

Inauguran por control remoto dos telescopios robóticos en el Observatorio del Teide

 

Rafael Rebolo, director del IAC. DA

 

El hallazgo del telescopio robótico de la Universidad de Moscú instalado en el Observatorio del Teide en Tenerife constituye toda una sorpresa para los investigadores especializados en agujeros negros. El pequeño instrumento inaugurado hace dos años por el rey Felipe VI consiguió este éxito mundial en junio del año pasado, y ahora ha trascendido en vísperas de su publicación mañana en la prestigiosa revista científica ‘Nature’.

 

Resultado de imagen de El satélite de la NASA Fermi

Un satélite de la NASA, llamado Fermi (en honor de uno de los físicos italianos más relevantes del siglo XX) dio la alerta sobre el nacimiento d un agujero negro. El telescopio tinerfeño fue el primero en detectar esa señal y dirigir su ojo hacia el lugar de los hechos. Pudo observar el chorro de materia y radiación que se produce en ese primer instante. Fue testigo excepcional porque se había producido una primer micro estallido de la superestrella que de inmediato fue seguido por otro estallido que duró más tiempo (medido en apenas segundos).

El robot pudo medir la polarización de la luz (filtrado de las ondas) y determinó que se genera un campo magnético. El chorro de partículas de radiación está muy polarizada ya en ese momento inicial, algo inédito hasta ahora. “Es como un cañón de altísima energía, más propio de la ficción de la Guerra de las Galaxias, pero sí ocurre en la realidad”, bromeó Rafael Rebolo, director del IAC en declaraciones a DIARIO DE AVISOS. Según Rebolo, en otras observaciones hasta ahora se sabía que había una gran explosión de rayos gamma (un estallido super masivo que se dirigió hasta nuestro Sistema Solar), pero esta vez ha sido tan intenso que cabría afirmar que es la primera vez que se ha podido divisar de modo visible.

 

Resultado de imagen de Captada explosión gamma desde el telescopio de canarias

Se trata de una medición de radiación visible. En pocos segundos se desató una liberación de energía tal que equivaldría a la del sol en toda su vida. “Hemos podido ser los primeros y afinar en la medición sobre no de los fenómenos más importantes en el Universo actual”, declaró Rebolo.

“Con telescopios pequeños se puede hacer también ciencia de primera línea”, señaló Rebolo sobre este aparato robótico de pequeñas dimensiones el MASTER-IAC de la Universidad de Moscú, instalado en el Teide y autor del hallazgo. Su especialidad es la búsqueda de fenómenos energéticos del Universo. Esta ha sido una especia de debut milagroso del telescopio según el máximo responsable del IAC. El hallazgo se produjo en junio de 2016 y se conoce ahora en vísperas de su publicación mañana en la revista ‘Nature’.

Todos lo concerniente a los agujeros negros genera una gran expectación en el mundo entero. El físico teórico Stephen Hawking mostró su interés y fascinación por los mismo durante su visita a la sede del IAC y departió sobre el fenómeno con uno de sus máximos expertos, Rafael Rebolo, uno de los directores de la investigación ahora dada a conocer. Hasta ahora se sabía que la energía estaba polarizada en etapas avanzadas de la generación de un agujero negro, “pero se desconocía que también se produjera tan temprana”.

Para Rebolo uno de los aspectos más positivos de este descubrimiento es que la alerta de estallidos de rayos gamma la produjo un satélite de la NASA (Estados Unidos) y el primer telescopio en captarla fue este pequeño instrumento robótico de la Universidad de Moscú instalado en Tenerife. “Entre Estados Unidos y Rusia hemos estado nosotros, el IAC, lo que significa un tanto para Canarias y España y demuestra que en ciencia puede establecerse una colaboración noble sin fronteras. Solo el tiempo dirá”, señaló el alcance de este hallazgo en el historia del IAC, pero ya supone la primera investigación de este año para la ciencia mundial de los agujeros negros.

Noticia de Prensa

 

El “universo” fascinante de lo muy pequeño

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Monografias.com

 
viaje

 

“Representación de la curvatura dada por la ecuación de campo de Einstein sobre el plano de la eclíptica de una estrella esférica: Dicha ecuación relaciona la presencia de materia con la curvatura adquirida por el espacio-tiempo.

