lunes, 28 de octubre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Somos materia evolucionada hasta el nivel de la consciencia

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y... ¿nosotros?    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 « 

 »

Resultado de imagen de http://extremisimo.com/wp-content/uploads/2009/09/swift-m31.jpg

Una Galaxia es simplemente una parte pequeña del Universo, nuestro planeta es, una mínima fracción infinitesimal de esa Galaxia, y, nosotros mismos, podríamos ser comparados (en relación a la inmensidad del cosmos) con una colonia de bacterias pensantes e inteligentes. Sin embargo, toda forma parte de lo mismo y, aunque pueda dar la sensación engañosa de una cierta autonomía, en realidad todo está interconectado y el funcionamiento de una cosa incide directamente en las otras. ¡Ah! Nada es pequeño ni grande, las dimensiones son relativas y dependen del contexto en el que las podamos medir.

 

Una línea temporal paralela en el universo explica la evolución del cosmos  y la vida

               Sí, en nuestro universo, si algo cambia, muchas otras cosas serán distintas

Pocas dudas pueden caber a estas alturas del hecho de que poder estar hablando de estas cuestiones, es un milagro en sí mismo. Después de millones y millones de años de evolución, se formaron las conciencias primarias que surgieron en los animales con ciertas estructuras cerebrales de alta complejidad que, podían ser capaces de construir una escena mental, pero con capacidad semántica o simbólica muy limitada y careciendo de un verdadero lenguaje.

La conciencia de orden superior (que floreció en los humanos y presupone la coexistencia de una conciencia primaria) viene acompañada de un sentido de la propia identidad y de la capacidad explícita de construir en los estados de vigilia escenas pasadas y futuras. Como mínimo, requiere una capacidad semántica y, en su forma más desarrollada, una capacidad lingüística.

 

Resultado de imagen de Los procesos neuronales

Los procesos neuronales que subyacen en nuestro cerebro son en realidad desconocidos y, aunque son muchos los estudios y experimentos que se están realizando, su complejidad es tal que, de momento, los avances son muy limitados. Estamos tratando de conocer la máquina más compleja y perfecta que existe en el Universo.

Si eso es así, resultará que después de todo, no somos tan insignificantes como en un principio podría parecer, y solo se trata de tiempo. En su momento y evolucionadas, nuestras mentes tendrán un nivel de conciencia que estará más allá de las percepciones físicas tan limitadas. Para entonces, sí estaremos totalmente integrados y formando parte, como un todo, del Universo que ahora presentimos.

 

Redes de neuronas, misterio para los estudiosos del cerebro - Ciencia UNAM

Un ejemplo de sinapsis neuronal excitatoria sería el reflejo de retirada cuando nos quemamos. Una neurona sensorial detectaría el objeto caliente, … Estos procesos tienen que ver y están conectados con la consciencia de Ser.

El carácter especial de la conciencia me hace adoptar una posición que me lleva a decidir que no es un objeto, sino un proceso y que, desde este punto de vista, puede considerarse un ente digno del estudio científico perfectamente legítimo.

La conciencia plantea un problema especial que no se encuentra en otros dominios de la ciencia. En la Física y en la Química se suele explicar unas entidades determinadas en función de otras entidades y leyes. Podemos describir el agua con el lenguaje ordinario, pero podemos igualmente describir el agua, al menos en principio, en términos de átomos y de leyes de la mecánica cuántica. Lo que hacemos es conectar dos niveles de descripción de la misma entidad externa (uno común y otro científico de extraordinario poder explicativo y predictivo. Ambos niveles de descripción) el agua líquida, o una disposición particular de átomos que se comportan de acuerdo con las leyes de la mecánica cuántica (se refiere a una entidad que está fuera de nosotros y que supuestamente existe independientemente de la existencia de un observador consciente.)

 

Una explosión de energía y señales químicas en el punto de encuentro entre  dos neuronas | Imagen Premium generada con IA

En todo esto conglomerado de neuronas que alberga nuestro cerebro y las “explosiones” eléctricas que se producen entre ellas cuando se transmiten datos captados en el exterior por los sentidos… ¡Hay mucho más de lo que podemos ver y comprender!

En el caso de la conciencia, sin embargo, nos encontramos con una simetría. Lo que intentamos no es simplemente comprender de qué manera se puede explicar las conductas o las operaciones cognitivas de otro ser humano en términos del funcionamiento de su cerebro, por difícil que esto parezca. No queremos simplemente conectar una descripción de algo externo a nosotros con una descripción científica más sofisticada. Lo que realmente queremos hacer es conectar una descripción de algo externo a nosotros (el cerebro), con algo de nuestro interior: una experiencia, nuestra propia experiencia individual, que nos acontece en tanto que observadores conscientes. Intentamos meternos en el interior o, en la atinada ocurrencia del filósofo Tomas Negel, saber qué se siente al ser un murciélago. Ya sabemos qué se siente al ser nosotros mismos, qué significa ser nosotros mismos, pero queremos explicar por qué somos conscientes, saber qué es ese “algo” que nos hace ser como somos, explicar, en fin, cómo se generan las cualidades subjetivas experienciales. En suma, deseamos explicar ese “Pienso, luego existo” que Descartes postuló como evidencia primera e indiscutible sobre la cual edificar toda la filosofía.

 

Imágenes de Paisajes Hermosos - Descarga gratuita en Freepik

Lo podremos explicar al amigo ciego con todo lujo de detalles, la belleza de un paisaje,  pero, si de pronto, éste pudiera ver, se daría cuanta de las inmensas diferencias que encontraría entre las explicaciones oídas y lo que la vista le muestra.

Ninguna descripción, por prolija que sea, logrará nunca explicar cabalmente la experiencia subjetiva. Muchos filósofos han utilizado el ejemplo del color para explicar este punto. Ninguna explicación científica de los mecanismos neuronales de la discriminación del color, aunque sea enteramente satisfactorio, bastaría para comprender cómo se siente el proceso de percepción de un color. Ninguna descripción, ninguna teoría, científica o de otro tipo, bastará nunca para que una persona daltónica consiga experimentar un color.

 

Resultado de imagen de Le explicamos al amigo ciego la belleza del paisaje

Pensemos por un momento que tenemos un amigo ciego al que contamos lo que estamos viendo ante un paisaje maravilloso y extraño. El cielo oculto por unas nubes sonrosadas que reciben los rayos del Sol que no dejan pasar por su espesura, a nuestra derecha una extraña construcción parecida a un faro, las aguas algo turbulentas a nuestros pies y golpeando en las gruesas piedras en las que estamos sentados. Algunas ramas y arbolado a nuestra derecha que se mueven por la brisa. El colorido y el conjunto unido al rumor del viento y el golpear del agua contra las piedras y aquella especie de faro… ¡Le daba al momento un toque mágico!

todo esto lo contamos a nuestro amigo ciego que, si de pronto pudiera ver, comprobaría que la experiencia directa de sus sentidos ante tales maravillas, nada tiene que ver con la pobreza de aquello que le contamos, por muy hermosas palabras que para hacer la descripción empleáramos.

