Ene
8
La ciencia en 2015: candidatos a ser hitos
por Emilio Silvera ~ Clasificado en Ciencia futura ~ Comments (1)
El superacelerador de partículas LHC, el fin del ébola, el genoma del hombre de Atapuerca o una visita a Plutón son algunas de las áreas de investigación a tener en cuenta en los próximos 12 meses, según la revista `Nature´
Nadie en ciencia tiene la osadía de anticipar un descubrimiento, pero los expertos sí que tienen olfato para saber dónde y qué áreas de investigación son más fértiles para la novedad provechosa. Una nueva instalación se abre con buenas perspectivas para atisbar lo nunca visto, una línea de trabajo puede estar acercándose a la culminación de logros acumulados, una nave espacial que llega a su destino puede fallar, o no, pero tiene potencialidad de aportar nueva información. El equipo de la revista científica Nature hace esta semana su pronóstico del año próximo. En su resumen Qué cabe esperar en ciencia en 2015, coordinado por Elisabeth Gibney, apuesta por el superacelerador de partículas LHC como primer candidato a profundizar en el conocimiento del universo, entre la decena de cuestiones científicas de las que merece mucho la pena estar pendientes, como el cambio climático, el fin de la epidemia de ébola, los nuevos medicamentos contra el colesterol, la llegada de una nave espacial a Plutón o el genoma de los humanos de Atapuerca.
Superacelerador LHC. Para el mes de marzo está previsto que el acelerador de partículas LHC, junto a Ginebra, empiece a funcionar de nuevo tras dos años de parada en los que se ha puesto a punto para aguantar casi el doble de energía en las colisiones de protones que genera, respecto a la fase anterior. Era ya la instalación de este tipo más potente del mundo y ahora irá mucho más lejos. El Laboratorio Europeo de Física de Partículas (CERN), junto a Ginebra, espera para mayo las primeras colisiones útiles para los experimentos. Si en 2012, los científicos descubrieron en el LHC el histórico bosón de Higgs, ahora esperan “desvelar fenómenos que cierren las fisuras del Modelo Estándar de física de Partículas”, recalca Nature. Además, “la popular [entre los físicos] teoría de supersimetrías, ya en duda, podría perder partidarios si el actualizado LHC no encuentra indicios las muchas partículas pesadas que dicha teoría predice”.
Algunas cifras y muchas galletas
- La inversión mundial en Investigación y Desarrollo (I+D) alcanzará, en 2015, los 1,55 billones de euros (frente a 577.000 millones en 2000; 780.000 millones en 2005 y un billón en 2010), indica un gráfico de la revista Nature que recoge las grandes cifras en ciencia y tecnología.
- Unos 10 millones de investigadores en todo el planeta y con una media de 50 horas semanales de trabajo, suman 2,9 millones de años de labor científica.
- En 2015 habrá en el mundo 260.000 nuevos doctores, se publicarán 920.000 artículos científicos (con un crecimiento del 2,8% de crecimiento anual) y los bancos genéticos habrán acumulado 1,5 billones de bases (las letras químicas del ADN), lo que equivale a unos 500 genomas humanos.
- En el capítulo de las curiosidades, Nature calcula que se consumirán 234.000 galletas en la estación científica estadounidense McMurdo, la mayor de la Antártida, y los investigadores se tomarán en todo el planeta mil millones de tazas de café, “su estimulante favorito”.
El pacto del clima. Para diciembre de 2015 está fijada una cita importante en la lucha contra el cambio climático: la conferencia anual que, en esta ocasión, se celebrará en París. El objetivo de la cumbre, tras el acuerdo alcanzado este año entre los dos países que son los mayores emisores de gases de efecto invernadero (EE UU y China) para reducir dicha contaminación climática, es alcanzar acuerdos vinculantes de control de las emisiones para después de 2020, señala Nature. Mientras tanto, recuerda, el nivel medio mundial de dióxido de carbono en la atmósfera terrestre puede superar las 400 partes por millón por primera vez desde hace millones de años.