{\displaystyle {\text{G}}_{\mu \nu }={8\pi {\text{G}} \over {\text{c}}^{4}}T_{\mu \nu }}

 

{\displaystyle {\text{G}}_{\mu \nu }=R_{\mu \nu }-{1 \over 2}Rg_{\mu \nu }+\Lambda g_{\mu \nu }}

Y otras…

Ecuaciones de campo de Einsteinecuaciones de Einstein o ecuaciones de Einstein-Hilbert (conocidas como EFE, por Einstein field equations) son un conjunto de diez ecuaciones de la teoría de la relatividad general de Albert Einstein que modelan la interacción fundamental de la gravitación como resultado de que el espacio-tiempo está siendo curvado por la materia y la energía.”

 

 

Todo el universo es energía

El Universo siempre sorprendente : Blog de Emilio Silvera V.
Secretos del Universo : Blog de Emilio Silvera V.
El Universo! Que tratamos de conocer : Blog de Emilio Silvera V.
También todo el Universo es misterioso

Átomo de hidrógeno - Wikipedia, la enciclopedia libre

 

Muchas veces hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; tiene una masa de 1/1.836 de la del núcleo más ligero (el del hidrógeno). La importancia del electrón es vital en el . El electrón es una partícula elemental clasificada como leptón. Están presentes en todos los átomos en agrupamientos llamados capas alrededor del núcleo, y, cuando son arrancados del átomos se llaman electrones libres. Su antipartícula predicha por Dirac, es el positrón. Fue descubierto en 1897 por el físico británico Joseph John Thomson. El problema de su estructura (si la hay) aún no ha sido resuelto. El electrón es considerado como una carga puntual, su auto energía es infinita y surgen dificultadades de la ecuación de Lorentz-Dirac. Lo cierto es que el electrón, a pesar de su infinitesimal tamaño, es importantísimo para nosotros, para que el universo sea tal como lo podemos contemplar.

 

 

El núcleo atómico es la parte central de un átomo tiene carga positiva, y concentra más del 99.99% de la masa total del átomo. fuerza es la responsable de mantener unidos a los nucleones (protón y neutrón) que coexisten en el núcleo atómico venciendo a la repulsión electromagnética los protones que poseen carga eléctrica del mismo signo (positiva) y haciendo que los neutrones, que no tienen carga eléctrica, permanezcan unidos entre sí y también a los protones.

Hasta ahí, lo que es el nucleo. Sin embargo, la existencia de los átomos que las moléculas y los cuerpos -grandes y pequeños- que conforman los objetos del universo, es posible gracias a los electrones que, rodean el núcleo atómico y, al tener carga negativa similar a la positiva de los protones, crean la estabilidad necesaria que todo nuestro mundo sea como lo podemos observar.

 

              Los cuantos forman cosas bellas y útiles como el ozono atmosférico

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

 

Según la física clásica, la energía radiada debería ser igual todas las longitudes de onda, y al aumentar la temperatura, la radiación debería ser uniformemente más intensa. Para explicar esto, Planck supuso que cada una de las partículas que constituyen la materia, está oscilando y emitiendo energía en forma de radiación electromagnética; esta energía emitida no tomar un valor cualquiera, sino que debe ser múltiplo entero de un valor mínimo llamado cuanto o paquete de energía.

La energía de un cuanto viene dada por la expresión:
donde:
v (ni) es la frecuencia de la radiación emitida; y h es una constante llamada constante de acción de Planck, cuyo valor es:
La hipótesis de Planck introduce el concepto de discontinuidad en la energía, igual que hay discontinuidad en la materia.

Einstein con su fórmula de la relatividad especial, que describe cómo el tiempo y el espacio no son conceptos absolutos, sino relativos, dependiendo de la velocidad del observador. La ecuación anterior muestra cómo el tiempo se dilata, o se ralentiza, cuanto más o menos rápido se mueva una persona en cualquier dirección. En la otra ecuacuón de la relatividad general, nos describe el Cosmos. Pero sigamos con la radiación y el electromagnetismo.

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º cero). Cuando a 1.000º C un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

 

Lo que Planck propuso fue simplemente que la radiación podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva , el resultado coincidió perfectamente con las observaciones.