La mente humana es tan compleja que, no todos ante la misma cosa, vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugiere. De entre diez personas solo coinciden tres, los otro siete divergen en la apreciación de lo que el dibujo o la figura les sugiere.

 

Imagen relacionada

Si ante un mismo escenario pedimos a una serie de individuos que nos digan lo que ven… Raramente coincidirán en sus apreciaciones, cada cual dará su versión conforme a una serie de circunstancias que los define a ellos mismos, tales como la educación recibida, los conocimientos que pueda tener…

Esto nos viene a demostrar la individualidad de pensamiento, el libre albedrío para decidir. Sin embargo, la misma prueba, realizada en grupos de conocimientos científicos similares y específicos: Físicos, matemáticos, químicos, etc., hace que el número de coincidencias sea más elevada, más personas ven la misma respuesta al problema planteado. Esto nos sugiere que, la mente está en un estado virgen que cuenta con todos los elementos necesarios para dar respuestas pero que necesita experiencias y aprendizaje para desarrollarse.

¿Debemos concluir entonces que una explicación científica satisfactoria de la conciencia queda para siempre fuera de nuestro alcance?

 

Imagen relacionadaTradición y Utopía | Hipérbola Janus

      Podría ser la conciencia algo utópico

¿O es de alguna manera posible, romper esa barrera, tanto teórica como experimental, para resolver las paradojas de la conciencia?

La respuesta a estas y otras preguntas, en mi opinión, radica en reconocer nuestras limitaciones actuales en este campo del conocimiento complejo de la mente, y, como en la Física cuántica, existe un principio de incertidumbre que, al menos de momento (y creo que en muchos cientos de años), nos impide saberlo todo sobre los mecanismos de la conciencia y, aunque podremos ir contestando a preguntas parciales, alcanzar la plenitud del conocimiento total de la mente no será nada sencillo, entre otras razones está el serio inconveniente que suponemos nosotros mismos, ya que, con nuestro que hacer podemos, en cualquier momento, provocar la propia destrucción.

 

Resultado de imagen de Parejas felices

Una cosa si está clara: ninguna explicación científica de la mente podrá nunca sustituir al fenómeno real de lo que la propia mente pueda sentir. ¿Cómo se podría comparar la descripción de un gran amor con sentirlo, vivirlo física y sensorialmente hablando?

Hay cosas que no pueden ser sustituidas, por mucho que los analistas y especialistas de publicidad y marketing se empeñen, lo auténtico siempre será único. Si acaso, el que más se puede aproximar, a esa verdad,  es el poeta.

Emilio Silvera Vázquez

El Electrón (el personaje más pequeño de la familia leptón)

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

En esta representación artística, un electrón orbita el núcleo de un átomo, girando alrededor de su eje mientras una nube de otras partículas subatómicas se emiten y reabsorben constantemente

        Sí, el electrón es el más pequeño de la familia si no tenemos en cuenta los neutrinos acompañantes

En esta representación artística, un electrón orbita el núcleo de un átomo, girando alrededor de su eje mientras una nube de otras partículas subatómicas se emiten y reabsorben constantemente – Nicolle R. Fuller, Fundación Nacional de Ciencia

El Electrón sigue siendo la esfera más perfecta del Universo

 

EL ELECTRON ES UNA ESFERA PERFECTA EN UN 1/MILLON – UNIVERSITAM

El examen de esta partícula elemental con una precisión sin precedentes respalda, una vez más, el modelo estándar de la física

Del modelo estándar — Cuaderno de Cultura Científica

Investigadores del Imperial College de Londres concluyeron en 2011 que el electrón es la esfera más perfecta del Universo. Según anunciaron, lo que separa a esta partícula elemental de la redondez absoluta es menos de 0,000000000000000000000000001 cm, algo insignificante. En otras palabras, «si un electrón se inflara hasta el tener el tamaño del Sistema Solar, todavía parecería esférico».

Ahora, investigadores de las universidades estadounidenses de Northwestern, Harvard y Yale han examinado nuevamente la forma de la carga del electrón con una precisión sin precedentes. Y nada ha cambiado. Los investigadores han confirmado que es perfectamente esférico. Esta conclusión va mucho más allá de una mera curiosidad científica. Una carga ligeramente aplastada podría haber indicado partículas pesadas desconocidas y difíciles de detectar a su alrededor, un descubrimiento que, de haberse producido, habría afectado a la comunidad física mundial. Sin embargo, y aunque para algunos puede resultar decepcionante, todo parece seguir el guion del modelo estándar, la teoría que describe cómo funciona el Universo y que, pese a sus lagunas evidentes, todavía no ha podido ser desbancada.

 

Representación de un electrón

Representación de un electrón- Nicolle R. Fuller, Fundación Nacional de Ciencia

«Si hubiéramos descubierto que la forma no era redonda, ese sería el mayor titular en física de las últimas décadas», dice Gerald Gabrielse, quien dirigió la investigación en Northwestern. «Pero nuestro descubrimiento sigue siendo igual de importante científicamente porque fortalece el modelo estándar de la física de partículas y excluye modelos alternativos». El estudio aparece publicado en la revista «Nature».

El modelo estándar describe la mayoría de las fuerzas y partículas fundamentales en el universo. Es una imagen matemática de la realidad, y ningún experimento de laboratorio realizado ha sido capaz de contradecirlo por el momento. Pero eso ha sido desconcertante para los físicos durante décadas. «El modelo estándar tal como está no puede ser correcto porque no puede predecir por qué existe el Universo», señala Gabrielse, profesor de física. «Esa es una laguna bastante grande».

Supersimetría

Resultado de imagen de El electrón la esfera más perfecta

Al tratar de «arreglar» el modelo estándar, muchos modelos alternativos predicen que la esfera aparentemente uniforme de un electrón está en realidad aplastada asimétricamente. Uno de esos modelos, llamado supersimetría, postula que partículas subatómicas pesadas y desconocidas influyen en el electrón para alterar su forma perfectamente esférica, un fenómeno no probado llamado «momento dipolar eléctrico». Estas partículas más pesadas y sin descubrir podrían ser responsables de algunos de los misterios más deslumbrantes del Universo y posiblemente podrían explicar por qué está hecho de materia en lugar de antimateria.

«Casi todos los modelos alternativos dicen que la carga de electrones podría estar aplastada, pero simplemente no lo hemos visto con suficiente sensibilidad», apunta Gabrielse. «Es por eso que decidimos mirar allí con una precisión más alta de lo que nunca antes se había observado».

