Archivo de la categoría "Noticias"
Dic
24
Hace algún tiempo ya que reproduje aquí esta noticia que ahora recordamos.
Ciencia de los Materiales
Más Oscuro Que el Color Negro
12 de Enero de 2011.
Un equipo de ingenieros de la NASA desarrolla actualmente un material más oscuro que el color negro y que ayudará a que los científicos logren realizar mediciones científicas difíciles de llevar a cabo, o consigan observar objetos astronómicos que hoy es difícil o imposible discernir, como por ejemplo planetas semejantes a la Tierra en órbita alrededor de otras estrellas.
El material ultraoscuro, basado en la nanotecnología, está siendo desarrollado por un equipo de diez expertos del Centro Goddard de Vuelos Espaciales de la NASA, en Greenbelt, Maryland.
Se trata de un delgado recubrimiento de nanotubos de carbono de pared múltiple, diminutos tubos huecos de carbono puro, aproximadamente 10.000 veces más delgados que un cabello humano. Los nanotubos tienen una multitud de usos potenciales, particularmente en la electrónica y en el campo de los materiales avanzados, gracias a sus propiedades eléctricas únicas y a su extraordinaria robustez. Pero en esta nueva aplicación, la NASA está interesada en usar la nanotecnología para ayudar a suprimir la luz errante que interfiere en las mediciones hechas con instrumental óptico.
Oct
15
Noticia en ABC Ciencia:
La súbita desaparición de la brillante corona de un Agujero Negro, asombra a los Astrónomos
En apenas un año, disminuyó su brillo en un factor de 10.000, para después volver poco a poco a su estado inicial
A 100 millones de años luz de la Tierra, astrónomos de varios observatorios se quedaron de piedra al comprobar cómo la brillante corona de un agujero negro supermasivo, el anillo ultrabrillante de partículas de alta energía a más de mil millones de grados de temperatura que rodea el agujero negro, desaparecía súbita y misteriosamente.
Aunque la causa de esta abrupta desaparición se desconoce, los investigadores creen que algo muy extraño debió de suceder. Algo como una estrella atrapada por la gravedad del agujero negro, “rebotando” a través la espiral de materiales en órbita y haciendo que todo a su alrededor, incluídas las partículas de alta energía de la corona, cayeran repentinamente al interior del agujero, desapareciendo para siempre.
El resultado de este proceso fue la sorprendente y precipitada disminución del brillo del agujero negro, que se redujo en un factor de 10.000 en menos de un año. El hallazgo se acaba de publicar en Astrophysical Journal Letters.
“Lo esperado es que cambios de luminosidad tan grandes sucedan en escalas de tiempo de muchos miles o de millones de años -asegura Erin Kara, del Instituto de Tecnología de Massachussetts (MIT) y coautora de la investigación-. Pero en este objeto el brillo cayó hasta 10.000 veces en un solo año, e incluso llegó a caer en un factor de 100 en apenas ocho horas, lo cual es totalmente desconocido y realmente alucinante”.
Tras la súbita desaparición de la corona, los investigadores continuaron observando el agujero negro, y vieron cómo empezaba de nuevo a juntar lentamente material alrededor de sus bordes exteriores para volver a formar su disco de acreción rotatorio, que a su vez empezó a emitir rayos X de alta energía cerca del horizonte de sucesos del agujero negro. De esta forma, y en apenas unos meses, el agujero negro generó una nueva corona, casi tan brillante como la original.
“Es la primera vez que vemos desaparecer una corona y volver a reconstruirse -prosigue Kara- y estamos viendo eso en tiempo real. Esto será realmente importante para comprender cómo la corona de un agujero negro se alimenta y se forma de la nada”.
Todo empezó con un destello
En marzo de 2018, los investigadores observaron un fuerte e inesperado destello en 1ES 1927 + 654, un núcleo galáctico activo, o AGN, que es un tipo de agujero negro supermasivo con un brillo superior al normal en el centro de una galaxia. El brillo del objeto aumentó súbitamente hasta 40 veces su luminosidad normal.
“Era un AGN que ya conocíamos -explica Kara-, pero no era demasiado especial. De repente, nos dimos cuenta de que este AGN corriente se volvía muy brillante, lo que llamó nuestra atención, y empezamos a apuntar hacia él muchos otros telescopios en muchas otras longitudes de onda para mirarlo”.