 

El efecto fotoeléctrico

 Sabemos que la corriente eléctrica es el movimiento de electrones, siendo éstos portadores de cargas eléctricas negativas. Cuando los electrones se mueven, se origina una corriente eléctrica. La corriente es igual al de cargas en movimiento entre un intérvalo de tiempo.

 

Pin page

Poco tiempo después, en 1905, Einstein formuló teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los de luz deberían verse como una clase de partículas elementales: el fotón. Todas demás clases de partículas llevan asociadas  diferentes ondas oscilantes de campos de fuerza.

 

También en el movimiento de los átomos dentro del núcleo, presente la simetría y la belleza de la Naturaleza.

 

Dualidad onda-corpúsculo de De BroglieTEMA 8. Teoría cuántica | 8.14. Hipótesis de De Broglie | Dualidad  onda-corpúsculo

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

 

Pero los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir , y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la interpretación de Copenhague de la mecánica cuántica que, dicho sea de paso, con la que no todos están de acuerdo.

 

 

leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento musical se debe escuchar una nota durante un cierto intervalo de tiempo y , por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

 

 

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo,  la constante de Planck, h, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma cualquier objeto en cualquier sitio, es decir, debe ser una constante universal, no importa en qué galaxia la podamos medir.

 

La función de onda, su ecuación y su interpretación. Postulados. – Física  cuántica en la red

Función de onda de Schrödinger

Einstein y otros pioneros de la M.C., tales como Edwin Schrödinger…, creían que hay más de lo que se ve

reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisemberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

 

Las cuatro claves fundamentales que necesitas para comprender la física  cuántica

 

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de forma estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un momento dado.

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.

 

Gedankenexperiment: Einfacher Versuch verblüfft sofort - Futurezone

               Que salgan los números que deseamos… ¡Es muy incierto!

 

Gedankenexperimente - scinexx.de

 

Albert Einstein, Nathan Rosen y Boris Podolski idearon un “Gedankenexperiment”, un experimento hipotético, realizado sobre el papel, el cual la mecánica cuántica predecía como resultado algo que es imposible de reproducir en ninguna teoría razonable de variables ocultas. Más tarde, el físico irlandés John Stewar Bell consiguió convertir este resultado en un teorema matemático; el teorema de imposibilidad.

Emilio Silvera V.

Vacío, La Nada, Eternidad, Infinito… ¡No existen!

Autor por Emilio Silvera    ~    Archivo Clasificado en ¡Cosas del Universo!    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

materia oscura” ¿Estará ahí en realidad?
IAC Investiga - Estrellas y Medio Interestelar - YouTube

                                  EXPLORANDO LA PSICOLOGÍA TRANSPERSONAL: MÁS ALLA DE LA MENTE | Desde tu ser

 

Hay cosas que no podemos explicar y una de ellas es “el mundo” transpersonal de la Conciencia Humana en el que destaca algo de increíble aceptación como, por ejemplo, la capacidad de conexión de la mente humana. Han existidos tribus nativas que parece que eran capaces de comunicarse sin necesidad verse ni oírse. Así lo demuestran las vestimentas, edificaciones y los distintos aparatos y herramientas que utilizaban distintas tribus separadas por miles de kilómetros y que, en su rudimentario mundo, no tenían la posibilidad de comunicarse y menos de verse, incluso algunas, pudieron vivir no ya en lugares distintos y alejados, sino que lo hicieron en distintos momento del tiempo. Y, sin embargo, según todos los indicios, tribus enteras pudieron compartir, de alguna manera, información.

 

En Laboratorios de nuestros días, se ha demostrado que existen personas que muestran una capacidad para la transferencia espontánea de imágenes e impresiones, y, en especial, cuando tienen una estrecha relación afectiva y emocional con la otra persona.

De manera inexplicable, algunas imágenes, ideas y símbolos universales arquetipos, aparecen y reaparecen en la cultura de todas las civilizaciones, tanto modernas como antiguas, sin que los componentes de esas civilizaciones hayan tenido contacto alguno.

No sabemos hasta donde puede llegar el poder de nuestras mentes que, de alguna manera, está conectada con el Universo del que formamos parte y, esos hilos invisibles que nos mantiene a todos unidos…algo tendrán que ver en todos estos fenómenos ciertos y comprobados.

