Feb
17
¡Objetos misteriosos!
por Emilio Silvera ~
Clasificado en Agujeros negros ~
Comments (0)

Kip Thorne, especialista en Agujeros Negros e impulsor del Proyecto LIGO que localizó las ondas gravitacionales (por lo que le dieron el Nobel), nos cuenta en uno de sus libros, cómo algunos científicos especializados como él, pudieron despejar muchas de las incógnitas escondidas en los misteriosos objetos.
La idea de que Agujeros negros gigantes podían activar los cuásares y las radio-galaxias fue concebida por Edwin Salpeter y Yakov Borisovich Zel´dovich en 1964. Esta idea era una aplicación obvia del descubrimiento de dichos personajes de que las corrientes de gas, cayendo hacia un agujero negro colisionarían y radiarían.
Una descripción más completa y realista de la caída de corriente de gas hacia un agujero negro fue imaginada en 1969 por Donald Lynden-Bell, un astrofísico británico en Cambridge. Él argumentó convincentemente, que tras la colisión de las corrientes de gas, estas se fundirían, y entonces las fuerzas centrífugas las harían moverse en espiral dando muchas vueltas en torno al agujero antes de caer dentro; y a medida que se movieran en espiral, formarían un objeto en forma de disco, muy parecidos a los anillos que rodean el planeta Saturno: Un disco de Acreción lo llamó Lynden-Bell puesto que el agujero está acreciendo (todos hemos visto la recreación de figuras de agujeros negros con su disco de acreción).
En Cygnus X-1, en el centro galáctico, tenemos un Agujero Negro modesto que, sin embargo, nos envía sus ondas electromagnéticas de rayos X. En el disco de acreción, las corrientes de gas adyacentes rozarán entre sí, y la intensa fricción de dicho roce calentará el disco a altas temperaturas.
Imagen del quásar 3C273 captada por el telescopio espacial Hubble
“Un equipo de científicos de diferentes países, entre ellos Alemania, EE.UU. y Francia, han estudiado por primera vez con gran detalle el entorno del quásar 3C273 ubicado fuera de galaxia de la Vía Láctea, logrando medir la masa de su agujero negro con una precisión sin precedentes, según refleja su estudio, publicado en la revista Nature.”
En los años ochenta, los astrofísicos advirtieron que el objeto emisor de luz brillante en el centro de 3C273, el objeto de un tamaño de 1 mes-luz o menor, era probablemente el disco de acreción calentado por la fricción de Lynden-Bell.
Fue en 1963 cuando M. Schmidt identificó por primera vez al quasar 3C 273
Normalmente pensamos que la fricción es una pobre fuente de calor. Sin embargo, puesto que la energía gravitatoria es enorme, mucho mayor que la energía nuclear, la fricción puede realizar fácilmente la tarea de calentar el disco y hacer que brille con un brillo 100 veces mayor que la galaxia más luminosa.
¿Cómo puede un agujero negro actuar como un giróscopo? James Bardeen y Jacobus Petterson de la Universidad de Yale comprendieron la respuesta en 1975: si el agujero negro gira rápidamente, entonces se comporta precisamente como un giróscopo. La dirección del eje del giro permanece siempre firme fijo e inalterado, y el remolino creado por el giro en el espacio próximo al agujero permanece siempre firmemente orientado en la misma dirección.
Bardeen y Petterson demostraron mediante un cálculo matemático que este remolino en el espacio próximo al agujero debe agarrar la parte interna del disco de acreción y mantenerlo firmemente en el plano ecuatorial del agujero; y debe hacerlo así independientemente de cómo esté orientado el disco lejos del agujero.
A medida que se captura nuevo gas del espacio interestelar en la parte del disco distante del agujero, el gas puede cambiar la dirección del disco en dicha región, pero nunca puede cambiar la orientación del disco cerca del agujero. La acción giroscópica del agujero lo impide. Cerca del agujero el disco sigue y permanece siempre en el plano ecuatorial del mismo.
Sin la solución de Kerr a la ecuación de campo de Einstein, esta acción giroscópica hubiera sido desconocida y habría sido imposible explicar los cuásares. Con la solución de Kerr a mano, los astrofísicos de mitad de los años setenta estaban llegando a una explicación clara y elegante. Por primera vez, el concepto de un agujero negro como un cuerpo dinámico, más que un simple “agujero en el espacio”, estaba jugando un papel central en la explicación de las observaciones de los astrónomos.
