lunes, 28 de octubre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El Universo siempre asombroso

Autor por Emilio Silvera    ~    Archivo Clasificado en El Universo misterioso    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Los dos grandes retos que los Astrónomos habían tenido desde siempre habían sido medir las distancias a las estrellas y averiguar su composición. Como sabéis, el primero de los problemas se solucionó al utilizar las Cefeidas, estrellas de brillo variable, como estándares. Estas estrellas habían sido estudiadas por la americana Henrietta Leavitt, y en 1912 había conseguido relacionar la magnitud absoluta (brillo intrínseco de una estrella) con el período de su oscilación luminosa. Para llegar al lugar de Observación, las cosas no eran fáciles y, los caminos que llevaban hasta el Observatorio eran peligrosos.

Mount Wilson Observatory located in California

                                      Post Card

         P-69 Mount Wilson Observatory, CA

Teniendo en cuenta esta Ley, Edwin Hubble había detectado en 1925 en el Mount Wilson Observatory doce cefeidas en la “Nebulosa” de Andrómeda que las situaban a una distancia mayor que el tamaño de nuestra Galaxia. Esto rompía todas las expectativas, ya que en ese momento se pensaba que todo el Universo estaba contenido en la Vía Láctea.

 

Henrietta Swan Leavitt – Gaudir la Cultura

Henrietta Swan Leavitt

Hagamos un alto en el camino para hacer justicia y dar al Cesar lo que es del Cesar, es decir, el mérito del descubrimiento de las estrellas Cefeidas.

“Henrietta Swan Leavitt (Lancaster, Massachusetts4 de julio de 1868 – 12 de diciembre de 1921) fue una astrónoma estadounidense.

Leavitt estudió las estrellas variables Cefeidas, cuyo brillo varía a periodos regulares, en el Observatorio del Harvard College. Descubrió y catalogó estrellas variables en las Nubes de Magallanes, lo que le permitió descubrir en 1912 que las Cefeidas de mayor luminosidad intrínseca tenían largos periodos, mostrando una la relación entre ambos.

Un año después, Ejnar Hertzsprung determinó la distancia de unas pocas Cefeidas lo que le permitió calibrar la relación Periodo-Luminosidad. Por lo tanto, a partir de entonces, observando el periodo de una Cefeida se podría conocer su luminosidad (y magnitud absoluta) que comparándola con la magnitud aparente observada permitiría establecer la distancia a dicha Cefeida. Este método podría utilizarse también para obtener la distancia a otras galaxias en las que se observasen estrellas Cefeidas, tal y como lo hizo Edwin Hubble en los años 1920 con la galaxia deAndrómeda.”

 

Cómo identifico los elementos químicos? - Nueva Escuela Mexicana DigitalCómo identifico los elementos químicos? - Nueva Escuela Mexicana Digital

 

Cada elemento químico  tiene un espectro único. Cada elemento produce su propio espectro, diferente al de cualquier otro elemento; esto significa que cada elemento tiene su propia firma espectral, a lo que también se conoce como su huella digital

 

http://www.definicionabc.com/wp-content/uploads/2015/02/efecto-doppler.jpg

Si el objeto se aleja se verá en rojo y si se acerca en azul

Así que el segundo reto había llevado a los astrónomos a estudiar el espectro de la luz que emiten las estrellas. Aunque en esa época la técnica espectroscópica era muy rudimentaria, comenzó a dar sus frutos. Uno de ellos vino de la mano de Vesto Slipher, quien en la conferencia que impartió en el Lowell Observatory de Flagstaff (Arizona), en junio de 1925, anunció que el espectro de la luz que había recogido en la mayor parte de las galaxias estaba desplazado hacia el rojo. No se sabía a ciencia cierta lo que esto podía significar, pero Harlow Shapley, apoyado en el Efecto Doppler, consideró que ese corrimiento hacia el rojo era consecuencia de que las galaxias se desplazaban.