El equipo, en efecto, utilizó múltiples telescopios para observar el agujero negro en las bandas de rayos X, ópticas y de ondas ultravioleta. La mayoría de esos telescopios apuntaban periódicamente al agujero negro, por ejemplo registrando observaciones durante un día entero cada seis meses. El equipo del MIT, sin embargo, observó diariamente el agujero negro con el pequeño telescopio de rayos X NICER, de la NASA, instalado a bordo de la Estación Espacial Internacional y equipado con sensores y detectores diseñados y construidos por investigadores del propio MIT.
NICER el telescopio de rayos X
“NICER es genial -asegura Kara- porque es muy ágil”. Con él, el equipo podía “echar un vistazo” durante un rato cada día al agujero negro y dejar después libre el telescopìo para otras observaciones. Mirándolo tan a menudo, Kara y su equipo se dieron cuenta enseguida de que el agujero negro perdía rápidamente su corona, hasta que desapareció por completo. “Justo después de pasar por ese enorme estallido -recuerda la investigadora- vimos cómo la corona desaparecía. Se volvió indetectable, algo que nunca habíamos visto antes”.
La corona misteriosa
Los físicos no están del todo seguros de qué es lo que causa exactamente que se forme una corona alrededor de un agujero negro, pero creen que tiene algo que ver con la configuración de las líneas de campo magnñetico que atraviesan su disco de acreción. En las regiones externas del disco giratorio de material, esas líneas de campo tienen una configuración más o menos sencilla. Más cerca, sin embargo, y especialmente junto al horizonte de sucesos, la línea que una vez cruzada no permite que ningún objeto pueda volver a salir, la mayor energía de los materiales del disco puede hacer que las líneas del campo magnético se retuerzan y se rompan, para volver después a conectarse. Y esa maraña de energía magnética podría hacer girar partículas a toda velocidad alrededor del agujero, formando una corona que brilla extraordinariamente en el rango de los rayos X.
ç
Según los expertos, si nos encontráramos cerca de uno sentiríamos una fuerte atracción y fuerza que nos empujaría a caer en él, es decir, nos acabaría abduciendo. Una vez dentro, ya no habría vuelta atrás, la versión corta y resumida sería que nos moriríamos de manera inmediata.
Kara y sus colegas creen que si la corona realmente desapareció por culpa de una estrella descarriada, esa estrella fue primero destrozada por el tirón gravitacional del agujero, y sus restos esparcidos por todo el disco de acreción. Ese pudo ser el origen del brillante destello captado en 2018. Llamado por los astrónomos “interrupción de marea”, este evento habría provocado que gran parte del material del disco cayera repentinamente en el agujero negro. Y también habría podido hacer que las líneas de campo magnético “se volvieran locas“, hasta el punto de no poder ya generar y soportar una corona de alta energía.
Los astrónomos calcularon que para causar la desaparición de la corona, la estrella debió de estar dentro de un radio de aproximadamente 4 minutos luz del centro del agujero negro. Es decir, a unos 75 millones de km, justo al lado de “la bestia”.
Después de desaparecer, la corona se ha ido formando de nuevo. No es tan brillante como antes, pero los investigadores siguen observando por si se producen más sorpresas. “Queremos vigilarlo -asegura Kara-. Todavía está en ese estado inusual de alto flujo, y tal vez vuelva a hacer alguna locura, así que no queremos perdernos eso”.
Oct
10
Recreación de la espaguetización de una estrella. ESO/M. Kommesser
Se ha descubierto el destello luminoso ocasionado por la muerte de una estrella según es espaguetizada y desgarrada por un agujero negro. A ‘tan solo’ 215 millones de años luz de distancia, este es el más cercano de los eventos de su clase observados hasta la fecha, y del que se dispone de datos más detallados.
Un agujero negro se ‘come’ una estrella a una increíble velocidad. Imagen principal: El P13 ‘se come’ rápidamente a una estrella vecina que tiene una masa unas 20 veces mayor que la del Sol. Al mismo tiempo que lo hace produce un brillo intenso.