¿Qué intensidad tendrá el remolino del espacio cerca de un agujero gigante? En otras palabras, ¿Cuál es la velocidad de rotación de los agujeros gigantes? James Bardeen dedujo la respuesta: demostró matemáticamente que la acreción de gas por el agujero debería hacer que el agujero girase cada vez más rápido. Cuando el agujero hubiera engullido suficiente gas en espiral para duplicar su masa, el agujero debería estar girando casi a su velocidad máxima posible, la velocidad más allá de la cual las fuerzas centrífugas impiden cualquier aceleración adicional. De este modo, los agujeros negros gigantes deberían tener típicamente momentos angulares próximos a su valor máximo.
En las imágenes podemos contemplar galaxias que se fusionarán y, sus agujeros negros centrales se harán gigantes
¿Cómo puede un agujero negro y su disco dar lugar a dos chorros que apuntan en direcciones opuestas? De una forma sorprendentemente fácil, reconocieron Blandford, Rees y Lynden-Bell en la Universidad de Cambridge a mediados de los setenta. Hay cuatro formas posibles de producir chorros; cualquiera de ellas funcionaria, y, aquí, donde se explica para el no versado en estos objetos cosmológicos, sólo explicaré el cuarto método por ser el más interesante:
El Agujero es atravesado por la línea de campo magnético. Cuando el agujero gira, arrastra líneas de campo que le rodean, haciendo que desvíen el plasma hacia arriba y hacia abajo. Los chorros apuntan a lo largo del eje de giro del agujero y su dirección está así firmemente anclada a la rotación giroscópica del agujero. El método fue concebido por Blandford poco después de que recibiera el doctorado de física en Cambridge, junto con un estudiante graduado de Cambridge, Roman Znajek, y es por ello llamado el proceso Blandford-Znajet.
Algunos dicen que en los agujeros negros está la puerta hacia la quinta dimensión (una idea peregrina), si miramos la manera en que ataca a una estrella vecina y la engulle, no creo que la lleve a dar una vuelta por esa quinta dimensión que imaginó Kaluza.
Este proceso es muy interesante porque la energía que va a los chorros procede de la enorme energía rotacional del agujero (esto debería parecer obvio porque es la rotación del agujero la que provoca el remolino en el espacio, y es el remolino del espacio el que provoca la rotación de las líneas de campo y, a su vez, es la rotación de las líneas de campo la que desvía el plasma hacia fuera.)
¿Cómo es posible, en este proceso Blandford-Znajet, que el horizonte del agujero sea atravesado por líneas de campo magnético? tales líneas de campo serían una forma de “pelo” que puede convertirse en radiación electromagnética y radiada hacia fuera, y por consiguiente, según el teorema de Price, deben ser radiadas hacia fuera. En realidad, el teorema de Price solo es correcto si el agujero está aislado, lejos de cualquier otro objeto.
Pero el agujero que estamos discutiendo no está aislado, está rodeado de un disco de acreción. Así que las líneas de campo que surgen del agujero, del hemisferio norte y las que salen del hemisferio sur se doblarán para empalmarse y ser una continuación una de otra, y la única forma de que estas líneas puedan entonces escapar es abriendo su camino a través del gas caliente del disco de acreción. Pero el gas caliente no permitirá que las líneas de campo lo atraviesen; las confina firmemente en la región del espacio en la cara interna del disco, y puesto que la mayor parte de dicha región está ocupada por el agujero, la mayoría de las líneas de campo confinadas atravesarán el agujero.
¿De donde proceden esas líneas de campo magnético? Del propio disco.
Cualquier gas en el Universo está magnetizado, al menos un poco, y el gas del disco no es una excepción. Conforme el agujero acrece, poco a poco, gas del disco, el gas lleva con él líneas de campo magnético. Cada pequeña cantidad de gas que se aproxima al agujero arrastra sus líneas de campo magnético y, al cruzar el horizonte, deja las líneas de campo detrás, sobresaliendo del horizonte y enroscándose. Estas líneas de campo enroscadas, firmemente confinadas por el disco circundante, extraerían entonces la energía rotacional del agujero mediante el proceso de Blandford-Znajet.