 

Evolución del Universo - Instituto Milenio de Astrofísica MAS

Un Universo eterno en su evolución

Georges Lamaìtre irrumpió en ese escenario tímidamente, como un estudiante de postgrado. Había nacido a finales del siglo XIX en el sur de Bélgica. Era el mayor de cuatro hermanos. Su padre había estudiado Derecho en la Universidad de Louvain y tenía una fábrica de vidrio. Georges comenzó la carrera de Ingeniero de Minas en Lovaina, pero sus estudios se vieron interrumpidos al estallar la Primera Guerra Mundial, en la que participó como artillero. Al acabar el conflicto bélico, regreso a las Aulas, pero no para continuar sus estudios de Ingeniería, sino que, se matriculó de en el segundo ciclo de Física y Matemáticas. A su término, ingresó en el Seminario de Malinas y en 1923 recibió las Órdenes sagradas.

 

Lemaitre.jpg

Georges Lemaître en 1933, durante una de sus exposiciones.

Su condición de sacerdote no le impidió continuar en su carrera científica y pidió ser admitido como estudiante investigador de Astronomía en el Royal Observatory de Greenwich para el curso 1923-24. Allí fue alumno de Eddintong, que le enseñó a conjugar la Astronomía con la Teoría de la Relatividad. No dejó de estar al día con todos y cada uno de los adelantos y experimentos que se realizaban en aquel campo de la Astronomía Cosmológica.

En 1926, el Jurado de su Doctorado le comunicó que su tesis contenían todos y cada uno de los requisitos exigidos para su admisión y, resaltaban su grado de madurez matemática. En 1927, publicó un trabajo en el que presentaba una solución a las ecuaciones de la Relatividad general y que explicaba el Universo en su Conjunto.

 

 

Cuando escribió el trabajo no tenía noticias de trabajos previos de Friedmann, pues estaban escritos en ruso o alemán, y ninguno de los modelos ni soluciones que conocía hasta entonces le convencían: el de Einstein contenía materia, pero era estático; el de De Sitter ajustando la constante cosmológica: un universo de simetría esférica era dinámico pero carecía de materia. Al considerar que la densidad de materia podía variar en el tiempo, Lamaítre propuso una solución intermedia entre la de Einstein y la de De Sitter ajustando la constante cosmológica: un universo de simetría esférica, eterno y en evolución. Con ese modelo no sólo buscaba una solución matemática correcta, sino que fuera compatible con la Física, al dar explicación a las observaciones astronómicas.

 

Edwin Hubble - Wikipedia, la enciclopedia libre

          Edwin Hubble

Años más tarde, Hubble hizo la misma propuesta que hoy conocemos como  Constante de Hubble. Así que, el trabajo de Lamaítre pasó muy desapercibido y ello, le obligó a darlo a conocer para que, al menos, se le diera el mérito a que era acreedor por justicia. Lamaítre consideró que el universo estaba en expansión exponencial con un pasado infinito, donde su tamaño, era casi constante en un primer momento, para luego crecer rápidamente.

Hubble era un hombre alto , elegante e imperioso, con una elevada opinión de su lugar potencial en la historia. Hubble lograba que todo lo que hacía pareciera hacerlo sin esfuerzo -había sido una gran figura del atletismo en pista, boxeador, becario en Oxford y abogado antes de ser astrónomo-, y una de las cosas que menor esfuerzo le costaba era enfurecer a Shapley. Hubble sacó docenas de fotografias de M33 y su vecina M31, la espiral de Andrómeda, y halló en ellas lo que más tarde llamó “densos enjambres de imágenes que en ningún aspecto difieren de las estrellas ordinarias”.

Fotografía cedida por la NASA  y captada por el satélite "Galaxy Evolution Explorer" (Galex), que muestra una estela extraordinariamente larga, parecida a la de un cometa y procedente de la estrella "Mira", que deja un rastro de 13 años luz o 20.000 veces la distancia media que separa a Plutón del Sol. Los responsables de la investigación coincidieron hoy en señalar que "nunca se ha visto algo similar alrededor de una estrella".