 

Resultado de imagen de 3 Mapa de piri reis DATA:1513 Descubrimiento:1929

3 Mapa de piri reis DATA:1513 Descubrimiento:1929. Parece un mapa imposible para la época

 

“Al verlo sabrás que es uno de esos mapas de América más antiguo pero lo raro es que el mapa fue hecho en 1513 ya sabemos que el descubrimiento de América fue en 1492 pero si se fijan en el mapa verán las islas Malvinas están en el mapa y estas fueron descubiertas en 1592 también los andes están representados a pesar de que todavía no se conocían igualmente en la parte de abajo hay una yama y a ese animal no se le reconoció hasta 1598 se ve también las costas del ártico y estas fueron descubiertas 800 años después.”

 

A- Einstein1915. El universo relativista de Einstein | Ciencia | elmundo.es1915. El universo relativista de Einstein | Ciencia | elmundo.es

         Más de cien años del universo relativista de Einstein

instein creía que el universo era estático, de modo que introdujo en sus ecuaciones de la relatividad general un término de expansión, llamado constante cosmológica, cuyo efecto era compensar la acción de la gravitación debida a toda la masa del universo.

Einstein creía que el universo era estático, de modo que introdujo en sus ecuaciones de la relatividad general un término de expansión, llamado constante cosmológica, cuyo efecto era compensar la acción de la gravitación debida a toda la masa del universo.

Cada día la Humanidad logra dar un paso más hacia terrenos antes desconocidos y hacia descubrimientos que, hasta hace relativamente poco tiempo eran impensables que se pudieran alcanzar. Los descubrimientos actuales de los mayores logros alcanzados por la Conciencia humana nos vienen a recordar aquel pronunciamiento de Einstein:

 

                       Resultado de imagen de “Un ser humano, es simplemente parte de un todo que llamamos Universo”.El Universo y la Vida… ¡Nuestra imaginación! : Blog de Emilio Silvera V.

“Un ser humano, es simplemente parte de un todo que llamamos Universo”.

Sí, por separado podemos ser una parte limitada en el espacio y en el Tiempo pero, unidos todos y enlazados como una cadena que recoge todos y cada una de las consciencias que aquí estuvieron presente a lo largo de los milenios…, podría ser posible pensar en una cierta conexión real con el pasado y que de alguna manera, tuviéramos una conexión mental con aquellos ancestros que nos dejaron sus conocimientos y experiencias que, de alguna manera, conservamos.

 

 Los faros de piedra de Grecia - Panorama Griego

 

 De los pueblos antiguos es mucho lo que tenemos que aprender: Los jardines colgantes de Babilonia, el Faro de Alejandría, aquellas primeras ciudades de Sumeria, la Agricultura, la Alfarería, o, incluso el origen del lenguaje y de las matemáticas.

Sí, mucho hemos hablado aquí de la  maravilla que el cerebro humano es, de la inmensa complejidad que está presente en en él, de lo mucho que sensorialmente podemos esperar de un objeto que tiene tantas neuronas como estrellas tiene nuestra Galaxia y, nos extraña y fascina que una estructura así, haya podido surgir a partir de la “materia inerte” que, posiblemente, no sea tan inerte como nuestra ignorancia nos lleva a pensar.

Sí, es cierto que hemos podido llegar hasta adquirir una cierta comprensión que, de ninguna manera, lo puede explicar todo. Sin embargo, si repasamos todos los enigmas (los innumerables enigmas) que en la Ciencia podemos encontrar, nos podamos percatar que, en el fondo de los mismos subyacen las respuestas que buscamos y que, nuestras mentes, son las herramientas fundamentales para lograrlo.