Los métodos de producir chorros (orificios en una nube de gas, viento de un embudo, líneas de campo arremolinadas ancladas en el disco, y el proceso Blandford-Znajet) actúan probablemente, en grados diversos, en los cuásares, en las radiogalaxias y en los núcleos característicos de algunos otros tipos de galaxias (núcleos que se denominan núcleos galácticos activos).
El 16 de marzo de 2013 se cumplió medio siglo del descubrimiento de que los cuásares eran objetos extra-galácticos muy brillantes y a enormes distancias de nosotros.
Si los cuásares y las radio-galaxias están activados por el mismo tipo de máquina de agujero negro, ¿Qué hace que parezcan tan diferentes? ¿Por qué la luz de un cuásar aparece como si procediera de un objeto similar a una estrella, intensamente luminoso y de un tamaño de 1 mes-luz o menos, mientras que la luz de radio-galaxias procede de un agregado de estrellas similar a la Vía Láctea, de un tamaño de 100.000 años-luz?
“Vista de radio galaxia NGC 4261 elíptico. La galaxia elíptica gigante NGC 4261 es una de las 12 galaxias más brillantes del cúmulo de Virgo, situado a 45 millones de años luz de distancia.”
Parece casi seguro que los cuásares no son diferentes de las radio-galaxias; sus máquinas centrales también están rodeadas de una galaxia se estrellas de un tamaño de 100.000 años luz. Sin embargo, en un cuásar el agujero negro central está alimentado a un ritmo especialmente elevado por el gas de acreción y, consiguientemente, el calentamiento friccional del disco es también elevado. Este calentamiento del disco hace que brille tan fuertemente que su brillo óptico es cientos o miles de veces que el de todas las estrellas de la galaxia circundante juntas.
Los astrónomos, cegados por el brillo del disco, no pueden ver las estrellas de la galaxia, y por ello el objeto parece “cuasi estelar” (es decir, similar a una estrella; como un minúsculo punto luminoso intenso) en lugar de parecer una galaxia.
La región más interna del disco es tan caliente que emite rayos X; un poco más lejos el disco está más frío y emite radiación ultravioleta; aún más lejos está más frío todavía y emite radiación óptica (luz); en su región mas externa está incluso más frío y emite radiación infrarroja. La región emisora de luz tiene típicamente un tamaño de aproximadamente un año-luz, aunque en algunos casos, tales como 3C273, puede ser de un mes luz o más pequeña.
Estas explicaciones para los cuásares y las radio-galaxias basadas en agujeros negros son tan satisfactorias que es tentador asegurar que deben ser correctas.
Ambos, Planck y Einstein, con su ingenio, nos abrieron las puertas de nuevos horizontes: El primero sembró la semilla de lo que sería la Mecánica Cuántica, y, el segundo, nos trajo una nueva Cosmología.
Está claro que hemos podido acceder a muchos conocimientos que no hace mucho tiempo eran impensables pero, las teorías de Einstein y Planck, deben ser sobrepasadas y debemos ir mucho más lejos, allí donde residen esas respuestas que hasta el momento nadie ha sabido dar y que responderán a preguntas que fueron posibles formular, gracias a Einstein y Planck, ya que, sin los conocimientos que ellos nos hicieron llegar, no podríamos intuir que hay muchas cosas que están más allá de sus postulados.
emilio silvera
Nov
4
¡Increíbles estructuras!
por Emilio Silvera ~
Clasificado en Agujeros negros ~
Comments (0)
Recreación artística de un agujero negro. /NASA/JPL-Caltech
Un enorme agujero negro, cien mil veces más masivo que el Sol, se ha encontrado detrás de una nube de gas tóxico que flota alrededor del corazón de la Vía Láctea. Este gigante invisible sería el segundo más grande que se ha visto en nuestra galaxia después de Sagitario A, el agujero negro super-masivo ubicado en su centro. El nuevo descubrimiento, publicado en Nature Astronomy es la mejor evidencia de una clase de agujeros negros de masa intermedia, cuya existencia podría explicar cómo crecen los agujeros negros super-masivos.
En el centro galáctico se observan estrellas que llevan más de 20 años dando vueltas alrededor del Agujero Negro que allí habita.
Imagen del centro de nuestra galaxia, la Vía Láctea, donde hay un agujero negro. Un agujero más masivo tendrá un mayor horizonte de sucesos (la frontera a partir de la cual nada, si siquiera la luz, puede escapar). Un agujero de 10.000 millones de soles en el centro de la Vía Láctea tendría un horizonte inmenso.