Mira, la estrella cometa

Fotografía cedida por la NASA y captada por el satélite “Galaxy Evolution Explorer” (Galex), que muestra una estela extraordinariamente larga, parecida a la de un cometa y procedente de la estrella “Mira”, que deja un rastro de 13 años luz o 20.000 veces la distancia media que separa a Plutón del Sol. Los responsables de la investigación coincidieron.

 

El mayor mapa 3D del universo jamás creadoPresentan el mapa más grande del universo en 2d: contiene miles de millones  de galaxias

 Queremos configurar el universo y hacemos mapas de las galaxias…

La cosmología, a pesar del paso del tiempo, continúa siendo una disciplina interesante, basada en la astronomía y la física. Tenemos la necesidad de saber cómo es nuestro mundo (el universo), incluso si esa visión es inexacta o incompleta. Los antiguos indúes, babilonios y mayas combinaron la ciencia con la religión y las estructuras sociales para completar la imagen. Pensar que ahora nosotros, hacemos algo diferente es, engañarnos a nosotros mismos. Si la cosmología moderna parece ajena a la religión, esto es porque las hemos convertido en una auténtica religión secular. Ahora, el sitio de los dioses, es ocupado por el Universo mismo, la Naturaleza sabia que tratamos de comprender.

A diferencia de los físicos o los químicos que aceptan gustosos los desafíos de sus paradigmas, los cosmólogos modernos son lagashianos, es decir, defienden el modelo que ellos han elegido frente a cualquier prueba que vaya contra él. Como dijo el físico ruso Lev Landau: “Los cosmólogos caen a menudo en errores, pero nunca dudan”.

 

 

El mundo de la cosmología ortodoxa del Big Bang no soporta a los disidentes y, desde luego, hay muchos y la historia nos habla de ellos. Por poner un ejemplo, me referiré al conocido protegido de Hubble, Halton Arp, educado en Harvard y Caltech que nunca renunció al rigor intelectual de su mentor y, en consecuencia, sostenía que los corrimientos hacia el rojo no demostraban necesariamente la existencia de un universo en expansión. Todos conocemos la calidad que como astrónomo tenía Arp y de sus renombrados descubrimientos que, en su día, llenaron las primeras portadas de toda la prensa.

 

Interacting Galaxies Arp 147 | HubbleSite

Arp 147 es una pareja de galaxias en fuerte interacción localizada a unos 430 millones de años luz de la Tierra sobre la constelación de Cetus. La colisión entre ambos objetos, que una vez fueron una típica galaxia elíptica y una típica galaxia espiral, ha generado una onda expansiva de formación estelar intensa en lo que era la galaxia espiral, deformando este objeto de tal forma que ahora tiene una estructura claramente anular.

A veces, los objetos en el cielo que aparecen extraños o diferentes de lo normal, tienen una historia que contar que puede ser científicamente valioso. Esta fue la idea del catálogo de Halton Arp de Galaxias Peculiares que apareció en los años 1960. Uno de los raros objetos listados es Arp 261, que ahora ha sido fotografiado con mayor detalle que nunca usando el instrumento FORS2 en el Telescopio Muy Grande de ESO. La imagen contiene varias sorpresas.

 

arp 261

 

Arp 261 yace a 70 millones de años luz de distancia en la constelación de Libra. Su caótica y muy inusual estructura es creada por la interacción de dos galaxias. Aunque las estrellas individuales es muy raro que colisionen en este evento, ya que están muy alejadas unas de otras, las enormes nubes de gas y polvo ciertamente chocan a gran velocidad, lo que provoca nuevos cúmulos de calientes estrellas. Las órbitas de las estrellas existentes son dramáticamente alteradas, creando los remolinos que se extienden en la parte superior izquierda e inferior derecha de la imagen. Ambas galaxias eran probablemente enanas, no muy distintas que las Nubes de Magallanes que orbitan nuestra galaxia.

