Ene
3
Universo II
por Emilio Silvera ~
Clasificado en AIA-IYA2009 ~
Comments (0)
Refiriéndonos al silicio, que para nosotros es el más importante, señalaremos que las “moléculas” que dicho átomo forma con el oxígeno y otros átomos, generalmente metálicos poseyendo gran nivel de información, difieren en varios aspectos de las moléculas orgánicas, es decir, de las que poseen un esqueleto de átomos de carbono.
El mundo de los silicatos es de una gran diversidad, existiendo centenares de especies minerológicas. Esas diferencias se refieren fundamentalmente a que el enlace químico en el caso de las moléculas orgánicas es covalente, y cuando se forma la sustancia correspondiente (cuatrillones de moléculas) o es un líquido, como es el caso de los aceites, o bien un sólido que funde fácilmente. Entre las moléculas que lo forman se ejercen unas fuerzas, llamadas de Van der Waals, que pueden considerarse como residuales de las fuerzas electromagnéticas, algo más débiles que éstas. En cambio, en los silicatos sólidos (como en el caso del topacio) el enlace covalente o iónico no se limita a una molécula, sino que se extiende en el espacio ocupado por el sólido, resultando un entramado particularmente fuerte.
Al igual que para los cristales de hielo, en la mayoría de los silicatos la información que soportan es pequeña, aunque conviene matizar este punto. Para un cristal ideal así sería en efecto, pero ocurre que en la realidad el cristal ideal es una abstracción, ya que en el cristal real existen aquí y allá los llamados defectos puntuales que trastocan la periodicidad espacial propia de las redes ideales. Precisamente esos defectos puntuales podían proporcionar una mayor información.
Si prescindimos de las orgánicas, el resto de las moléculas que resultan de la combinación entre los diferentes átomos no llega a 100.000, frente a los varios millones de las primeras. Resulta razonable suponer que toda la enorme variedad de moléculas existentes, principalmente en los planetas rocosos, se haya formado por evolución de los átomos, como corresponde a un proceso evolutivo. La molécula poseería mayor orden que los átomos de donde procede, esto es, menor entropía. En su formación, el ambiente se habría desordenado al ganar entropía en una cierta cantidad tal, que arrojarse un balance total positivo.
Ene
3
Universo III
por Emilio Silvera ~
Clasificado en AIA-IYA2009 ~
Comments (0)
Hablemos de cuerpos.
Me referiré en primer lugar a los que constituyen nuestro entorno ordinario, que sería todo el entorno que abarca nuestro planeta. En segundo lugar considerare los demás cuerpos y objetos del universo. El análisis de muestras de esos diversos cuerpos ha puesto de manifiesto que, en función de la composición, los cuerpos pueden ser simples y compuestos. Los primeros son, precisamente, los llamados elementos químicos, a las que el insigne Lavoisier (conocido como padre de la química), consideró como el último término a que se llega mediante la aplicación del análisis químico.
Hoy sabemos que son colectividades de átomos isotópicos.
La mayoría de ellos son sólidos y se encuentran en la naturaleza (nuestro entorno terráqueo) en estado libre o en combinación química con otros elementos, formando los diversos minerales.
La ordenación de los iones en las redes se manifiesta externamente en multitud de formas y colores. No obstante debo señalar que, aun siendo abundante esta variedad, no es tan rica como la que corresponde a los cuerpos vivos, tanto animales como vegetales. La explicación se basa en que el número de especímenes moleculares y su complejidad son mucho mayores que en el reino inorgánico.
Sería conveniente, salir al paso de una posible interpretación errónea. Me refiero a que pudiera pensarse que los reinos que acabamos de mencionar constituyen clases disyuntas, esto es, sin conexión mutua. Y no lo digo porque esté considerando el hecho de que el carbono forma compuestos inorgánicos y orgánicos (lo que también hace el silicio), sino porque haya existido, y aún pueda existir, una conclusión, mejor conexión evolutiva del mundo inorgánico y el viviente que no se puede descartar, de hecho yo particularmente estoy seguro de ello. Estamos totalmente conectados con los ríos, las montañas y los valles, con la tierra que pisamos, el aire que respiramos y con todo el resto del universo del que formamos parte.
“Alexander Graham Cairns-Smith nació el 24 de noviembre de 1931 en Kilmarnock, Reino … La teoría de la arcilla es una hipótesis sobre el origen de la vida formulada en el año 1985 por Graham Cairns-Smith en la cual se manifiesta que la vida se … Una vez creados los cristales hijos, se pudo observar que los cristales “
La teoría de Cairns Smith considera que el eslabón entre ambos mundos se halla localizado en los microcristales de arcilla. Mi teoría particular es que no hay eslabón perdido en dicha conexión, sino que es el tiempo el que pone en cada momento una u otra materia en uno u otro lugar. Ahora nos ha tocado estar aquí como ser complejo, pensante y sensitivo. El eón que viene nos puede colocar formando parte de un enorme árbol, de un monte, o simplemente estar reposando como fina arena en el lecho de un río. Sin dudarlo, J. M. y P. formarán parte de un hermoso jardín perfumado y lleno de aromas que la brisa regalará a los que pasen cerca de allí.