Fin de la epidemia de ébola. Los expertos en salud esperan acabar con el actual brote de ébola que azota tres países de África Occidental: Sierra Leona, Liberia y Guinea Conakry. Esa victoria “requerirá medidas ya en marcha como la rápida detección [de casos] y el aislamiento de personas contagiadas”. Pero también, señalan los expertos de la revista, habrá que estar atentos a los ensayos de vacunas contra el virus (se esperan resultados para junio), así como a los medicamentos que se están probando. También destacan los tratamientos en estudio que utilizan sangre rica en anticuerpos de pacientes que han superado la infección para ayudar al sistema inmune de los enfermos.
Viajes espaciales a planetas enanos. Primero será Ceres el que reciba la visita de una nave espacial. Será la Dawn, de la NASA y llegará en marzo próximo a ese objeto del Sistema Solar, más masivo que se conoce del cinturón de asteroides que hay entre Marte y Júpiter. Luego, la nave New Horizons, también de la agencia espacial estadounidense, llegará a Plutón. Sobrevolará ese planeta enano y la máxima aproximación será el 14 de julio. Se espera una avalancha de nuevos datos sobre ese cuerpo rocoso, sus lunas y su atmósfera.
Grafeno y Biomedicina. Los centros de investigación que se abren, si están debidamente planificados, son una potencial fuente de descubrimientos importantes. En noviembre de 2015 abrirá sus puertas, en Londres, el Instituto Francis Crick, con 1.250 investigadores y una financiación de 817 millones de euros. Será un centro interdisciplinar orientado a la biomedicina. También en el Reino Unido, en concreto en Manchester, se inaugurará el Instituto Nacional del Grafeno. Financiado en parte por el Gobierno británico, es un elemento clave del plan de Manchester denominado Ciudad del Grafeno. En la universidad de esa ciudad trabajan con los científicos rusos Andre Geim y Konstantin Novoselov que, en 2010, recibieron el premio Nobel de Física por el descubrimiento del grafeno.
Ilustración de la nave espacial `New Horizons´ pasando junto a Plutón en julio de 2015. / Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute (JHUAPL/SwRI)
Medicamentos contra el colesterol. Varias empresas farmacéuticas compiten por sacar al mercado nuevos fármacos contra el colesterol que pueden ser aprobados en 2015. Las terapias que reducen la lipoproteína LDL actuando sobre la proteína PCSK9 han mostrado ser prometedores en los ensayos clínicos. Nature cita dos fármacos en concreto, uno de la californiana Amgen, y otro de la francesa Sanofi, que están pendientes de autorizaciones que podrían darse hacia el verano.
Ondulaciones del espacio-tiempo. Hacia finales de 2015 estarán listos para trabajar con mayor sensibilidad que hasta ahora dos grandes detectores estadounidenses de ondas gravitacionales del programa LIGO: uno en Richland (Washington) y otro en Livingstone (Luisiana). El objetivo es captar ondulaciones en el espacio tiempo predichas por Albert Einstein. Además, para el otoño está previsto el lanzamiento al espacio del LISA Pathfinder, de la Agencia Europea del Espacio (ESA). Es una misión de ensayos tecnológicos imprescindibles para lanzar al espacio, hacia 2034, un detector de ondas gravitacionales.
El genoma de Atapuerca. Tras un primer genoma (mitocondrial), anunciado en 2013, de los fósiles de la Sima de los Huesos, en Atapuerca (Burgos), de hace unos 400.000 años, los científicos esperan lograr ahora el genoma del núcleo de la célula. Puede ser este año, pese a que el reto es enorme dada la antigüedad de los huesos y el escaso ADN recuperable en ellos. “Pero los resultados pueden ayudar a clarificar la relación evolutiva entre los humanos, los neandertales y otro grupo remoto, los denisovanos, y a identificar episodios de cruce entre homínidos relacionados entre sí”, señala Nature.
Política científica. El Gobierno ruso se propone evaluar 450 institutos de investigación de la Academia Rusa de Ciencias. En el Reino Unido, las elecciones generales de mayo formarán un parlamento que decidirá acerca de permitir o no, por primera vez en el mundo, la fertilización in vitro de tres progenitores, una técnica que combina el material genético de tres adultos y que puede ser útil para tratar determinadas enfermedades hereditarias.