 

Descubren nueve galaxias enanas que orbitan la Vía Láctea

 

Viendo esas imágenes de increíble misterio, toda vez que esconden historias que tenemos que deducir de sus configuraciones, nos hacen caer en la cuenta de que, en realidad, todas nuestras cosmologías, desde las cosmologías sumerias y maya hasta la de los “expertos” actuales, están limitadas por una falta de visión que conlleva una enorme carencia de conocimientos. El que sabe, tiene una panorámica visual de la mente mucho más amplia que el que no tiene los conocimientos y, digamosló fuerte y claro: ¡Aún no sabemos! Innegable es que vamos avanzando y mucho pero, de ahí a decir que conocemos lo que el Universo es… hay un enorme abismo que necesita del puente del conocimiento para poder pasar al otro lado.

En los lejanos confines del Universo, a casi 13 mil millones años luz de la Tierra, unas extrañas galaxias yacen escondidas. Envueltas en polvo y atenuadas por la enorme distancia, ni siquiera el Telescopio Espacial Hubble es capaz de reconocerlas. Tendremos que esperar a su sustituto el James Webb.

 

1. An artist's conception of the James Webb Space Telescope, showing... |  Download Scientific Diagram

 

James Webb Space Telescope (JWST) artist’s conception (NASA). Sabiendo todo lo que nos ha traído el Hubble, esas imágenes que nos dejaron literalmente con la boca abierta por el asombro, ¿Qué no podrá traernos este nuevo ingenio que supera en mucho al anterior? Su nombre es en honor al segundo administrador de la NASA y, sus objetivos:

  • Buscar la luz de las primeras estrellas y galaxias formadas tras el supuesto big bang
  • Estudiar la formación y evolución de las galaxias
  • Comprender mejor la formación de estrellas y planetas
  • Estudiar los sistemas planetarios y los orígenes de la vida

 

CIENCIA, y el "Cosmos" del siglo XXI: COSMOS: Introducción al libro  original de Carl Sagan - Jesús Martínez FríasCarl Sagan, el gran divulgador científico - Zenda

 

En su obra Cosmos, Carl Sagan describe varios mitos antiguos de la creación, que son, según escribe este autor, “un tributo a la audacia humana”. Al tiempo que llama al Big Bang “nuestro mito científico moderno”, señala una diferencia crucial en el sentido de que “la ciencia se plantera así misma preguntas y podemos realizar experimentos y observaciones para tratar de comprobar nuestras teorías”.

Sin embargo, lo que está claro es que Sagan, se sentía muy atraído por la cosmología cíclica hindú, en la cual Brahma, el gran dios creador, consigue que un universo llegue a existir cuando el lo sueña.

 

http://djxhemary.files.wordpress.com/2010/11/500x_shutterstock_10780879.jpg

      ¿Qué universos soñaría Brahma? ¿Sería como este nuestro? ¿Tendrían vida?

Según el experto en religiones Mircea Eliade, durante cada día brahmánico, 4.320 millones de años para ser exactos, el universo sigue su curso. Pero, al comienzo del anochecer brahmánico, el dios se cansa de todo esto, bosteza y cae en un profundo sueño. El universo se desvanece, disolviendo los tres dominios materiales que son la Tierra, el Sol y los cielos, que contiene la Luna,  los planetas y la estrella Polar. (Hay cuatro dominios superiores a éstos que no se destruyen en este ciclo). La noche va pasando; entonces Brahma empieza a soñar de nuevo y otro universo empieza a existir.

 

El dios hindú Siva

Este ciclo de creación y destrucción continúa eternamente, lo cual se pone de manifiesto en el dios hindú Siva, señor de la danza que , que sostiene en su mano derecha el tambor que anuncia la creación del universo y en la mano izquierda la llama que. mil millones de años después, destruirá este universo. Hay que decir tambien que Brahma no es sino uno de los muchos dioses que también sueñan sus propios universos, es decir, ya por aquel entonces, se hablaba y creía en los multiversos.