El granito, por ejemplo, consiste básicamente en una mezcla de tres cuerpos compuestos: cuarzo, mica y feldespato. ¿Quién puede decir hoy lo que seremos mañana?
En todos los cuerpos que hemos estado considerando hasta ahora, las moléculas, los átomos o los iones se hallan situados en los nudos de la correspondiente red, así que, los electrones de esos individuos se encuentran también localizados en el entorno inmediato de esos lugares. Podríamos decir que la densidad electrónica es una función periódica espacial, lo que significa que al recorrer la red siguiendo una determinada dirección irían apareciendo altibajos, es decir, crestas y valles de la densidad electrónica.
La estructura de los cuerpos metálicos, así como las aleaciones, merecen una consideración especial. La estructura de los metales y aleaciones difiere de la de los demás cuerpos en un aspecto muy importante que consideraré a continuación.
Me refiero a que en los cuerpos metálicos existe una deslocalización de los electrones que están menos fuertemente enlazados en los correspondientes núcleos, es decir, de los electrones de valencia.
Vamos a precisar un poco. Supongamos, para fijar las ideas, que tenemos un trozo de plata metálica pura. En los nudos de la red correspondientes los átomos han perdido su electrón de valencia, pero ocurre que cada uno de estos electrones forma una colectividad que se halla desparramada o dispersa por todo el sólido. Una primera imagen de esta situación fue establecida por el gran físico italiano Enrico Fermi, por lo que se habla de un gas electrónico, llamado también de Fermi, que llenaría los espacios libres, es decir, no ocupados por los iones metálicos.
Este gas electrónico es el responsable de las propiedades metálicas, tales como el brillo, conductibilidades eléctrica y térmica, etc. La aplicación de la mecánica cuántica a la descripción del estado metálico conduce a la obtención del mapa de la densidad electrónica, o como decía antes, a las características de la información correspondiente.
Sin entrar en detalles que desviarían nuestra atención hacia otros conceptos fuera de los límites de lo que ahora estoy pretendiendo, utilizaré el mismo lenguaje que para las estructuras de núcleos y átomos.
Recordemos que en la sociedad de los nucleones y electrones existen las relaciones verticales y las de estratificación, que se manifiestan en las capas y subcapas. En el caso de los metales tendríamos una colectividad de núcleos, arropados con sus capas cerradas, ocupando los nudos de la red; únicamente los electrones de valencia de cada átomo forman la colectividad del gas electrónico.
La pregunta que nos debemos hacer es: ¿estos electrones, en número igual por lo menos al de los átomos, se hallan estratificados? La respuesta es que sí. Existe una estratificación de estos electrones en las llamadas bandas. El concepto de banda energética resulta de la consideración simultánea de dos aspectos: la cuantización energética (o la estratificación de los niveles energéticos en los átomos) y el grandísimo número de electrones existentes. Este colectivo no podría ubicarse en un número finito y escaso de niveles. Esta dificultad queda soslayada si se admite que cada uno de esos niveles atómicos de los n átomos que forman el cuerpo se funde en otros tantos niveles de cierta anchura donde ya pueden alojarse los electrones disponibles.
Esa fusión de los niveles atómicos da lugar a las bandas. Esta imagen equivaldría a considerar un metal como un átomo gigante en el que los niveles energéticos poseyeran una anchura finita.
En cuanto a la información que puede soportar un metal, podríamos señalar que sería parecida a la del correspondiente átomo, pero mucha más extendida espacialmente. Una información puntual, la del átomo, daría paso a otra espacial, si bien vendría a ser una mera repetición periódica de aquella.
¿Y los cuerpos que pueblan el resto del universo?
Ponerlo todo es imposible, y, además, tenemos a los seres vivos con millones de especies
Cuando un cuerpo sobrepasa unas determinadas dimensiones, aparece algo que conocemos como fuerza gravitatoria y que se deja sentir en la forma que todos conocemos y que da lugar primeramente a la fusión de los diversos materiales que forman los cuerpos.
Así, por ejemplo, en el cuerpo que llamamos Tierra, la presión crece con la profundidad, por lo que a partir de un determinado valor de ésta, aparece el estado líquido y con él una estratificación que trata de establecer el equilibrio hidrostático.