Todos los fenómenos asociados a los agujeros negros son sorprendentes, pero uno de los que más llama la atención es el conocido como ‘espaguetización’, que tiene lugar cerca de un campo gravitatorio muy intenso y muy in-homogéneo. Imaginemos por ejemplo a un desafortunado astronauta que se acerca a un agujero negro aproximando los pies más que la cabeza. La fuerza gravitatoria es mucho más intensa en sus pies que en la parte superior del cuerpo. Se producen unas descomunales fuerzas de marea que deformarán el cuerpo en sentido vertical, estirándolo y alargándolo como si fuese un espagueti.
Fuente: Noticia de prensa
Ago
11
Descubren como afecta al cerebro tu canción favorita.
Escuchar o tocar música nos ayuda a concentrarnos, favorece la memoria, pero además estimula varias áreas del cerebro y la producción de: Óxido nítrico, una sustancia vasodilatadora. Libera serotonina. Ayuda a reducir los niveles de cortisol, hormona responsable del estrés y la ansiedad.
Un estudio revela los efectos en el cerebro de nuestras melodías preferidas. Los resultados se han publicado en Scientific Reports, una de las revistas de la editorial Nature.
Los primeros acordes de nuestra canción favorita desencadenan un patrón común de actividad cerebral -se generan pensamientos y recuerdos- independientemente de la persona que disfrute de la melodía. Sin embargo, hasta ahora no se conocía cómo se produce dicha activación en el cerebro. Los hallazgos, publicados este jueves en Scientific Reports, una de las revistas de la editorial Nature, podrían explicar por qué diferentes personas describen sentimientos y recuerdos similares al escuchar su pieza musical favorita, tanto si es una composición de Beethoven o Eminem.
Para entender por qué la gente tiene experiencias comparables, el grupo de investigación estadounidense evaluó las diferencias en las redes funcionales del cerebro (utilizando imágenes de resonancia magnética funcional, fMRI) en 21 personas que escucharon diferentes tipos de música, incluyendo rock, rap, y melodías clásicas. Los científicos identificaron modelos consistentes de la conectividad cerebral asociada a las canciones favoritas y demostraron que un circuito importante en los pensamientos introspectivos -la red neuronal por defecto (Default Mode Network o DMN, en inglés)- se conecta más cuando se escucha la música preferida.
Como explica a Sinc Jonathan Burdette, profesor del Centro Médico Wake Forest Baptist (EE UU) y uno de los principales autores del estudio, “aunque no entendemos completamente lo que hace la DMN, es probable que tenga un papel importante en la determinación de quiénes somos y cómo encajamos en el mundo”. Los expertos se refieren a esto como pensamientos auto-referenciales. Según los autores, los resultados fueron inesperados “dado que las preferencias musicales son fenómenos individualizados y que la música puede variar mucho en complejidad rítmica, presencia o ausencia de la letra, consistencia, etc.”.
Canciones favoritas, viejas emociones
El trabajo pone de manifiesto que la escucha de una canción favorita altera la conectividad entre las áreas cerebrales auditivas y el hipocampo, una región responsable de la memoria y la consolidación de las emociones. Los expertos comprobaron así que al oír las melodías favoritas se produce una desconexión de las áreas de procesamiento de sonido del cerebro en las zonas de codificación de la memoria de dicho órgano. “Esto se debe probablemente a que al escuchar nuestra música favorita, no estamos creando nuevos recuerdos. Más bien, estamos aprovechando recuerdos y viejas emociones”, subraya Burdette.
Para los autores, estos hallazgos podrían tener importantes implicaciones en la terapia musical, sobre todo en la elección apropiada de la música capaz de involucrar a los circuitos cerebrales dañados.
Claro que, también se podría decir de lo que incide una buena poesía en nosotros, una pintura, o, si me apuráis… ¡Hasta una ecuación! Todo dependen del estado de ánimo y de la preparación del sujeto.
La Fuente: (¿)
Jul
18
La Mejor Evidencia Observable de la Primera Generación de Estrellas y las más lejanas del Universo
Vey Extremely Large Telescope de ESO, un equipo de astrónomos ha descubierto la galaxia más brillante encontrada hasta ahora en el universo temprano, hallando además evidencias de que, acechando en su interior, hay ejemplares de la primera generación de estrellas. Estos objetos masivos, brillantes y puramente teóricos hasta ahora, fueron los creadores de los primeros elementos pesados de la historia, los elementos necesarios para forjar las estrellas que nos rodean hoy en día, de los planetas que las orbitan y de la vida tal y como la conocemos. La galaxia recién descubierta, apodada CR7, es tres veces más brillante que la galaxia distante más brillante conocida hasta ahora.