 

 

Alrededor de todas aquellas configuraciones del Cosmos, como era de esperar, tenían muchos rituales y celebraciones. Cinco días después de terminar Sat Chandi Mahayajna, culto a la Energía Cósmica, empezará Yoga Poornima que es el culto a su contraparte, la Consciencia Cósmica, Shiva. Así, ambos eventos, cada uno único en su forma, rinden tributo a la figura materna y paterna del universo y crean un círculo completo de experiencia total. Al término de ambos eventos uno se siente saciado, completo y pleno.

Los 8.640  millones de años que constituyen el ciclo completo de un día y una noche en la vida de Brahma vienen a ser aproximadamente la mitad de la edad del Universo según los cálculos actuales. Los antiguos hindúes creían que cada día brahmánico duraba un kalpa, 4.320 millones de años, siendo 72.000 kalpas un siglo brahmánico, en total 311.040.000 millones de años. El hecho de que los hindúes fueran capaces de concebir el universo en miles  de millones de años (en ves de hablar de los miles de millones que se solían barajar en las culturas y doctrinas religiosas primitivas occidentales) fue, según Sagan, “sin duda una casualidad”. Desde luego es posible que fuera sólo cuestión de suerte. No obstante, la similitud entre la cosmolo´gia hindú y  la cosmología actual no me parece a mí una casualidad, allí subyace un elevado conocimiento.

 

Mitología Hindu: Claves para Entender sus Dioses y Tradiciones

 

Es posible que, aquellas teorías que si las trasladamos a este tiempo, en algunos casos no podríamos discernir si se trata de las ideas de entonces o, por el contrario son nuestras modernas ideas, con esos ciclos alternos de destrucción y creación, pudieran estar conectados y fuertemente ligados a nuestra psique humana que, al fin y al cano, de alguna manera que no hemos podido llegar a entender, está, ciertamente, conectada con el universo del que forma parte. Claro que, debemos entender y saber extrapolar los mensajes de entonces y trasplantarlos al aquí y ahora, y, aquellos redobles del tambor de Siva que sugieren el inmenso impulso energético repentino, podría ser muy bien lo que provocó nuestro Big Bang.

 

             Si es cierto, ¿Qué clase de objetos habrá en ese otro universo?

Recientemente, un prestigioso físico afirma haber hallado evidencias de un Universo anterior al nuestro, mediante la observación del fondo cósmico de microondas. Esto significaría que nuestro Universo no es único, sino que han existido otros universos con anterioridad, quizás un número infinito. Es un ciclo que hasta ahora solo se creía teórico, sin ningún tipo de prueba que lo respalde. Ahora parece haberse encontrado la primera.

 

 y

                 En el Universo, que es casi infinito para nosotros, existen muchas cosas que debemos conocer

El descubrimiento son unos extraños patrones circulares que pueden encontrarse en la radiación de fondo de microondas del WMAP (Imagen arriba), según un artículo recientemente publicado en ArXiv.org, donde Penrose explica el fenómeno, tras analizar los datos extraídos de estas anomalías. Concluye que es una clara prueba de que el espacio y el tiempo existen desde mucho antes de nuestro Big Bang hace 13.700 millones de años, que provienen de anteriores universos que podríamos llamar “eones”, de un ciclo que se lleva repitiendo desde el infinito.

 

 

Nos podemos imaginar, en un largo viaje en el tiempo hacia el pasados, todo lo que allí, en aquellas civilizaciones de pensaba acerca del Cosmos, las leyendas que se contaban para explicar los sucesos y con detalles, narrar lo que era el “mundo-universo” que ellos, en su ya inmensa imaginación, “dibujaban” de una forma muy similar a la nuestra (salvando las distancias), toda vez que, en lo esencial, muchas son las coincidencias de ayer y hoy. ¿Quiere eso decir que hemos adelantado muy poco? Todo lo contrario, hemos adelantado muchísimo para poder comprobar que, muchos de aquellos postulados, de hace miles de años, eran ciertos y apuntaban en la correcta dirección.