Dentro de nuestro sistema planetario se distinguen los planetas rocosos, hasta Marte y meteoritos inclusive, y el resto de ellos, desde Júpiter en adelante, incluido este. Estos últimos difieren esencialmente de los primeros en su composición. Recuérdese que la de Júpiter es mucho más simple que la de los planetas rocosos. Consta fundamentalmente de hidrógeno, helio, agua, amoniaco y metano, con un núcleo rocoso en su interior. El hidrógeno que rodea a este núcleo se encuentra en forma de hidrógeno atómico sólido.
También la composición del Sol (y todas las estrellas que brillan) es más simple que la de los planetas rocosos, su estado físico es el de plasma y su contenido está reducido (mayormente) a hidrógeno y helio. Más variedad de materiales existe en las estrellas supernovas, donde el primitivo hidrógeno ha evolucionado de la manera que expliqué en otra parte de este trabajo.
En cuanto a los derechos de la evolución estelar, enanas blancas, estrellas de neutrones y agujeros negros, señalaré que la composición de la primera es sencilla en cuanto al numero de “elementos” constituyentes; la segunda ya lo indica su propio nombre, constan de nucleones, particularmente neutrones que están fuertemente empaquetados (muy juntos) por la gravedad. Una estrella de neutrones puede tener una densidad superior a la del agua, en millones de veces y del mismo orden que la de los núcleos atómicos. El agujero negro es un fenómeno aparte, su inmensa fuerza gravitatoria es tal que ni la luz puede escapar de ella, es decir, su velocidad de escape es superior a 300.000 Km/s, y como según la relatividad nada es en nuestro universo superior en velocidad a la luz, resulta que nada podrá escapar de un agujero negro.
Allí dentro, en el interior del agujero negro, no existen ni el tiempo ni el espacio; es como un objeto que estando en nuestro universo (deja sentir su fuerza gravitatoria y engulle estrellas), al mismo tiempo no está aquí.
Desde el comienzo de este trabajo estoy tratando de relacionar el universo, la materia y la consciencia, claro que, conseguirlo es otra cosa.
emilio silvera
Dic
5
Nuestra estrecha relación con el Universo
por Emilio Silvera ~
Clasificado en AIA-IYA2009 ~
Comments (0)
Nuestra Galaxia y nuestras Mentes.
Estoy totalmente convencido de que de alguna manera, nuestras Mentes están conectadas con el Cosmos del que formamos parte. Estamos aquí y nos parece de lo más natural, nunca nos paramos a pensar en cómo fue eso posible, en cómo surgió el milagro. A partir de la materia “inerte” evolucionada surgen entes pensantes y vivos, ¿Cómo es posible tal maravilla? Hay que pensar (lo he referido en muchas ocasiones) que el material del que estamos hechos (nitrógeno, carbono, etc) se fabricó en las estrellas a partir del elemento más simple, el hidrógeno, que evolucionado a materiales más complejos llegaron hasta nuestro Sistema Solar primitivo en formación para constituirse en parte del planeta Tierra en el que, bajo ciertas condiciones atmosféricas, presencia de agua y de radiación cósmica, dio lugar al nacimiento de aquella primera célula capaz de reproducirse, que evolucionó hasta nosotros.
Estamos hechos de energía pura fabricada en las estrellas y nuestras mentes evolucionan formando parte de un universo en constante expansión del que, sin que nos demos cuenta, recibimos continuos mensajes que nos mantiene conectados a esa fuerza invisible que nos hace pensar para descubrir su fuente.
En algún momento breve he tenido la sensación de tener en mi mente la solución a un pensamiento continuado sobre un problema científico que me preocupa y quisiera conocer. La sensación de ese saber, de tener esa respuesta deseada, es fugaz, pasa con la misma rapidez que llegó. Me deja inquieto y decepcionado, estaba a mi alcance y no se dejó atrapar. Me ocurre con cierta frecuencia con distintos temas que me rondan por la cabeza. Sin embargo, esa luz fugaz del saber aparece y se va sin dejar rastro en mi mente que me permita, a partir de una simple huella, llegar al fondo de la cuestión origen del fenómeno.
Nov
8
Aplicando el sentido común
por Emilio Silvera ~
Clasificado en ¿Quiénes somos? ¿De donde venimos? ~
Comments (1)
Una gota en el infinito

- PEDRO G. CUARTANGO
Escribía Rafael Bachiller hace unos días que vivimos en un mundo altamente improbable, haciendo referencia al cúmulo de casualidades que ha hecho posible la vida sobre nuestro planeta.
Factores como la distancia del Sol, la temperatura, el agua, la radiación solar, la masa de la Tierra y la proliferación de algunos elementos químicos hicieron posible la aparición de seres vivos celulares y luego la evolución hasta el homo sapiens a lo largo de millones de años.