Observación oceánica. Dos nuevos buques de investigación estadounidenses comenzarán sus operaciones: el Sikuliaq ártico, de la Fundación Nacional para la Ciencia (NSF), y el Neil Armstrong de la Institución Oceanográfica Woods Hole. Alemania también estrenará buque científico, el Sonne, que repite el nombre de su antecesor. El sistema de la Iniciativa de Observación del Océano estará completo en 2015 para el estudio marino en tiempo real. Japón, por su parte, recuerda Nature, reiniciará probablemente la captura “científica” de ballenas en aguas antárticas después de la interrupción impuesta por la Corte Internacional de Justicia.
Hasta aquí la Noticia que he ido adornando con algunas imágenes acordes al tema. Sin embargo, no está todo lo que debería y, como pasa siempre, se dejan cosas importantes por detrás y, lo podemos considerar como una muestra incompleta de lo que fue y, de lo que será. Este 2.015 nos traerá descubrimientos asombrosos en algunas de las Disciplinas que practica el Ser humano en el campo de la Ciencia.
Habrá que estar muy atentos al sector de la robótica, de las naves espaciales que van a otros “mundos”, de los telescopios y sus descubrimientos, de las “cortinas” que se puedan descorrer en el campo de la Física y que dejará enfocar, sobre los ahora rincones oscuros, un rayo de luz para que nos lleve a la comprensión.
¡Estaremos esperando!
Oct
22
¡El cerebro! Siempre nos interesarán sus cosas
por Emilio Silvera ~ Clasificado en Ciencia futura ~ Comments (0)
IBM simula 500 mil millones de neuronas y 100 billones de sinapsis
En una simulación neuronal sin precedentes, IBM ha logrado simular 500 mil millones de neuronas y 100 billones de sinapsis. Para ello ha utilizado Sequoia, el segundo superordenador más grande del mundo con millón y medio de núcleos. Esto es una proeza computacional, pero tiene poco que ver con la neurociencia. Veamos por qué.
El departamento de Cognitive Computing de IBM en Almaden dirigido por Dharmendra S. Modha lleva unos años realizando asombrosas simulaciones en el contexto del proyecto DARPA SyNAPSE. Como parte de este proyecto, anunció la simulación a la escala del córtex de un ratón, luego de una rata y más tarde de un gato.
El objetivo de este programa es crear un chip neurosináptico que supone una ruptura con la arquitectura tradicional de los ordenadores. Esta arquitectura es la llamada Von Neumann que usan la totalidad de los ordenadores en la actualidad, incluidos móviles y tarjetas. En la arquitectura Von Neumann la memoria está separada del procesador, el hardware del software y los programas están separados de los datos. Ha sido muy exitosa mientras se cumplía la miniaturización de componentes expresada en la ley de Moore: cada dos años se duplica el número de transistores en un espacio dado. El problema es que estamos llegando a los límites del átomo y que la ley dejará de cumplirse.
El chip neurosináptico es una ruptura total con la arquitectura Von Neumann. Se basa en el diseño de las neuronas en las que no hay distinción entre hw y sw, programas y datos, memoria y procesador. El chip consiste en una matriz de neuronas y entre sus cruces se realizan las sinapsis. De este modo, cada sinapsis del chip es hw y sw, proceso y memoria, programa y datos. Dado que todo está distribuido, no es necesaria un miniaturización tan extrema y sobre todo, un reloj tan rápido. Frente a los actuales gigahercios de frecuencia, las neuronas se disparan a un hercio, y en el caso del chip a 8 hercios. Además, los procesadores son clock driven, es decir, actúan bajo la batuta del reloj mientras que las neuronas son event driven, actúan solo si hay actividad que realizar.
Uno de los objetivos es reducir el consumo eléctrico. Un cerebro consume lo que una bombilla pequeña, 20 vatios. Un superordenador consume cientos de megavatios. El nuevo chip tiene un consumo muy reducido. Estos chips están construidos con tecnología de silicio clásica CMOS.
La arquitectura de muchos chips neurosinápticos unidos se ha llamado TrueNorth. Ya existe en desarrollo un chip de 256 neuronas, 1024 axones, y 256×1024 sinapsis.