 

Crean un microscopio capaz de "ver" electrones en movimiento

Crean un microscopio capaz de “ver” electrones en movimiento

Investigadores de la Universidad de Arizona desarrollan el microscopio más rápido del mundo que abre nuevas fronteras en la observación de procesos electrónicos ultrarrápidos.

En física, el electrón, comúnmente representado por el símbolo e, es una partícula subatómica con una carga eléctrica elemental negativa. ​ Un electrón no tiene componentes o subestructura conocidos; en otras palabras, generalmente se define como una partícula elemental.

Con este objetivo en mente, el equipo disparó un haz de moléculas de óxido de torio frías a una cámara del tamaño de un escritorio grande. Luego, los investigadores estudiaron la luz emitida por las moléculas. Una luz torcida indicaría un momento dipolo eléctrico. Como la luz no se torció, el equipo de investigación concluyó que la forma del electrón era, de hecho, redonda, confirmando la predicción del modelo estándar. Que no haya evidencia de un momento dipolo eléctrico significa que no hay evidencia de esas partículas hipotéticas más pesadas. Y si a pesar de todo estas partículas existen, sus propiedades difieren de las predichas por los teóricos.

«Nuestro resultado le dice a la comunidad científica que necesitamos repensar seriamente algunas de las teorías alternativas», asegura David DeMille, profesor de física en Yale y coautor del estudio.

 

Físicos crearon una luz 1.000 millones de veces más brillante que el Sol

En 2014, el equipo realizó la misma medición con un aparato más simple. Al utilizar métodos mejorados y diferentes frecuencias de láser, el experimento actual era un orden de magnitud más sensible que su predecesor. «Si un electrón fuera del tamaño de la Tierra, podríamos detectar si el centro del planeta está a una distancia un millón de veces más pequeña que un cabello humano», explica Gabrielse. «Así de sensible es nuestro aparato».

Los investigadores planean seguir afinando sus instrumentos para realizar mediciones cada vez más precisas. Hasta que los investigadores encuentren evidencias de lo contrario, la forma redonda de los electrones y los misterios del universo permanecerán como están.

«Sabemos que el modelo estándar está mal, pero parece que no podemos encontrar dónde está mal. Es como una gran novela de misterio», admite Gabrielse. «Debemos ser muy cuidadosos al hacer suposiciones de que estamos más cerca de resolver el misterio, pero tengo una gran esperanza de que nos estamos acercando a este nivel de precisión».

Para saber más: Marzio Nessi, físico del CERN: «Estamos a punto de dar el salto a una nueva física».

 

¡Qué locura!

Autor por Emilio Silvera    ~    Archivo Clasificado en Marte    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Alyssa Carson, la joven astronauta que cree que nada es imposible: "Quiero  ser parte de la primera misión a Marte" - Infobae

Alyssa Carson, la adolescente que prepara la NASA para vivir en Marte y no volver jamás. Es impreciso decir que Alyssa Carson, una joven estadounidense de 20 años nacida en Hammond (Luisiana), se está preparando para ser la primera humana en ir a Marte en una misión sin regreso, ya que la NASA aún no la ha seleccionado ni prevé viajes espaciales de una sola vía.

 

Alyssa Carson, la joven de 15 años que quiere viajar a Marte - El  hormiguero 3.0

                           La entrenan para vivir en Marte pero….
  • La joven entrena a diario en el Centro Marshall de Vuelos Espaciales
  • Mars One tiene la intención de llevar a Marte el primer vuelo tripulado

 

Conoce a Alyssa Carson, la adolescente que pisaría Marte por primera vez

Alyssa Carson. Imagen: Nasa

Es posible que el entusiasmo propio de la Juventud, le impida a la simpática Alissa, tener una conciencia clara de en qué proyecto se está metiendo pero… ¿No tiene padres?

 

 

 

Resultado de imagen de Schiaparelli se estrella en Marte

 

La Agencia Espacial Europea (ESA) reconoció hoy en un comunicado que el módulo de aterrizaje Schiaparelli se ha estrellado contra Marte

 

Alyssa Carson, de 15 años, tiene una extraescolar muy especial: prepararse  para ser la primera persona

 

Alyssa Carson es una adolescente que aún no ha terminado el instituto y ya tiene claro lo que quiere hacer en 2030. Lleva años entrenándose para ello. Desde que tenía tres no ha dejado de prepararse con la NASA. Está dentro de Mars One y su sueño es llegar a ser astronauta y el culmen, formar parte del primer vuelo tripulado que viajará a Marte.

¿Cómo se entrena una persona para recibir la radiación existente en la superficie de Marte? y, cómo explicar la manera en que la expedición de Alissa sorteara los muchos peligros que los acechan en tierras desconocidas con parámetros alejados de los terrestres a los que el cuerpo humano está acostumbrado?

 

Según la inteligencia artificial, así vivirán las personas en Marte, ¿será  el futuro de la humanidad?

¿Tendremos los recursos necesarios para instalar la Colonia?

Esta chica es una de las candidatas que más opciones tiene de formar parte de la primera expedición que viajará a Marte con la intención de crear una colonia humana que habitará el planeta en unos 20 años. Pero tiene un riesgo: no podrá volver jamás. Aunque a ella no le importa. Es su sueño y está dispuesta a cumplirlo.

La joven entrena a diario en el Centro Marshall de Vuelos Espaciales durante varias horas al día y además organiza visitas a los ‘space camps’ de la NASA. En estos campamentos realiza experimentos y prácticas con elementos de robótica y aviación. También estudia varios idiomas extranjeros -francés, español y chino- para poder interactuar con los que serán sus futuros compañeros.

 

Resultado de imagen de Resultado de imagen de Carson ya ha conseguido logros como ser la primera persona en completar el NASA Passport Program al acudir a los 14 centros para visitantes y obtener el reconocimiento Right Stuff Award.

Su carita de felicidad, nos habla de su inocencia y también… ¡de su ignorancia!

Carson ya ha conseguido logros como ser la primera persona en completar el NASA Passport Program al acudir a los 14 centros para visitantes y obtener el reconocimiento Right Stuff Award. “Mis amigas piensan que estoy un poco loca”, bromea. Ella está absolutamente convencida de que conseguirá su meta.

Mars One evalúa el coste del primer vuelo en torno a los 6.000 millones de dólares. Después se enviarán nuevos astronautas cada dos años, con un coste de 4.000 millones de dólares por viaje, hasta llegar a formar la colonia de 25 humanos.

Claro que, todo esto, es más el querer alentar los deseos de la Humanidad de instalarse en otros planetas y, de camino, aumentar las subvenciones del Gobierno. Particularmente creo… ¡Que ese viaje nunca se llevará a cabo!