El apodo de CR7 es la abreviatura de COSMOS Redshift 7, una medida de su ubicación en términos de tiempo cósmico. Fue inspirado por el gran futbolista portugués, Cristiano Ronaldo, conocido como CR7.
Los astrofísicos han teorizado durante mucho tiempo sobre la existencia de una primera generación de estrellas —conocida como estrellas de población III— que nacieron del material primordial del Big Bang. En otras palabras, las estrellas de población III estaban “libres de metales”, es decir, no contenían elementos más pesados que el hidrógeno y el helio. El nombre de población III surgió porque los astrónomos ya habían clasificado a las estrellas de la Vía Láctea como población I (estrellas como el Sol, ricas en elementos más pesados, o metales, que dominan el disco de la Galaxia) y población II (estrellas más viejas, con muy pocos metales y ubicadas en el halo y el bulbo de la Vía Láctea y en cúmulos globulares de estrellas).
El Sol es el objeto más grande del Sistema solar, y su masa alcanza más del 99% del sistema. Sin embargo, si lo comparamos con otras estrellas… ¡Resulta una estrella enana!
Debido a su composición primordial, las estrellas de población III habrían sido enormes (varios cientos o incluso mil veces más masivas que el Sol), muy calientes, grandes emisoras de radiación ionizante y habrían acabado explotando como supernovas después de tan solo unos dos millones de años. Estas estrellas son de enorme importancia cosmológica: son los principales candidatos para explicar la reionización del universo (época que tuvo lugar aproximadamente ochocientos millones de años después del Big Bang y durante la que las primeras estrellas y galaxias se hicieron visibles) y la producción de los primeros metales que enriquecieron químicamente generaciones estelares posteriores y el universo como un todo.
Simulación por ordenador de la formación de dos regiones de alta densidad, dos estrellas, unos 200 millones de años después del Big Bang. Fuente: R. Kaehler, M. Turk y T. Abel (SLAC).
A las primeras galaxias que albergarían estas estrellas se les llama galaxias de población III. Los modelos teóricos predicen que los cúmulos de estrellas de población III podrían tener entre uno y cien pársecs de diámetro, mientras que las nebulosas de gas ionizado por estos cúmulos podrían llegar a tener un tamaño de aproximadamente mil pársecs. A pesar de su sólido fundamento teórico, la existencia de estas estrellas aún no ha sido confirmada observacionalmente en ninguna galaxia. La búsqueda de la prueba física directa de la existencia de las primeras estrellas y galaxias no ha dado resultados contundentes hasta ahora. Encontrar estas estrellas es muy difícil: debieron tener una vida extremadamente breve y brillaron en un tiempo en el que el universo era en gran parte opaco a su luz. Sin embargo, debido a las altas temperaturas de las estrellas de población III predichas por los modelos, el gas ionizado por estas estrellas debe tener firmas espectrales tales como fuertes líneas de emisión de helio: la ionización total del helio requiere la presencia de objetos que emitan una radiación lo suficientemente intensa como para arrancar los dos electrones de sus átomos. Por ello, los astrónomos consideramos la línea de helio II un excelente rastreador de estrellas de población III y, en consecuencia, la utilizamos como un indicador (indirecto) de su existencia.
Impresionante imagen de una estrella recién nacida que lanza chorros gigantes – James Webb
Los astrónomos han teorizado durante mucho tiempo sobre la existencia de una primera generación de estrellas — conocida por los astrónomos como estrellas de población III — que nacieron del material primordial del Big Bang. Todos los elementos químicos más pesados (como oxígeno, nitrógeno, carbono y hierro, que son esenciales para la vida) se forjaron en el interior de las estrellas. Esto significa que las primeras estrellas debieron haberse formado a partir de los únicos elementos que existían antes de las estrellas: hidrógeno, helio y trazas de litio.