Los dos agujeros negros más masivos que se encontraron hasta la fecha fueron hallados en el corazón de dos galaxias gigantes, situadas a varios cientos de millones de kilómetros de la Tierra. Los agujeros negros tienen una masa más de 10 mil millones de veces mayor a la del Sol, un récord, indica un artículo publicado en la revista científica Nature.
Casi siempre la unión de dos agujeros negros gigantes vienen de la mano de la colisión de las galaxias que los contienen en su centro galáctico. Y, además de que la galaxia se transmuta en una sola mayor, el agujero también.
Localizan cientos de agujeros negros gigantes que no paran de crecer (Texto completo en: http://actualidad.rt.com/ciencias/view/55686-localizan-cientos-agujeros-negros-gigantes-paran-crecer) La noticia nos dice que la nueva concentración está tan alejada de la Tierra que está literalmente situada “al borde del Tiempo”, ya que algunos se encuentran a una distancia de varios miles de millones de años luz de la Tierra.

La estrella, bautizada como SO-102, está orbitando cerca del agujero negro situado en el centro de la Vía Láctea cada 11 años y medio terrestres, mucho más rápido que los 60 años o más que normalmente les lleva al resto de las estrellas orbitar alrededor del mismo. Esta es la segunda estrella descubierta que presenta una órbita tan corta, -la otra, SO-2, gravita alrededor del agujero negro cada 16 años- gracias a nuevas técnicas mejoradas de imagen.


Esta ilustración muestra las órbitas de los objetos en el sistema estelar triple HR 6819. El sistema consta de una estrella interior (órbita en azul) y un agujero negro (órbita en rojo), así como una tercera estrella en una órbita más amplia (también en azul).


Oct
23
Pululando por la Red
por Emilio Silvera ~
Clasificado en Agujeros negros, General ~
Comments (0)
Bienvenidos a mi sitio, soy Abdel Majluf, cosmólogo, investigador y divulgador científico. Durante el último tiempo, me he dedicando a investigar y encontrar respuesta a los misterios del Universo. Hoy que he aprendido a conocerlo un poco mas, quiero compartir esa información.





Una cosa debemos tener clara: Aún sabiendo muchas cosas sobre los Agujeros negros y de su procedencia, como funcionan, su “singularidad” y el Horizonte de sucesos, de cómo atrae a la luz y engulle a las estrellas vecinas… ¡Nos quedea mucho por saber.
Jun
21
Sagitario A
por Emilio Silvera ~
Clasificado en Agujeros negros ~
Comments (0)

MADRID, (EUROPA PRESS)
Los agujeros negros “no devoran todo lo que es lanzado hacia ellos”, según un estudio publicado en la revista ‘Science’ que se basa en la observación de Sagitario A, un agujero negro con 4 millones más de masa que el sol, situado a 26.000 años luz de la Tierra en la Vía Láctea.
“Contrariamente a lo que piensan algunas personas, los agujeros negros no devoran todo lo que es lanzado hacia ellos. Sagitario A* está aparentemente encontrando mucha comida difícil de engullir”, explica gráficamente Feng Yuan, investigador del Observatorio Astronómico de Shanghai y coautor del estudio.
Utilizando el teslescopio Chandra de rayos X de la NASA, los investigadores han descubierto que menos de un 1 por ciento del gas que rodea al agujero negro llega a alcanzar el punto de no retorno, también conocido como horizonte de sucesos, el lugar en el que es atrapada cualquier materia.
En lugar de eso, una gran cantidad de gases es expulsado antes de alcanzar el punto de no retorno. “La mayoría del gas debe ser lanzado fuera para que una pequeña parte pueda alcanzar el agujero negro”, explica Feng Yuan.
Este nuevo descubrimiento es el resultado de una ambiciosa campaña de observación con el teslescopio Chandra de rayos X que ha permitido a los investigadores recoger datos durante cinco semanas del agujero negro, el único descubierto hasta ahora los suficiente cerca de la Tierra como para poder observar en detalle lo que sucede a su alrededor.
Los investigadores captaron durante estas semanas imágenes de rayos X del gas supercaliente presente cerca del agujero negro. Según han podido observar los científicos, el agujero negro captura gas expulsado por estrellas cercanas y lo proyecta más allá de su punto de no retorno para que se enfríe y pueda ser absorbido.