Emilio Silvera Vázquez

Velocidades inimaginables

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Núcleo atómico - Wikipedia, la enciclopedia libre

 

En el centro del átomo se encuentra un pequeño grano compacto aproximadamente 100.000 veces más pequeño que el propio átomo: el núcleo atómico. Su masa, e incluso más aún su carga eléctrica, determinan las propiedades del átomo del cual forma parte. Debido a la solidez del núcleo parece que los átomos, que dan forma a nuestro mundo cotidiano, son intercambiables entre sí, e incluso cuando interaccionan entre ellos para formar sustancias químicas (los elementos). Pero el núcleo, a pesar de ser tan sólido, puede partirse. Si dos átomos chocan uno contra el otro con gran velocidad podría suceder que los núcleos llegaran a chocar entre sí y entonces, o bien se rompen en trozos, o se funden liberando en el proceso partículas sub-nucleares. La nueva física de la primera mitad del siglo XX estuvo dominada por los nuevos acertijos que estas partículas planteaban.

 

Mecánica cuántica - Wikipedia, la enciclopedia libre

 

Pero tenemos la mecánica cuántica; ¿Es que no es aplicable siempre?, ¿Cuál es la dificultad? Desde luego, la mecánica cuántica es válida para las partículas subatómicas, pero hay más que eso. Las fuerzas con que estas partículas interaccionan y que mantienen el núcleo atómico unido son tan fuertes que las velocidades a las que tienen que moverse dentro y fuera del núcleo están cerca de la velocidad de la luz, c, que es de 299.792’458 Km/s. Cuando tratamos con velocidades tan altas se necesita una segunda modificación a las leyes de la física del siglo XIX; tenemos que contar con la teoría de la relatividad especial de Einstein.

 

Resultado de imagen de Los postulados de la relatividad especial

Esta teoría también fue el resultado de una publicación de Einstein de 1905. en esta teoría quedaron sentadas las bases de que el movimiento y el reposo son conceptos relativos, no son absolutos, como tampoco habrá un sistema de referencia absoluto con respecto al cual uno pueda medir la velocidad de la luz.

Pero había más cosas que tenían que ser relativas. En este teoría, la masa y la energía también dependen de la velocidad, como lo hacen la intensidad del campo eléctrico y del magnético. Einstein descubrió que la masa de una partícula es siempre proporcional a la energía que contienen, supuesto que se haya tenido en cuenta una gran cantidad de energía en reposo de una partícula cualquiera, como se denota a continuación:

E = mc

Pero ¿por qué nada puede superar a la velocidad de la luz en el vacío?

Supongamos un objeto acelerando, ganando velocidad y acercando su velocidad a la de la luz. Según la Teoría de la relatividad la energía necesaria para acelerar este objeto irá aumentando a medida que aumenta su velocidad como si su masa aumentará según la fórmula

 

Es fácil ver que a medida que  v aumenta y se va acercando a c el valor de la raiza cuadrada del denominador va bajando hacia cero y por lo tanto el valor de la masa m va aumentando hacia infinito. El límite de esta expresión cuando v tiende a c es infinito.

Como la velocidad de la luz es muy grande, esta ecuación sugiere que cada partícula debe almacenar una cantidad enorme de energía, y en parte esta predicción fue la que hizo que la teoría de la relatividad tuviese tanta importancia para la física (¡y para todo el mundo!). Para que la teoría de la relatividad también sea auto-consistente tiene que ser holista, esto es, que todas las cosas y todo el mundo obedezcan a las leyes de la relatividad. No son sólo los relojes los que se atrasan a grandes velocidades, sino que todos los procesos animados se comportan de la forma tan inusual que describe esta teoría cuando nos acercamos a la velocidad de la luz. El corazón humano es simplemente un reloj biológico y latirá a una velocidad menor cuando viaje en un vehículo espacial a velocidades cercanas a la de la luz. Este extraño fenómeno conduce a lo que se conoce como la “paradoja de los gemelos”, sugerida por Einstein, en la que dos gemelos idénticos tienen diferente edad cuando se reencuentran después de que uno haya permanecido en la Tierra mientras que el otro ha viajado a velocidades relativistas.

Einstein comprendió rápidamente que las leyes de la gravedad también tendrían que ser modificadas para que cumplieran el principio relativista.

 

 

La formulación de newton es bien conocida, en la segunda imagen que se representan en este esquema dos partículas que se acercan entre sí siguiendo un movimiento acelerado. La interpretación newtoniana supone que el espacio-tiempo es llano y que lo que provoca la curvatura de las líneas de universo es la fuerza de interacción gravitatoria entre ambas partículas. Por el contrario, la interpretación einsteiniana supone que las líneas de universo de estas partículas son geodésicas (“rectas”), y que es la propia curvatura del espacio tiempo lo que provoca su aproximación progresiva.

Para poder aplicar el principio de la relatividad a la fuerza gravitatoria, el principio tuvo que ser extendido de la siguiente manera: no sólo debe ser imposible determinar la velocidad absoluta del laboratorio, sino que también es imposible distinguir los cambios de velocidad de los efectos de una fuerza gravitatoria.

 

Teoría de la relatividad: espacio-tiempo, geometría y gravitación – Ciencia  UANL

 

Einstein comprendió que la consecuencia de esto era que la gravedad hace al espacio-tiempo lo que la humedad a una hoja de papel: deformar la superficie con desigualdades que no se pueden eliminar. Hoy en día se conocen muy bien las matemáticas de los espacios curvos, pero en el época de Einstein el uso de estas nociones matemáticas tan abstractas para formular leyes físicas era algo completamente nuevo, y le llevó varios años encontrar la herramienta matemática adecuada para formular su teoría general de la relatividad que describe cómo se curva el espacio en presencia de grandes masas como planetas y estrellas.

 

Albert Einstein

 

Einstein tenía la idea en su mente desde 1907 (la relatividad especial la formuló en 1905), y se pasó 8 años buscando las matemáticas adecuadas para su formulación.

Leyendo el material enviado por un amigo al que pidió ayuda, Einstein quedó paralizado. Ante él, en la primera página de una conferencia dada ante el Sindicato de Carpinteros, 60 años antes por un tal Riemann, tenía la solución a sus desvelos: el tensor métrico de Riemann, que le permitiría utilizar una geometría espacial de los espacios curvos que explicaba su relatividad general.

 

 

Desde que se puso en órbita el telescopio espacial de rayos gamma Fermi, el 11 de junio de 2008, ha detectado poblaciones enteras de objetos nunca antes vistos. El último hallazgo de Fermi afecta al púlsar J1823-3021A, avistado en 1994 con el radiotelescopio Lovell, en Inglaterra. Un equipo internacional de expertos se ha dado cuenta de que esta estrella pulsante emite rayos gamma y gracias a Fermi ha podido caracterizar sus inusuales propiedades. Los resultados de su investigación se publican en el último número de Science. Lo cierto es que han descubierto el púlsar de milisegundos más joven y con la fuerza magnética más potente

 

Velocidades inimaginables : Blog de Emilio Silvera V.