 

http://1.bp.blogspot.com/_Yvyh4LizYOM/TFaVbzVdPLI/AAAAAAAAAo0/PV0m-osYqSU/s1600/nebulosa_del_cangrejo.jpg

 

Por que, ¿Tiene memoria el Universo? El Universo tiene y conserva (como ocurre en la Tierra), las reliquias de su pasado. A lo largo y a la ancho del Cosmos podemos encontrar muestras de objetos que nos cuentan lo que antes pasó en el Universo. Una supernova es el momento de la explosión de una estrella masiva, debido a que la presión para mantener todos los átomos nucleares es insostenible. “La simetría es la armonía de posición de las partes o puntos similares unos respecto de otros, y con referencia a un punto, línea o plano determinado. Una estrella tiene forma esférica, por lo tanto se espera que si la explosión es en todas las direcciones, su remanente también presente la misma apariencia simétrica. Sin embargo los remanentes de las supernovas no son simétricos. Una posible causa de asimetría en remanentes de supernovas consiste en la variación de masas de los elementos de la estrella. Todo eso, lo podemos saber al leer en la memoria del Universo que nos dejó bien grabado (en este caso) en la Nebulosa del Cangrejo, lo que pasó.

 

La física cuántica y el largo camino para entenderla | OpenMindQué es el entrelazamiento cuántico? Revisa el Nobel de Física 2022 - PONTIFICIA UNIVERSIDAD CATÓLICA DE VALPARÍSO

 

Uno de los fenómenos más sorprendentes de las partículas subatómicas es que estas pueden relacionarse entre ellas a distancia, a través de señales casi instantáneas, más veloces que la luz, sugieren modelos cuánticos ya establecidos. Fuente: Wired.
Uno de los fenómenos más sorprendentes de las partículas subatómicas es que estas pueden relacionarse entre ellas a distancia, a través de señales casi instantáneas, más veloces que la luz, sugieren modelos cuánticos ya establecidos.
Fuente: Wired.
                             Resultado de imagen de Partículas que se relacionan a distancias enorme4s

Si observamos el Universo como un todo, podemos localizar que en él se manifiestan correlaciones bien afinadas que desafían todo lo que nos dicta nuestro sentido común. Unas de esas correlaciones pueden estar situadas en el nivel cuántico, donde, cada partícula que haya ocupado alguna vez el mismo nivel cuántico de otra partícula permanece relacionada con ella, de una misteriosa manera no energética.

 

                                             Resultado de imagen de Biología cuántica y evolución darwiniana

 

Sabemos que, la teoría de la evolución post-darwiniana y la biología cuántica descubren enigmáticas correlaciones similares en el organismo y entre el organismo y su entorno. Todas las correlaciones que salen a la luz en las investigaciones más avanzadas sobre la conciencia vienen a resultar igual de extrañas: tienen la forma de conexiones temporales entre la conciencia de una persona y el cuerpo de otra.iaAl parecer, las redes de conexiones que constituyen un Cosmos Evolutivo Coherente, para el enmarañamiento cuántico, para la conexión instantánea entre organismos y entornos y entre las conciencias entre distintos e incluso distantes seres humanos, tienen una única explicación, que es la misma en todos los casos.

¿Será posible que, además de materia y energía, en el Universo pueda existir algún otro elemento muy sutil, aunque no por eso menos real: información en forma de “in-formación” activa y efectiva que puede conectar todas las cosas presentes en el espacio-tiempo, de manera tal que, exista una especie de memoria en el Universo que, cuando ahondamos en la observación y el estudio, allí se nos aparece y la podemos “ver” tan real como podemos ver.

 

El corazón del universo | Foto Premium

 

Algunos dicen que; “Las interacciones en los dominios de la Naturaleza, así como en los de la Mente, están medidas por un campo fundamental de información en el corazón del Universo”. Así, todo el Universo es un contenedor de información dinámico que evoluciona y acumula más información a medida que el tiempo transcurre y su dinámica “viva” no deja de crear para que nada permanezca y todo se transforme.

 

Nebulosa de Orión - Concepto, descubrimiento y características

 

Arriba contemplamos a la Nebulosa de Orión (cuyo material una vez, formó parte de una estrella masiva) y, se trata de una enorme nube de turbulencia del gas, con una formación de hidrógeno, que es iluminada por brillantes estrellas jóvenes y calientes, incluyendo una estrella llamada Trapezium, que están en vías de desarrollo dentro de la nebulosa. Esa es la dinámica a que antes me refería y que, en el Universo está presente de mil formas distintas.

 

Trapezium. Estrellas. Galilei

Trapezium. Estrellas

Pero claro, el Universo es grande y complejo, muchas son las cosas que de él desconocemos, y, si nos preguntamos, por ejemplo, ¿qué es el vacío cuántico? podemos responder conforme a la información que actualmente tenemos pero, ¿es la respuesta la adecuada?