Emilio Silvera Vázquez

Teorías, masas, partículas, dimensiones…

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Enséñame de Ciencia - En física, las ecuaciones de campo de Einstein son un  conjunto de diez ecuaciones de la teoría de la relatividad general de  Albert Einstein, que describen la interacción

 

LA ECUACION DE SCHRÖDINGER

 

Una nos habla del Cosmos y de como el espacio se curva ante la presencia de masas, la otra, nos habla de funciones de ondas, entrelazamientos cuánticos, de diminutos objetos que conforman la materia y hacen posibles los átomos y la vida.

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “super-gravedad”, “super-simetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.

 

Grigori Perelmán - Wikipedia, la enciclopedia libre

La vida entre chinches del genio Perelman, el ruso que rechazó el millón de dólares del ‘nobel de las matemáticas’.

Los vecinos alucinados: “Que acepte y reparta la pasta, por lo menos”. Vive en el bloque de pisos donde reside con su madre en “el Bronx de San Petesburgo, y, en sus ratos libres, coge un canasto y un gancho y los vecinos lo ven caminar al campo para coger setas. Extraño personaje.

Uno de los logros más destacados de Perelman fue la resolución de la famosa Conjetura de Poincaré, un problema que desconcertó a los matemáticos durante más de un siglo y que se considera uno de los Problemas del Milenio, de hecho, el único de los siete que está resuelto.

Pero sigamos con lo que decíamos: “Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “super-gravedad”, “super-simetría”, “supercuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada”.”

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?).  Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal.  Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver. ¡Problema solucionado!

{\displaystyle \ell _{P}={\sqrt {\frac {\hbar G}{c^{3}}}}\approx 1.616199(97)\times 10^{-35}{\mbox{ metros}}}

La longitud de Planck (P) u hodón (término acuñado en 1926 por Robert Lévi) es la distancia o escala de longitud por debajo de la cual se espera que el espacio deje de tener una geometría clásica. Una medida inferior previsiblemente no puede ser tratada adecuadamente en los modelos de física actuales debido a la aparición de efectos de Gravedad Cuántica.

 

¿Quién puede ir a la longitud de Planck para “verla”? A distancias comparables con la longitud de Planck, se cree que están sucediendo cosas muy curiosas que rebasan ampliamente los límites de nuestra imaginación. A diferencia de la filosofía reduccionista que propone que lo más complejo está elaborado -axiomáticamente- a partir de lo más elemental, lo que está sucediendo en la escala de Planck no parece tener nada de elemental o sencillo.

Qué es la longitud de Planck y por qué marca un límite en nuestra  comprensión del Universo - BBC News Mundo

Qué es la longitud de Planck y por qué marca un límite en nuestra comprensión del Universo.

Al pensar en el Universo, nuestra mente tiende a irse a lo inimaginablemente inmenso, un espacio sin fronteras conocidas donde existe todo.

Sin embargo, es lo inimaginablemente diminuto lo que constituye las piedras angulares de esa inmensidad y ofrece la oportunidad de comprender cómo funciona.

Observando cómo se comportan sus componentes en las escalas más mínimas posibles podremos entender cómo se unen para crear este mundo y más.

Esa es una de las principales razones por las que hemos querido saber qué es lo más pequeño del mundo.

Y la respuesta a esa eterna pregunta ha evolucionado junto con la humanidad.

GAE UNAM: Gravitación y Altas Energías - Cuando uno empieza a estudiar  física, seguirle la pista a las unidades parece primero algo molesto; pero  pronto se vuelve una herramienta crucial. No tendría

 

“La longitud de Planck es la única escala de distancias que puede obtenerse de manera natural a partir de las constantes de la naturaleza. Son varios los argumentos que implican que, a la escala de Planck, los efectos de la gravedad y los de la mecánica cuántica deberían combinarse, por lo que cualquier experimento que permitiesen explorar las leyes de la física a tales distancias supondría un avance tremendo en física teórica. El problema reside en su ínfimo valor, del orden de 10-35metros. En los experimentos de física de partículas, sondear distancias cada vez más pequeñas requiere emplear energías más y más elevadas. Sin embargo, la energía necesaria para escudriñar la longitud de Planck se halla muchos órdenes de magnitud por encima de las posibilidades técnicas de los aceleradores presentes o futuros. La escala de distancias que podrá explorar el LHC, por ejemplo, puede estimarse en unos 10-19 metros.”