No está mal que en este punto recordemos la fuerza magnética y gravitatoria que nos puede ayudar a comprender mejor el comportamiento de las partículas subatómicas.

El electromagnetismo, decíamos al principio, es la fuerza con la cual dos partículas cargadas eléctricamente se repelen (si sus cargas son iguales) o se atraen (si tienen cargas de signo opuesto).

La interacción magnética es la fuerza que experimenta una partícula eléctricamente cargada que se mueve a través de un campo magnético. Las partículas cargadas en movimiento generan un campo magnético como, por ejemplo, los electrones que fluyen a través de las espiras de una bobina.

Las fuerzas magnéticas y eléctricas están entrelazadas. En 1873, James Clerk Maxwell consiguió formular las ecuaciones completas que rigen las fuerzas eléctricas y magnéticas, descubiertas experimentalmente por Michael Faraday. Se consiguió la teoría unificada del electromagnetismo que nos vino a decir que la electricidad y el magnetismo eran dos aspectos de una misma cosa.

Constante de Planck - Wikipedia, la enciclopedia libre

Resultado de imagen de La constante de estructura fina

La interacción es universal, de muy largo alcance (se extiende entre las estrellas), es bastante débil. Su intensidad depende del cociente entre el cuadrado de la carga del electrón y 2hc (dos veces la constante de Planck por la velocidad de la luz). Esta fracción es aproximadamente igual a 1/137’036…, o lo que llamamos α y se conoce como constante de estructura fina.

En general, el alcance de una interacción electromagnética es inversamente proporcional a la masa de la partícula mediadora, en este caso, el fotón, sin masa.

También antes hemos comentado sobre la interacción gravitatoria de la que Einstein descubrió su compleja estructura y la expuso al mundo en 1915 con el nombre de teoría general de la relatividad, y la relacionó con la curvatura del espacio y el tiempo. Sin embargo, aún no sabemos cómo se podrían reconciliar las leyes de la gravedad y las leyes de la mecánica cuántica (excepto cuando la acción gravitatoria es suficientemente débil).

 

 

La teoría de Einstein nos habla de los planetas y las estrellas del cosmos. La teoría de Planck, Heisemberg, Schrödinger, Dirac, Feynman y tantos otros, nos habla del comportamiento del átomo, del núcleo, de las partículas elementales en relación a estas interacciones fundamentales. La primera se ocupa de los cuerpos muy grandes y de los efectos que causan en el espacio y en el tiempo; la segunda de los cuerpos muy pequeños y de su importancia en el universo atómico. Cuando hemos tratado de unir ambos mundos se produce una gran explosión de rechazo. Ambas teorías son (al menos de momento) irreconciliables.

 

Fuerza debilCOSMOS | # **4 INTERACCIONES FUNDAMENTALES** | Facebook

La Gravedad es la más débil de las cuatro fuerzas fundamentales

  • La interacción gravitatoria actúa exclusivamente sobre la masa de una partícula.
  • La gravedad es de largo alcance y llega a los más lejanos confines del universo conocido.
  • Es tan débil que, probablemente, nunca podremos detectar esta fuerza de atracción gravitatoria entre dos partículas elementales. La única razón por la que podemos medirla es debido a que es colectiva: todas las partículas (de la Tierra) atraen a todas las partículas (de nuestro cuerpo) en la misma dirección.

Resultado de imagen de El hipotético gravitón

 

El minúsculo y juguetón “gravitón” se ríe de todos y juega al escondite con los físicos del mundo

 

Los científicos podrían ver un gravitón, la partícula cuántica teórica de  la gravedad

 

Un equipo de científicos asegura que, por primera vez en la histroria, está cerca de ver un gravitón, la partícula cuántica teórica de la gravedad

 

La partícula mediadora es el hipotético gravitón. Aunque aún no se ha descubierto experimentalmente, sabemos lo que predice la mecánica cuántica: que tiene masa nula y espín 2.

La ley general para las interacciones es que, si la partícula mediadora tiene el espín par, la fuerza entre cargas iguales es atractiva y entre cargas opuestas repulsiva. Si el espín es impar (como en el electromagnetismo) se cumple a la inversa.

Pero antes de seguir profundizando en estas cuestiones hablemos de las propias partículas subatómicas, para lo cual la teoría de la relatividad especial, que es la teoría de la relatividad sin fuerza gravitatoria, es suficiente.

 

Más allá del átomo: una Increíble Inmersión en el Corazón de la Materia y  lo Infinitamente Pequeño

 

Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones, que ahora vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón (del griego πρώτος, primero) debe su nombre al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio nombre da a entender, no hay carga eléctrica; es neutro.

La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.

Átomo - Enciclopedia de EnergiaLa estructura atómica nuclear - Foro NuclearLa estructura atómica nuclear - Foro Nuclear

 

La mayoría de los núcleos atómicos contienen más neutrones que protones. Los protones se encuentran tan juntos en el interior de un núcleo tan pequeño que se deberían repeles entre sí fuertemente, debido a que tienen cargas eléctricas del mismo signo. Sin embargo, hay una fuerza que los mantiene unidos estrechamente y que es mucho más potente e intensa que la fuerza electromagnética: la fuerza o interacción nuclear fuerte, unas 102 veces mayor que la electromagnética, y aparece sólo entre hadronespara mantener a los nucleones confinados dentro del núcleo. Actúa a una distancia tan corta como 10-15 metros, o lo que es lo mismo, 0’000000000000001 metros.

La interacción fuerte está mediada por el intercambio de mesones virtuales, 8 gluones que, como su mismo nombre indica (glue en inglés es pegamento), mantiene a los protones y neutrones bien sujetos en el núcleo, y cuanto más se tratan de separar, más aumenta la fuerza que los retiene, que crece con la distancia, al contrario que ocurre con las otras fuerzas.

 

 

La Importancia de aprovechar la luz solar | Enercity S.A.

 

La luz es una manifestación del fenómeno electromagnético y está cuantizada en “fotones”, que se comportan generalmente como los mensajeros de todas las interacciones electromagnéticas. Así mismo, como hemos dejado reseñado en el párrafo anterior, la interacción fuerte también tiene sus cuantos (los gluones). El físico japonés Hideki Yukawa (1907 – 1981) predijo la propiedad de las partículas cuánticas asociadas a la interacción fuerte, que más tarde se llamarían piones. Hay una diferencia muy importante entre los piones y los fotones: un pión es un trozo de materia con una cierta cantidad de “masa”. Si esta partícula está en reposo, su masa es siempre la misma, aproximadamente 140 MeV, y si se mueve muy rápidamente, su masa parece aumentar en función E = mc2. Por el contrario, se dice que la masa del fotón en reposo es nula. Con esto no decimos que el fotón tenga masa nula, sino que el fotón no puede estar en reposo. Como todas las partículas de masa nula, el fotón se mueve exclusivamente con la velocidad de la luz, 299.792’458 Km/s, una velocidad que el pión nunca puede alcanzar porque requeriría una cantidad infinita de energía cinética. Para el fotón, toda su masa se debe a su energía cinética.