El chip sin embargo no está en producción masiva. Para seguir trabajando en paralelo al desarrollo, se ha realizado la prueba actual. Para ello se ha usado un simulador llamado Compass. Compass traduce el comportamiento de un chip neurosináptico (no Von Neumann) a un ordenador clásico (Von Neumann). Usando Compass se ha simulado (pdf) el comportamiento de 2.000.000.000 chips. Esto supone 500 mil millones de neuronas y 100 billones de sinapsis, cifras por completo astronómicas. El resultado de la simulación se ha ejecutado 1.542 veces más lento que en tiempo real.
Para realizar la simulación se ha usado el segundo superordenador más grande del mundo, Sequoia un Blue Gene/Q de 96 armarios con 1 millón y medio de núcleos y 1,5 petabytes de memoria. Uno de los objetivos de la simulación es ver el escalado. Un problema habitual es que que cuando añadimos más cores, el sistema no funciona proporcionalmente más rápido. En el extremo, añadir más cores no aumenta el rendimiento: el sistema escala mal. Imagina un camarero atendiendo detrás de la barra. Si hay un segundo camarero, irán más rápido, pero no el doble. Si sigues añadiendo camareros, llegará un momento en que no aumente la eficiencia, incluso se verá reducida. El sistema escala mal. Pues bien, en la simulación realizada el escalado ha sido casi perfecto lo que es muy satisfactorio computacionalmente.
¿Qué tiene esto que ver con la neurociencia y el cerebro? Bien poco. La simulación no imita ningún comportamiento animal ni cognitivo ni humano. Para simular el comportamiento del cerebro, necesitamos saber cómo funciona y eso está lejos de lograrse. Para cuando llegue ese conocimiento debemos tener preparados ordenadores que sean capaces de simularlo y en este contexto se enmarca la presente investigación. Aunque no solo; la idea de diseñar estos nuevos chips es ponerlos en producción en aplicaciones comerciales tradicionales dando una gran potencia con un bajo consumo. La simulación del cerebro deberá esperar aún alguna década.
Fuente: Altioyo
Abr
21
¿Convertir energía en materia?
por Emilio Silvera ~ Clasificado en Ciencia futura ~ Comments (0)
elreplicadordesueños.com
Isaac Asimov, el bioquímico que eligió la Ciencia Ficción y la divulgación científica como medio de vida. Escribió obras memorables que alcanzaron la fama mundial como la Saga o La trilogía de la Fundación, aquella que nos hablaba del Ciclo de Trantor en la serie Imperio Galáctico y que, habilmente mezcló con aquella otra serie de los robots. También fue prolífico en escribir obras de no ficción y, aquí os dejo una pequeña muestra, cuando especuló con la posibilidad de convertir energía en materia.
Si la ecuación de Einstein es cierta… ¡Sí, se podría! Convertir energía en materia. Veámos lo que nos dice al respecto Asimov y como lo desarrolla.
“Sí, sería posible convertir energía en materia, hacerlo en grandes cantidades resulta poco práctico. Veamos por qué. Según la teoría de Einstein, tenemos que E = mc2, donde E representa la energía, medida en ergios, m representa la masa, medida en gramos, y c es la velocidad de la luz en centímetros por segundo. La luz se propaga en el vacío a una velocidad aproximada a los 30.000 millones (3×1010) de centímetros por segundo. La cantidad c2 representa el producto c×c, es decir: 3×1010 × 3×1010, ó 9×1020. Por tanto, c2 es igual a 900.000.000.000.000.000.000. Así pues, una masa de un gramo convertirse, en teoría, en 9×1020 ergios de energía.
Convertir la energía en materia requiere el poceso contrario al de converti la masa en energía, y, desde luego, se necesitaría una inmensa cantidad de energía para conseguir algo de masa. Fijémonos en que un fotón gamma, por ejemplo, aún siendo muy energético, sólo daría lugar a un electrón y un positrón (siendo la masa de ambos ridícula).