 

La realidad está impregnada de espuma cuántica, incluso la 'nada'

 En ese lugar nos encontramos con una especie de espuma cuántica

Se cree que a esta escala la continuidad del espacio-tiempo en vez de ir marchando sincronizadamente al parejo con lo que vemos en el macrocosmos de hecho está variando a grado tal que a nivel ultra-microscópico el tiempo no sólo avanza o se detiene aleatoriamente sino inclusive marcha hacia atrás, una especie de verdadera máquina del tiempo. Las limitaciones de nuestros conocimientos sobre las rarezas que puedan estar ocurriendo en esta escala en el orden de los 10-35 metros, la longitud de Planck, ha llevado a la proposición de modelos tan imaginativos y tan exóticos como la teoría de la espuma cuántica que supuestamente veríamos aún en la ausencia de materia-energía si fuésemos ampliando sucesivamente una porción del espacio-tiempo plano.

 

La exploración enigmática las dimensiones más altas surrealistas de la no |  Imagen Premium generada con IA

La exploración enigmática las dimensiones más altas. ¿No será otra solución como la que dió lugar al problema de la expansión de las galaxias, y, surgió la “materia oscura”?

La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa.  En el Hiperespacio, todo es posible.  Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.

Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas.  Todo debe ser contestado a partir de una ecuación básica.

¿Dónde radica el problema?

 

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el nuevo acelerador de partículas LHC que mencioné en páginas anteriores.

La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías.

¡Necesitamos algo más avanzado!

 

Cada partícula tiene encomendada una misión, la de Higgs, ya sabemos lo que dicen por ahí.

Se ha dicho que la función de la partícula de Higgs es la de dar masa a las Cuando su autor lanzó la idea al mundo, resultó además de nueva muy extraña.  El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo.  El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.

 

Resultado de imagen de Que hay más allá de los QuarksEnroque de ciencia: ¿Qué es el campo de Higgs? (1)

 

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs.  Las partículas influidas por este campo, toman masa.  Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético.  Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.

 

Cuál es la ecuación matemática más hermosa del mundo? - BBC News MundoEinstein y la belleza matemática — Cuaderno de Cultura CientíficaBelleza matemática: la identidad de Euler - Kumon España¿Qué es la masa y la famosa ecuación de Albert Einstein?

ADEMÁS DE SU BELLEZA… ¡DICEN TANTO CON TAN POCO!

Cuando los físicos hablan de la belleza de algunas ecuaciones, se refieren a las que, como ésta, dicen mucho con muy pocos caracteres. De hecho, puede que ésta sea la ecuación más famosa conocida en nuestro mundo.

Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo.  Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein.  La masa, m, tiene en realidad dos partes.  Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo.  La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos.  Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

 

El campo de Higgs se ha desestabilizado y podría destruir el Universo en  cuestión de segundos - Formato Siete

 

Pero la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo.  Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.

Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo.  El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta hace bien poco no teniamos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC cuando la buscaba). Pero el problema es irritante: ¿por qué sólo esas masas -Las masas de los W+, W, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

 

Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV.  Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-salam).  Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles.  En la unidad hay cuatro partículas mensajeras sin masa -los W+, W, Zº y fotón que llevan la fuerza electrodébil.  Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa.  La simetría se rompe espontáneamente, dicen los teóricos.  Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

 

Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que Gerard ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

Pero, encierra tantos misterios la materia que, a veces me hace pensar en que la podríamos denominar de cualuquier manera menos de inerte ¡Parece que la materia está viva!

Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas.

 

 

El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).

Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto.  Conocemos su masa y su carga negativa que responden a 9,1093897 (54) x 10-31 Kg la primera y, 1,602 177 33 (49) x 10-19 culombios, la segunda, y también su radio clásico: r0 = e2/mc2 = 2’82 x 10-13 m. No se ha descubierto aún ninguna partícula que sea menos cursiva que el electrón (o positrón) y que lleve  una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.