El gas que tiene cerca Sagitario A* está muy caliente y difuso, por lo que es difícil para el agujero negro capturarlo y engullirlo, lo que convierte a este agujero negro de la Vía Láctea en “uno de los más fríos” vistos por el coautor del estudio Sera Markoff, de la Universidad de Amsterdam. Los agujeros negros capaces de activar cuásar y producir grandes cantidades de radiación tendrían a mano reservas de gases más fríos y densos que Sagitario A*, de acuerdo a la teoría de los investigadores.
La NASA ha señalado que el estudio tiene “importantes implicaciones en la comprensión de los agujeros negros”. Así por ejemplo, podría ayudar a enteder la sombra que se ve en el horizonte de sucesos que rodea a Sagitario A* y que contrasta con el brillo de la materia que envuelve al agujero negro.
May
14
¿Caer en un Agujero Negro? ¡Es la muerte!
por Emilio Silvera ~
Clasificado en Agujeros negros ~
Comments (5)

Kip Thorne posa frente a la sede de la Royal Society de Londres antes de la entrevista / CARMEN VALIÑO (EL PAÍS)
Kip Thorne (Logan, EE UU, 1940) es uno de los mayores expertos mundiales en agujeros negros. Hace algún tiempo también se convirtió en una estrella de la divulgación como asesor de Interstellar, la película que plantea una expedición humana a un agujero de gusano, seguida de una caída en un agujero negro, seguida de un viaje hacia la quinta dimensión. En su momento, este físico teórico del Instituto Tecnológico de California acudió a Londres para la presentación de la medalla Stephen Hawking (Un gran amigo suyo), impulsada por el Festival Starmus. Después de la ceremonia, el físico explicó a Materia sus próximos proyectos.
Pregunta. ¿Por qué cree que los agujeros negros son tan atractivos para la gente?
Respuesta. Bueno, son misteriosos, son extraños, llevan la marca personal de Stephen Hawking… Para los científicos, son únicos. Aunque se crearon por la implosión de una estrella, la materia desaparece en la singularidad en el centro del agujero negro. Por eso están hechos solo de tiempo y espacio curvos, no tienen materia, son completamente diferentes de ti y de mí.
P. Para Interstellar hizo cálculos reales de qué sucede si caes en un agujero negro. ¿Qué es lo más interesante que descubrió?
R. Lo más excitante fue ver cuál sería el aspecto de Gargantúa, el agujero negro. Es maravillosa, con ese halo alrededor y el disco que lo cruza. Otra cosa muy interesante es cuando Cooper [Matthew McConaughey] entra en el agujero negro. En ese momento dice: estoy cruzando el horizonte de sucesos [el punto de no retorno en un agujero negro]. Claro, nada escapa de un agujero negro, ni siquiera la luz, por lo que de frente no verías nada, pero, si miras atrás y ya estás dentro de él, sí verías el universo exterior. Y es una imagen maravillosa en la que el disco de gas caliente en torno al agujero negro es un anillo en el cielo que contiene al universo.
Los agujeros negros están hechos de tiempo y espacio curvo, no tienen materia, son completamente diferentes de ti y de mí”
P.¿Y qué pasa después?
R. Pues sabemos que hay tres singularidades diferentes dentro de un agujero negro. Una singularidad es un punto en el que la curvatura del espacio-tiempo se hace infinitamente fuerte. Hay una singularidad descubierta por tres físicos teóricos rusos alrededor de 1970.
Si caes en esa, estás totalmente destruido, te haces trizas de forma caótica y salvaje. Una segunda singularidad está hecha de todas las cosas que caen al agujero negro después de ti. Este material cae durante miles de millones de años, pero el tiempo va tan lento dentro de un agujero negro que todo ese material se te cae encima en una fracción de segundo, como si fuera una plancha. No me gustaría que eso me pasase. Cooper encuentra la tercera singularidad, que es la más débil de todas. Esta singularidad la causa todo lo que cayó al agujero negro antes que tú. Una fracción pequeña de todo ese material rebotará como si fuera una piedra que da saltos sobre el agua de un estanque. Esa pequeña fracción de toda la materia que cayó al agujero negro sale despedida y saca con él a Cooper en una fracción de segundo. Así que hay una posibilidad de que sobrevivas a un agujero negro.
P. ¿Qué será lo siguiente para usted en este campo?