 

               

                 El espacio, la materia, el Tiempo, la energía

El concepto de espacio-tiempo como medio físico lleno de energía virtual fue emergiendo gradualmente a lo largo del siglo XX. Al comienzo del siglo se pensaba que el espacio estaba ocupado por un campo energético invisible que producía rozamiento cuando los cuerpos se movían a través de él y ralentizaba su movimiento. Todos conocemos eso como la Teoría del Éter Lumínico o Luminífero. Cuando ese rozamiento no se pudo detectar con el experimento de Michelson-Morley, el éter quedó rechazado de la imagen del mundo físico. Sin embargo, se cree que algo permea todo el espacio.

Es cierto que, nuestra inmensa intuición nos lleva a pensar que, en el Universo, existen muchas cosas que no comprendemos, otras muchas que ni sabemos que están ahí y, sin embargo, de alguna manera, las presentimos y, de vez en cuando, sí que podemos pensar en ellas, en cosas que aún no siendo conocidas, algo dentro de nosotros nos dice que están ahí, esperando que las descubramos.

 

                                                 

 

Sí, hemos sabido crear ecuaciones que expresan la Naturaleza, y, también, tuvimos la intuición de saber de qué estaban hechas las cosas. Con el paso del Tiempo, las mentes humanas han podido desvelar algunos secretos que el Universo escondía celosamente. Sin embargo, son muchos más los que nos quedan por descubrir. Es decir, las preguntas siguen siendo muchas más que las respuestas.

 

Resultado de imagen de El Espacio Vacío

   ¿Vacío? Lo que llamamos vacío está lleno… ¡siempre hay! La Nada, la Eternidad y lo infinito… ¡No existen!

Pero, el tiempo pasa y los conocimientos avanzan, y, se llegará a demostrar que, el vacío cósmico estaba lejos de ser espacio vacío. En las Teorías de Gran Unificación (GUT) que fueron desarrolladas durante la segunda mitad de ese siglo XX, el concepto de vacío se transformó a partir del espacio vacío en el medio que transporta el campo de energías de punto cero que, son energías de campo que han demostrado estar presentes incluso cuando todas las formas clásicas de energía desaparecen: en el cero absoluto de temperatura. En las teorías unificadas subsiguientes, las raíces de todos los campos y las fuerzas quedan adscritas a ese mar de energía misterioso denominado “vacío unificado”.

Allá por los años sesenta, Paul Dirac demostró que las fluctuaciones en los campos fermiónicos producían una polarización de vacío, mediante la cual, el vacío afectaba a la masa de las partículas, a su carga, al spin o al momento angular. Esta es una idea revolucionaria, ya que, en este concepto el vacío es más que el continuo tetradimensional de la Teoría de la Relatividad: no es sólo la geometría del espacio-tiempo, sino un campo físico real que produce efectos físicos reales.

 

                                                   Resultado de imagen de Campo punto cero

 

La interpretación física del vacío en términos del campo de punto cero fue reforzada en los años 70 , cuando Paul Davis y William Unruth propusieron la hiótesis que diferenciaba entre el movimiento uniforme y el acelerado en los campos de energía de punto cero. El movimiento uniforme no perturbaría el ZPF, dejándolo isotrópico (igual en todas las direcciones), mientras que el movimiento acelerado produciría una radiación térmica que rompería la simetría en todas las direcciones del campo. Así quedó demostrado durante la década de los 90 mediante numerosas investigaciones que fueron mucho más allá de la “clásica” fuerza Casimir y del Desplazamiento de Lamb, que han sido investigados y reconocidos muy rigurosamente.

 

                               El Efecto Casimir y algunos misterios por desvelar : Blog de Emilio Silvera V.