 

Resultado de imagen de Trazas de rayos cósmicosResultado de imagen de Trazas de rayos cósmicos

 

Los físicos experimentales buscaban partículas elementales en las trazas de los rayos cósmicos que pasaban por aparatos llamados cámaras de niebla. Así encontraron una partícula coincidente con la masa que debería tener la partícula de Yukawa, el pión, y la llamaron mesón (del griego medio), porque su masa estaba comprendida entre la del electrón y la del protón. Pero detectaron una discrepancia que consistía en que esta partícula no era afectada por la interacción fuerte, y por tanto, no podía ser un pión. Actualmente nos referimos a esta partícula con la abreviatura μ y el nombre de muón, ya que en realidad era un leptón, hermano gemelo del electrón, pero con 200 veces su masa.

Antes de seguir veamos las partículas elementales de vida superior a 10-20 segundos que eran conocidas en el año 1970.

 

Nombre Símbolo Masa (MeV) Carga Espín Vida media (s)
Fotón γ 0 0 1
Leptones (L = 1, B = 0)
Electrón e 0’5109990 ½
Muón μ 105’6584 ½ 2’1970 × 10-6
Tau τ
Neutrino electrónico νe ~ 0 0 ½ ~ ∞
Neutrino muónico νμ ~ 0 0 ½ ~ ∞
Neutrino tauónico ντ ~ 0 0 ½ ~ ∞
Mesones (L = 0, B = 0)
Pión + π+ 139’570 2’603 × 10-8
Pión – π 139’570 2’603 × 10-8
Pión 0 π0 134’976 0’84 × 10-16
Kaón + k+ 493’68 1’237 × 10-8
Kaón – k 493’68 1’237 × 10-8
Kaón largo kL 497’7 5’17 × 10-8
Kaón corto kS 497’7 0’893 × 10-10
Eta η 547’5 0 0 5’5 × 10-19
Bariones (L = 0, B = 1)
Protón p 938’2723 + ½
Neutrón n 939’5656 0 ½ 887
Lambda Λ 1.115’68 0 ½ 2’63 × 10-10
Sigma + Σ+ 1.189’4 + ½ 0’80 × 10-10
Sigma – Σ 1.1974 ½ 7’4× 10-20
Sigma 0 Σ0 0 ½ 1’48 × 10-10
Ksi 0 Ξ0 1.314’9 0 ½ 2’9 × 10-10
Ksi – Ξ 1.321’3 ½ 1’64 × 10-10
Omega – Ω 1.672’4 0’82 × 10-10

 

Para cada leptón y cada barión existe la correspondiente antipartícula, con exactamente las mismas propiedades a excepción de la carga que es la contraria. Por ejemplo, el antiprotón se simboliza con  y el electrón con e+. Los mesones neutros son su propia antipartícula, y el π+ es la antipartícula del π, al igual que ocurre con k+ y k. El símbolo de la partícula es el mismo que el de su antipartícula con una barra encima. Las masas y las vidas medias aquí reflejadas pueden estar corregidas en este momento, pero de todas formas son muy aproximadas.

 

53 - TEORÍA CUÁNTICA de CAMPOS [ ISOSPIN - SU(2) ]

 

Los símbolos que se pueden ver algunas veces, como s (extrañeza) e i (isoespín) están referidos a datos cuánticos que afectan a las partículas elementales en sus comportamientos.

Debo admitir que todo esto tiene que sonar algo misterioso. Es difícil explicar estos temas por medio de la simple palabra escrita sin emplear la claridad que transmiten las matemáticas, lo que, por otra parte, es un mundo secreto para el común de los mortales, y ese lenguaje es sólo conocido por algunos privilegiados que, mediante un sistema de ecuaciones pueden ver y entender de forma clara, sencilla y limpia, todas estas complejas cuestiones.

 

Si hablamos del espín (o, con más precisión, el momento angular, que es aproximadamente la masa por el radio por la velocidad de rotación) se puede medir como un múltiplo de la constante de Planckh, dividido por . Medido en esta unidad y de acuerdo con la mecánica cuántica, el espín de cualquier objeto tiene que ser o un entero o un entero más un medio. El espín total de cada tipo de partícula – aunque no la dirección del mismo – es fijo.

El electrón, por ejemplo, tiene espín ½. Esto lo descubrieron dos estudiantes holandeses, Samuel Gondsmit (1902 – 1978) y George Uhlenbeck (1900 – 1988), que escribieron sus tesis conjuntamente sobre este problema en 1972. Fue una idea audaz que partículas tan pequeñas como los electronespudieran tener espín, y de hecho, bastante grande. Al principio, la idea fue recibida con escepticismo porque la “superficie del electrón” se tendría que mover con una velocidad 137 veces mayor que la de la luz, lo cual va en contra de la teoría de la relatividad general en la que está sentado que nada en el universo va más rápido que la luz, y por otra parte, contradice E=mc2, y el electrón pasada la velocidad de la luz tendría una masa infinita.

Hoy día, sencillamente, tal observación es ignorada, toda vez que el electrón carece de superficie.

 

Qué es un bosón? ¿y que es un bosón gauge? : Blog de Emilio Silvera V.

 

Las partículas con espín entero se llaman bosones, y las que tienen espín entero más un medio se llaman fermiones. Consultado los valores del espín en la tabla anterior podemos ver que los leptones y los bariones son fermiones, y que los mesones y los fotones son bosones. En muchos aspectos, los fermionesse comportan de manera diferente de los bosones. Los fermiones tienen la propiedad de que cada uno de ellos requiere su propio espacio: dos fermiones del mismo tipo no pueden ocupar o estar en el mismo punto, y su movimiento está regido por ecuaciones tales que se evitan unos a otros. Curiosamente, no se necesita ninguna fuerza para conseguir esto. De hecho, las fuerzas entre los fermiones pueden ser atractivas o repulsivas, según las cargas. El fenómeno por el cual cada fermión tiene que estar en un estado diferente se conoce como el principio de exclusión de Pauli. Cada átomo está rodeado de una nube de electrones, que son fermiones (espín ½). Si dos átomos se aproximan entre sí, los electrones se mueven de tal manera que las dos nubes se evitan una a otra, dando como resultado una fuerza repulsiva. Cuando aplaudimos, nuestras manos no se atraviesan pasando la uno a través de la otra. Esto es debido al principio de exclusión de Pauli para los electrones de nuestras manos que, de hecho, los de la izquierda rechazan a los de la derecha.