Estas estrellas de población III habrían sido enormes (varios cientos o incluso mil veces más masivas que el Sol — ardientes y efímeras —) y habrían acabado explotando como supernovas después de tan solo unos dos millones años. Pero hasta ahora la búsqueda de la prueba física de su existencia no había encontrado ninguna evidencia clara.
|
Impresión artística de CR7: la galaxia más brillante del universo temprano. Image Credit: ESO |
Un equipo dirigido por David Sobral, del Instituto de Astrofísica y Ciencias del Espacio, la Universidad de Lisboa (Portugal) y el Observatorio de Leiden (Países Bajos), ha utilizado el Very Large Telescope (VLT de ESO) para mirar hacia el universo antiguo, hacia un periodo conocido como reionización que tuvo lugar aproximadamente 800 millones de años después del Big Bang. En lugar de llevar a cabo un estudio profundo y limitado de un área pequeña del cielo, ampliaron su alcance para producir el sondeo más amplio de galaxias muy lejanas jamás elaborado.
El Very Large Telescope Project (VLT, literalmente Telescopio Muy Grande) es un sistema de cuatro telescopios ópticos separados, rodeados por varios instrumentos menores. Cada uno de los cuatro instrumentos principales es un telescopio reflector con un espejo de 8.2 metros.
Este amplio estudio se hizo utilizando el VLT con ayuda del Observatorio W. M. Keck y del telescopio Subaru, así como del Telescopio Espacial Hubble de NASA/ESA. El equipo descubrió — y confirmó — una serie de galaxias muy jóvenes asombrosamente brillantes. Una de ellas, bautizada como CR7, era un objeto excepcionalmente raro, sin duda la galaxia más brillante nunca observada en esa etapa en el universo. Con el descubrimiento de CR7 y de otras galaxias brillantes, el estudio ya suponía un éxito, pero una nueva revisión proporcionó más noticias emocionantes.
El VLT se encuentra en el Observatorio OParanal sobre el centro Paranal en la ciudad de Taltal, una montaña de 2.635 metros localizada en el desierto de Atacama, al norte de Chile.
Los instrumentos X-shooter y SINFONI, instalados en el VLT, descubrieron en CR7 una potente emisión de helio ionizado pero — crucial y sorprendentemente — ninguna señal de elementos más pesados en una brillante zona de la galaxia. Esto significó que el equipo había descubierto la primera evidencia válida de la existencia de cúmulos de estrellas de población III que habían ionizado el gas dentro de una galaxia en el universo temprano.
“El descubrimiento desafiaba nuestras expectativas desde el principio”, afirma David Sobral, “ya que no esperábamos encontrar una galaxia tan brillante. Entonces, al descubrir la naturaleza de CR7 paso a paso, comprendimos que no sólo habíamos descubierto la galaxia lejana más luminosa, sino que también nos dimos cuenta de que cumplía todas y cada una de las características esperadas de estrellas de población III. Esas estrellas fueron las que formaron los primeros átomos pesados que, en última instancia, nos ha permitido estar aquí. Realmente no hay nada más emocionante que esto”.
Dentro de CR7 se encontraron cúmulos de estrellas más azules y un poco más rojas, indicando que la formación de estrellas de población III había tenido lugar por oleadas, tal y como se había predicho. Lo que el equipo observó de forma directa fue la última oleada de estrellas de población III, sugiriendo que tales estrellas deben ser más fáciles de encontrar de lo que se pensaba previamente: residen entre estrellas normales, en las galaxias más brillantes, no sólo en las galaxias más tempranas, más pequeñas y más tenues, que son tan débiles que son extremadamente difíciles de estudiar.
Jorryt Matthee, segundo autor del artículo, concluyó: “siempre me he preguntado de dónde venimos. Incluso siendo niño quería saber de dónde provienen los elementos: el calcio de mis huesos, el carbono de mis músculos, el hierro de mi sangre. Descubrí que estos se formaron primero en los inicios del universo, por la primera generación de estrellas. Con este notable descubrimiento estamos empezando a ver estos objetos por primera vez”.
Está previsto llevar a cabo observaciones con el VLT, ALMA y el Telescopio Espacial Hubble de la NASA/ESA para confirmar, más allá de toda duda, que lo que se ha observado son estrellas de población III y buscar e identificar otros ejemplos.
Bueno, Cristiano me cae bien, es un luchador y, lo que tiene, nadie se lo regaló. Sin embargo, de ahí a tener el honor de que una galaxia lleve su nombre… ¡No hizo mérito para tanto! dejemos que lo valoren en su ámbito profesional.
Emilio Silvera V.