Dado que las leyes físicas son comunes en todo el universo, parece razonable creer en la hipótesis de que puede existir algún tipo de vida racional en lejanas galaxias, situadas a decenas o centenares de millones de años luz.
Según las últimas estimaciones, el universo tiene alrededor de un billón de galaxias, cada una con cientos de miles de millones de estrellas. Un grosero cálculo de posibilidades indica que podría haber decenas de miles de planetas con características muy similares a la Tierra.
Por ello, resulta verosímil la existencia de vida inteligente en el universo, aunque nuestro problema es que estamos tan lejos que no podemos comunicarnos. Si enviáramos hoy un mensaje que viajara a la velocidad de la luz, 300.000 kilómetros por segundo, tardaría cerca de tres millones de años en llegar a Andrómeda, la galaxia más cercana. De haber alguien que contestara nuestras señales, habría que esperar otros tres millones de años para conocer la respuesta. Por lo tanto, resulta inviable una iniciativa de esas características, dado el enorme tamaño del universo y la imposibilidad de comunicarse a una velocidad superior a la de la luz.
La conclusión que se extrae de todo esto es que con nuestros actuales medios podemos observar lo que ha sucedido hace mucho tiempo a enormes distancias de nuestro sistema solar pero no podemos comunicarnos. Es como si estuviéramos encerrados en una habitación y sólo pudiéramos ver parte del mundo exterior a través de una pequeña ventana.
A pesar de ello, los avances de la ciencia desde comienzos del siglo XX nos han permitido un conocimiento asombroso del universo hasta el punto de que hemos sido capaces de detectar los efectos de agujeros negros situados a millones de años luz.
Igualmente, hemos podido descubrir la existencia de la llamada materia oscura que, aunque ignoramos su naturaleza porque no interactúa con nada ni es observable, supone casi una tercera parte de la materia que forma el universo.
Todo ello nos abre unas posibilidades inexploradas, pero no modifica nuestra condición esencial: la breve duración de la existencia humana en relación a la escala universal del tiempo. El Big Bang se produjo hace más de 13.000 millones de años, una cifra que contrasta con los 10.000 años transcurridos desde el Neolítico, cuando el hombre descubrió la agricultura y empezó a vivir de forma sedentaria.
Si lo vemos con perspectiva, la historia del hombre representa un cortísimo intervalo temporal en relación a la edad del universo. Y el planeta es un punto minúsculo en un espacio inmenso por el no podemos desplazarnos, al menos, con el estado actual de nuestra tecnología.
Todo ello nos debería llevar a relativizar nuestra importancia y a darnos cuenta de la insignificancia de la especie humana en ese espacio-tiempo en el que se despliega todo lo existente.
Hemos magnificado nuestra importancia e incluso nos hemos sentido tentados a pensar que algún día seremos inmortales, pero los avances de la física nos ponen en nuestro lugar. Somos una gota de agua en el infinito océano del magma universal.
Jul
30
De como fuimos descubriendo los mecanismos celestes.
por Shalafi ~
Clasificado en AIA-IYA2009 ~
Comments (2)
Los cambios se estaban produciendo a una velocidad cada vez mayor. Al siglo de Newton también pertenecieron, entre otros, el matemático Fermat.
Römer, quien midió la velocidad de la luz
Grimaldi, que estudió la difracción
Torricelli, que demostró la existencia del vacío y otros secretos de la Naturaleza
Pascal y Boyle, que definieron la física de los fluidos…La precisión de los telescopios y los relojes aumentó notablemente, y con ella el número de astrónomos deseosos de establecer con exactitud la posición de las estrellas y compilar catálogos estelares cada vez más completos para comprender la Vía Láctea.
La naturaleza de los cuerpos celestes quedaba fuera de su interés: aunque se pudiera determinar la forma, la distancia, las dimensiones y los movimientos de los objetos celestes, comprender su composición no estaba a su alcance. A principios del siglo XIX, William Herschel (1738-1822), dedujo la forma de la Galaxia, construyó el mayor telescopio del mundo y descubrió Urano. Creía firmemente que el Sol estaba habitado.
Al cabo de pocos años, nacía la Astrofísica, que a diferencia de la Astronomía (ya llamada -“clásica o de posición”-), se basaba en pruebas de laboratorio. Comparando la luz emitida por sustancias incandescentes con la recogida de las estrellas se sentaban las bases de lo imposible: descubrir la composición química y la estructura y el funcionamiento de los cuerpos celestes. Estaba mal vista por los astrónomos “serios” y se desarrolló gracias a físicos y químicos que inventaron nuevos instrumentos de análisis a partir de las demostraciones de Newton sobre la estructura de la luz.