 

Resultado de imagen de Fermiones de espín semi-enteroLa presencia de fermiones aumenta la superfluidez de los bosones — Cuaderno  de Cultura Científica

 

En contraste con el característico individualismo de los fermiones, los bosones se comportan colectivamente y les gusta colocarse todos en el mismo lugar. Un láser, por ejemplo, produce un haz de luz en el cual muchísimos fotones llevan la misma longitud de onda y dirección de movimiento. Esto es posible porque los fotones son bosones.

Cuando hemos hablado de las fuerzas fundamentales que, de una u otra forma, interaccionan con la materia, también hemos explicado que la interacción débil es la responsable de que muchas partículas y también muchos núcleos atómicos exóticos sean inestables. La interacción débil puede provocar que una partícula se transforme en otra relacionada, por emisión de un electrón y un neutrino. Enrico Fermi, en 1934, estableció una fórmula general de la interacción débil, que fue mejorada posteriormente por George Sudarshan, Robert Marschak, Murray Gell-Mann, Richard Feynman y otros. La fórmula mejorada funciona muy bien, pero se hizo evidente que no era adecuada en todas las circunstancias.

 

Decay Paths for QuarksInteracción débil

Uno de los protones se transmuta en un neutrón por medio de la interacción débil, transformando un quark “up”, en “down”. Este proceso consume energía (el neutrón tiene ligeramente más masa que..

En 1970, de las siguientes características de la interacción débil sólo se conocían las tres primeras:

  • La interacción actúa de forma universal sobre muchos tipos diferentes de partículas y su intensidad es aproximadamente igual para todas (aunque sus efectos pueden ser muy diferentes en cada caso). A los neutrinos les afecta exclusivamente la interacción débil.
  • Comparada con las demás interacciones, ésta tiene un alcance muy corto.
  • La interacción es muy débil. Consecuentemente, los choques de partículas en los cuales hay neutrinos involucrados son tan poco frecuentes que se necesitan chorros muy intensos de neutrinos para poder estudiar tales sucesos.
  • Los mediadores de la interacción débil, llamados W+, W y Z0, no se detectaron hasta la década de 1980. al igual que el fotón, tienen espín 1, pero están eléctricamente cargados y son muy pesados (esta es la causa por la que el alcance de la interacción es tan corto). El tercer mediador, Z0, que es responsable de un tercer tipo de interacción débil que no tiene nada que ver con la desintegración de las partículas llamada “corriente neutra”, permite que los neutrinos puedan colisionar con otras partículas sin cambiar su identidad.

A partir de 1970, quedó clara la relación de la interacción débil y la electromagnética (electrodébil de Weinberg-Salam).

 

Resultado de imagen de La interacción fuerte

 

La interacción fuerte (como hemos dicho antes) sólo actúa entre las partículas que clasificamos en la familia llamada de los hadrones, a los que proporciona una estructura interna complicada. Hasta 1972 sólo se conocían las reglas de simetría de la interacción fuerte y no fuimos capaces de formular las leyes de la interacción con precisión.

Como apuntamos, el alcance de esta interacción no va más allá del radio de un núcleo atómico ligero (10-13 cm aproximadamente).

 

interacción nuclear | Mgmdenia's Blog

 

La interacción es fuerte. En realidad, la más fuerte de todas. Actúa como un muelle de Acero, cuanto más lo estiramos más se resiste. La Interacción fuerte es la única de las cuatro fuerzas que crece con la distancia. Si los Gluones se quieren separar, son agarros por los Gluones y los retienen allí confinados (son las entrañas de los nucleones).

Lo dejaré aquí, en verdad, eso que el Modelo Estándar de la Física, es feo, complejo e incompleto y, aunque hasta el momento es una buena herramienta con la que trabajar, la verdad es que, se necesita un nuevo modelo más avanzado y que incluya la Gravedad.

Y, a todo esto, esperemos que el LHC, dotado de más energía, pueda por fin encontrar al Gravitón

Emilio Silvera Vázquez

Si la Humanidad se extingue ¿Qué clase de vida dominará?

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo y la Vida    ~    Comentarios Comments (5)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

Aunque lo primero que nos viene a la cabeza son imágenes de «El Planeta de los simios», los primates se extinguirían antes que nosotros. Por el contrario, los animales que pasarían a gobernar nuestro planeta serían mucho más pequeños…

 

Resultado de imagen de El planeta de los simios

En un futuro postapocalíptico, ¿Qué pasaría con la vida si los humanos desapareciéramos? Al fin y al cabo, es probable que la especie humana se extinga mucho antes de que el sol se convierta en una gigantesca bola roja y acabe con todos los seres vivos sobre la faz de la Tierra.

Suponiendo que no acabemos antes con los demás seres vivos (algo poco probable a pesar de nuestra tendencia a hacer desaparecer especies), la historia nos dice que habrá cambios fundamentales una vez que los humanos dejemos de ser la especie animal dominante del planeta.

 

ᐉ Especies de hormigas | AntOnTop

                           Pudieran ser aspirantes si evolucionan en tamaño

Así que, si pudiésemos dar un salto en el tiempo hasta unos 50 millones de años después de nuestra desaparición, ¿Qué encontraríamos? ¿Qué animal o grupo de animales nos relevarían como especie dominante? ¿Nacerá un Planeta de los Simios como el de las películas? ¿O dominarán la Tierra los delfines, las ratas, los tardígrados, las cucarachas, los cerdos o las hormigas?

Esta pregunta ha dado lugar a muchas especulaciones, y numerosos escritores han hecho listas de especies candidatas. Sin embargo, antes de hacer conjeturas, debemos explicar a qué nos referimos con especies dominantes.

Limitémonos al reino animal

 

 

Pin pagePaseo por el reino oceánico donde las aves marinas t generativo ai | Imagen Premium generada con IAreino animal > aves > ejemplos de pájaros imagen - Diccionario VisualJuegos de Ciencias | Juego de Reino Bacteria | Cerebriti

 

Se podría decir que la era actual es la era de las flores. Sin embargo, al visualizar el futuro nadie se imagina a Audrey 2 de «La tienda de los horrores» (aunque los trífidos de la ficción tuvieran rasgos característicos de los animales, tales como un comportamiento depredador y la habilidad de moverse).

 

Esculturas de dos trífidos en las calles de Penza, Rusia

Esculturas de dos trífidos en las calles de Penza, Rusia – Triffid by Shutterstock

Limitémonos pues al reino animal, más por razones prácticas que filosóficas. Según ciertos criterios, el mundo siempre ha estado dominado por bacterias, a pesar de que la «era de las bacterias» acabó hace unos 1.200 millones de años. Pero no fue porque las bacterias dejasen de existir o porque disminuyese su predominio, sino porque tendemos a dar más importancia a los grandes organismos multicelulares que vinieron después.