Lo cierto es que, el electrón, es una maravilla en sí mismo.  El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.

 

                  ¡No por pequeño, se es insignificante!

Recordémoslo, todo lo grande está hecho de cosas pequeñas.

En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo).  Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones*.

Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.

 

El fotón tiene una masa de 1, una carga eléctrica de o, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín).  La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.

Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales.  Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

 

Comparación entre la fuerza eléctrica y la fuerza gravitatoria

 

La fuerza electromagnética afecta los cuerpos eléctricamente cargados y es la fuerza involucrada en las transformaciones físicas y químicas de átomos y moléculas. Es mucho más intensa que la fuerza gravitatoria, tiene dos sentidos (positivo y negativo) y su alcance es infinito.

La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética.  Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón.  Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío.  Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.

 

Todo lo que hay que saber sobre las ondas gravitacionales: qué son, dónde  están y por qué no vamos a parar de hablar de ellas

Han llevado años captarlas, las ondas gravitatorias llevadas por el gravitón son débiles

Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea.  En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias.  Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general).  Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.

De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria.  La masa del gravitón es o, su carga es o, y su espín de 2.  Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.

 

 

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros.  Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones.

 

Espuma Cuántica - EcuRed

 

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo.  Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, limite_planck es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica.  El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.

 

Enséñame de Ciencia - En un Agujero Negro, si la variación de entropía es  cero, entonces la temperatura es infinita. En cambio, si la Temperatura es  cero, la variación de entropía seria

 

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles que no se pueden eliminar de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.

 

Minerales estratégicos Fluctuaciones del vacío cuántico - Minerales  estratégicos

 

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas.  En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita.  En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales.  Por debajo de 10-7 pascales se conoce como un vacío ultraalto.

No puedo dejar de referirme al vacío theta (vació θ) que, es el estado de vacío de un campo gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs).

 

El vacío no es la nada y tampoco está vacío”

 

El vacío theta es el punto de partida para comprender el estado de vacío de las teoría gauge fuertemente interaccionantes, como la cromodinámica cuántica. En el vacío theta hay un número infinito de estados degenerados con efecto túnel entre estos estados.  Esto significa que el vacío theta es análogo a una fundón de Bloch* en un cristal.

Se puede derivar tanto como un resultado general o bien usando técnicas de instantón.  Cuando hay un fermión sin masa, el efecto túnel entre estados queda completamente suprimido.

Cuando hay campos fermiónicos con masa pequeña, el efecto túnel es mucho menor que para campos gauge puros, pero no está completamente suprimido.

 

Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos y que son:

Los elementos transuránicos o elementos transuránidos son elementos químicos con número atómico mayor que 92, el número atómico del elemento uranio. ​ El nombre de trans-uránidos significa «más allá del uranio». Posición en la tabla periódica del uranio.

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobre pasando a la emisión de partículas alfa.

Emilio Silvera Vázquez

El momento del Big Bang, siempre será inalcanzable para nosotros

Autor por Emilio Silvera    ~    Archivo Clasificado en General    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Es cierto que la tecnología no deja de avanzar, y,. cuanto más logros alcanzamos, más rápidamente avanzará. Sin embargo, en la persecución de esa imagen del comienzo del Universo… ¡Pocas esperanzas tenemos de lograrla! Siendo cierto que  el avance exponencial de la tecnología es un hecho, también lo es que el Universo no deja de expandirse, lo que crea una especie de horizonte que nos impide “ver” ese comienzo.

Hablamos del “Borde” del Universo, del Big Bang, de la “materia y energía oscura”… ¿Pero son ciertas todas esas cuestiones (como otras muchas de las que hemos sacado a la luz por simples conjeturas y sin tener la más mínima prueba de la sus existencias?

Así somos, siempre hicimos lo mismo, cuando no sabemos conjeturamos y construimos teorías que, unas veces han sido confirmadas y otras han quedado hundidas en la niebla de nuestra ignorancia.