 

De las Placas Casimir ¿Qué podemos decir? es bien conocido por todos que dos placas de metal colocadas muy cerca, se excluyen algunas longitudes de onda de las energías del vacío. Este fenómeno, que parece cosa de magia, es conocido como la fuerza de Casimir. Ésta ha sido bien documentada por medio de experimentos. Su causa está en el corazón de la física cuántica: el espacio aparentemente vacío no lo está en realidad, sino que contiene partículas virtuales asociadas con las fluctuaciones de campos electromagnéticos. Estas partículas empujan las placas desde el exterior hacia el interior, y también desde el interior hacia el exterior. Sin embargo, sólo las partículas virtuales de las longitudes de onda más cortas pueden encajar en el espacio entre las placas, de manera que la presión hacia el exterior es ligeramente menor que la presión hacia el interior. El resultado es que las placas son forzadas a unirse.

También aparecen otros efectos, algunos científicos han postulado que la fuerza inercial, la fuerza gravitatoria e incluso la masa eran consecuencia de interacción de partículas cargadas con el ZPF. Es todo tan misterioso.

 

                                 

 

Debido a que el Universo es finito, en los puntos críticos dimensionales, las ondas se superponen y crean ondas estacionarias duraderas. Las ondas determinan interacciones físicas fijando el valor de la fuerza Gravitatoria, la Electromagnética, y las fuerzas nucleares Débil y Fuerte. Estas son las responsables de la distribución de la materia a través del Cosmos pero, a quién o a qué responsabilizamos de esa otra clase (hipotética) de materia que, al parecer está por ahí oculta. ¿Tendrá, finalmente el vacío algo que ver con ella?

Sí, en el Universo resulta que están presentes misterios que no podemos explicar. El Observatorio de rayos X Chandra, el tercero de los grandes observatorios de la NASA, ha descubierto un excepcional objeto según la página web de la propia NASA, y, de la misma manera, hay descubrimientos recientes que confirman la presencia de ondas de presión en el vacío. Utilizando el Observatorio de rayos X Chandra, los Astrónomos han encontrado una onda generada por el agujero negro supermasivo en Perseus, a 250 millones de años luz de la Tierra. Esta onda de presión se traduce en la onda musical Si menor. Se trata de una nota real, que ha estado viajando por el espacio durante los últimos 2.500 millones de años. Nuestro oído no puede percibirla, porque su frecuencia es 57 octavas más baja que el Do medio, más de un millón de veces más grande de lo que la audición del hombre puede percibir.

 

Cuáles son los 7 pecados capitales y qué significa cada uno

La soberbia, la avaricia, la lujuria, la ira, la gula, la envidia y la pereza son las siete pasiones del alma que la tradición eclesiástica ha fijado como «pecados capitales». Independientemente de la vigencia o no de la idea de pecado en nuestras sociedades, son siete pasiones muy arraigadas en la psique humana.

Sí resulta ser todo muy misterioso y, nosotros, que somos parte de este Universo, también lo somos. Recuerdos de la niñez y los Siete pecados capitales: Lujuria, Gula, Avaricia, Pereza, Ira, Envidia, Soberbia. Los siete pecados capitales son una clasificación de los vicios mencionados en las primeras enseñanzas del cristianismo para educar a sus seguidores acerca de la moral cristiana.

 

CANCIÓN CON PICTOGRAMAS: Siete notas son.

 

Las Siete notas musicales: Do, Re, Mi, Fa, Sol, La y Si Los nombres de las notas musicales se derivan del poema Ut queant laxis del monje benedictino friulano Pablo el Diácono, específicamente de las sílabas iniciales del Himno a San Juan Bautista. Las frases de este himno, en latín, son así: Ut queant laxis/Resonare..

 

La Creación del Mundo en 7 Días | Story.com

 

Se dijo que Dios creó el mundo en siete días: Lunes, Martes, Miércoles, Jueves, Viernes, Sábado y Domingo. Los siete cuerpos celestes que dieron lugar a estos nombres fueron la Luna, Marte, Mercurio, Júpiter, Venus, Saturno y el Sol. En español, sábado procede de la fiesta hebrea “Sabbat” y domingo de la palabra latina “Dominus”, el señor…

Como veis, imaginación no nos falta, tenemos de sobra y, cuando no sabemos explicar alguno de los muchos enigmas que en el Universo son, acudimos a la imaginación que se inventa lo que aquello pueda ser y, lo acomoda a nuestras conveniencias tratando de darnos un poco de esperanza, y, para cuando la verdad de aquel misterio se puede desvelar…dónde estaremos.

Emilio Silvera V.