 

Resultado de imagen de Gusanos cilíndricos que habitan en la TierraResultado de imagen de Gusanos cilíndricos que habitan en la Tierra

 

Según algunos cálculos, cuatro de cada cinco animales son nematodos (gusanos cilíndricos). Así que, con estos ejemplos, queda claro que ni la prevalencia, ni la abundancia, ni la diversidad son esenciales para ser la forma de vida dominante. En cambio, nuestra tendencia es pensar en organismos grandes y carismáticos.

Los mansos heredarán la Tierra ¿A quién se referiría?

 

Bienaventurados los mansos porque ellos heredarán la tierra' – Diario Octubre

No creo que serían ellos

 

Creo que serás igual que yo

En la imagen especular se puede ver que el niño ofrece su manita derecha al amiguito del espejo, y, éste, le devuelve el gesto ofreciendo su mano izquierda. ¿Qué puede explicar dicha discordancia?

Pero sigamos.

Hay un indiscutible grado de narcisismo en cómo los humanos designamos a las especies dominantes, al igual que una tendencia a otorgar este título a nuestros parientes cercanos. «El Planeta de los Simios» imagina que nuestros parientes primates podrían desarrollar el habla y adoptar nuestra tecnología si les diéramos el tiempo y el espacio suficientes.

El secreto de por qué los chimpancés son más fuertes que los seres humanos - BBC News Mundo

 

Los chimpancés y los humanos tuvieron un ancestro común que no era ni Homo ni Pan, de él divergieron las dos ramas, y, mientras uno continúa en la copa de los árboles, los otros, hablan de mecánica cuántica y tratan de llegar a las estrellas.

Pero es poco probable que las sociedades primates no humanas hereden nuestro dominio sobre la Tierra ya que, probablemente, los simios se extinguirán antes que nosotros. Ya somos el único homínido vivo que no está en peligro de extinción. Y no es probable que la crisis que podría acabar con nuestra especie dejase al margen a los otros grandes simios. De hecho, cualquier tipo de extinción que afecte a los humanos sería también peligrosa para aquellos organismos con similares necesidades fisiológicas básicas.

 

Vista de Las epidemias a lo largo de la historia | Antropología AmericanaLas 10 mayores pandemias de la Humanidad (y cómo se resolvieron) | El Correo

Nuestra ignorancia es grande, y, llegará un momento en el que no podamos hacer frente al destino

En cualquier momento podría aparecer una nueva pandemia mundial que acabara con la Humanidad.

Aunque los humanos sucumbiéramos a una pandemia mundial que afectara a pocos mamíferos, los grandes simios son, precisamente, las especies que más riesgo tienen de contraer nuevas enfermedades que podrían eliminarlos de la Tierra.

¿Podrá otro pariente, más distante, (primate, mamífero o de otra índole) desarrollar inteligencia y una sociedad similar a la nuestra? Eso tampoco parece probable. De todas las especies que, en teoría, han sido animales dominantes en algún momento, los humanos son únicos en su excepcional inteligencia y destreza manual. Se puede deducir, por tanto, que tales cualidades no son un requisito para ser la especie dominante ni para evolucionar. La evolución no favorece la inteligencia por sí misma, a no ser que esta lleve a un mayor nivel de supervivencia y de reproducción. Por lo tanto, es un grave error pensar que nuestros sucesores serán especialmente inteligentes, que serán seres sociales, que podrán hablar o que serán expertos en tecnología.

 

Resultado de imagen de ¿Cuál podría ser la especie dominante dentro de 50 millones de añosResultado de imagen de ¿Cuál podría ser la especie dominante dentro de 50 millones de añosResultado de imagen de ¿Cuál podría ser la especie dominante dentro de 50 millones de añosResultado de imagen de ¿Cuál podría ser la especie dominante dentro de 50 millones de añosResultado de imagen de ¿Cuál podría ser la especie dominante dentro de 50 millones de añosResultado de imagen de ¿Cuál podría ser la especie dominante dentro de 50 millones de añosResultado de imagen de lobos y delfines

 

No parece que ninguna de estas especie tenga las condiciones necesarias para reinar en el planeta

Así que, ¿podemos afirmar algo sobre la especie dominante 50 millones de años después de la extinción del ser humano? La respuesta es tan decepcionante como sorprendente. Podemos estar bastante seguros de que no será un chimpancé parlante, pero no tenemos ni idea de qué será.

 

Extinción masiva - Wikipedia, la enciclopedia libreEl cambio climático podría provocar una extinción masiva en los océanos

La Tierra ha visto gran número de extinciones masivas a lo largo de su historia. La diversificación de la vida tras cada suceso siempre ha sido relativamente rápida y la adaptación de las nuevas especies produjo nuevas formas de vida muy diferentes a las que las engendraron tras sobrevivir a la extinción anterior.

 

La verdadera historia de los dinosaurios - Alan CharigViaje al Jurásico ibérico: dinosaurios que vivieron en 'España'

 

Las pequeñas criaturas que corrían bajo los pies de los dinosaurios a finales del periodo Cretáceo eran muy diferentes de los osos de las cavernas, de los mastodontes y de las ballenas descendientes de la Era de los Mamíferos. Asimismo, los reptiles que sobrevivieron a la extinción masiva del Pérmico-Triásico hace unos 250 millones de años, que acabó con el 90% de las especies marinas y con el 70% de las terrestres, tampoco se parecían a los pterosaurios, dinosaurios, mamíferos y pájaros que descendieron de ellos.

 

 

En «La vida maravillosa: Burgess Shale y la naturaleza de la historia», el difunto Stephen J. Gould defendía que el azar, o la contingencia, como él solía decir, tuvo un papel muy importante en las grandes transiciones de la vida animal. Hay margen para discutir sobre la importancia relativa de la contingencia en la historia de la vida, que sigue siendo un tema controvertido hoy en día. Sin embargo, la percepción de Gould de que difícilmente se puede presagiar la supervivencia de las razas modernas tras una futura extinción es una lección de humildad sobre la complejidad de las transiciones evolutivas.

Aunque podría ocurrir que las hormigas nos releven en el dominio de la Tierra, tal y como se ha especulado, es imposible que sepamos cómo serán esas hormigas dominantes descendientes de las actuales.

 

En el carbonífero, los insectos gigantes dominaban la Tierra — El Mercurio Web | Noticias, Información y AnálisisEl reino de los insectos gigantes

Seguro que deben existir planetas con insectos gigantes por tener alta Gravedad

Claro que… De acuerdo con estudios científicos, el tamaño gigantesco que los insectos alcanzaron hace unos 300 millones de años durante el final del Carbonífero y principios del Pérmico se debió al mayor contenido de oxígeno y no a la gravedad de la Tierra que no ha variado.

El Futuro es impredecible y nunca sabremos que forma de vida predominará en el planta cuando la Humanidad se extinga

Emilio Silvera Vázquez