El ergio es una unida muy pequeña de energía que equivale a: “Unidad de o energía utilizado en el sistema c.g.s y actúa definida como realizado por una fuerza de 1 dina cuando actúa a lo largo de una distancia de 1 cm: 1 ergio = 10-7 julios”. La kilocaloría, de quizá mucho más conocido, es igual a unos 42.000 millones de ergios. Un gramo de materia convertido en energía daría 2’2×1010 (22 millones) de kilocalorías. Una persona puede sobrevivir cómodamente con 2.500 kilocalorías al día, obtenidas de los alimentos ingeridos. Con la energía que representa un solo gramo de materia tendríamos reservas para unos 24.110 años, que no es poco para la vida de un hombre.
O digámoslo de otro modo: si fuese posible convertir en energía eléctrica la energía representada por un solo gramo de materia, bastaría para tener luciendo continuamente una bombilla de 100 vatios durante unos 28.200 años.
Claro que una cosa es convertir la masa en energía y otra muy distinta lo contrario, pero ¿ sería posible convertir energía en materia? Bueno, ya antes hemos dado la respuesta: Sí, pero a costa de un gasto ingente de energía que haría el poceso demasiado costoso y poco rentable. Fijémonos en estos ejemplos:
La energía que representa un gramo de materia equivale a la que se obtendría de quemar unos 32 millones de litros de gasolina. Nada tiene de extraño, por tanto, que las bombas nucleares, donde se convierten en energías cantidades apreciables de materia, desaten tanta destrucción.
La conversión opera en ambos sentidos. La materia se puede convertir en energía y la energía en materia. Esto último puede hacerse en cualquier momento en el laboratorio, donde continuamente convierten partículas energéticas ( fotones de rayos gamma) en 1 electrón y 1 positrón sin ninguna dificultad. Con ello se invierte el proceso, convirtiéndose la energía en materia.
De momento, no hemos podido conseguir gran cosa para fines pacíficos en lo que a las reacciones nucleares se refiere. Si acaso la energía de fisión de las Centrales nucleares que, en realidad, no es muy aconsejable, y, por otro lado, con fines armamentísticos con las bombas atómicas y de otro que utilizan la fusión.
Pero estamos hablando de una transformación de ínfimas cantidades de masa casi despreciable. ¿Pero podremos utilizar el mismo principio para conseguir cantidades mayores de materia a partir de energía?
Bueno, si un gramo de materia puede convertirse en una cantidad de energía igual a la que produce la combustión de 32 millones de litros de gasolina, entonces hará falta toda esa energía para fabricar un solo gramo de materia, lo que nos lleva al convencimiento de que no sería muy rentable invertir el proceso.”
Fuente: Isaac Asimov
Feb
21
Moléculas de Carbono en el Espacio
por Emilio Silvera ~ Clasificado en Ciencia futura ~ Comments (0)
Astrónomos de la NASA lograron unas esquivas moléculas de carbono en el espacio, conocidas por los especialistas como “Buckyball”.
Las Buckyball son moléculas que tienen la forma de un balón de fútbol y fueron observadas por primera vez en un laboratorio hace 25 años. Su nombre se debe a que su forma recuerda a las cúpulas geodésicas diseñadas por el arquitecto Buckminster Fuller, las que se caracterizan por círculos entrelazados en la superficie de una esfera parcial.
Hasta ahora los científicos pensaban que las Buckyball flotaban en el , pero no habían logrado observarlas en este ambiente. Fue gracias al uso del Telescopio Espacial Spitzer que los astrónomos de la NASA lograron visualizarlas por primera vez.
Para el astrónomo Jan Camide de la Universidad de Ontario Occidental en Canadá y del Instituto SETI en Mountain (California), el descubrimiento es importante porque las Buckyball poseen propiedades únicas que las hacen muy importantes en los procesos químicos y físicos que suceden en el espacio.
Las Buckyball están compuestas de 60 átomos de carbono que se encuentran ordenados en estructuras esféricas tridimensionales. Sus patrones alternos de hexágono y pentágono encajan a la perfección en la típica pelota de fútbol blanca y . Además de estas Buckyball el grupo de astrónomos encontró a sus parientes alargados, conocidas como C70, las que poseen una forma similar a la de una pelota de rugby (ambos tipos se clasifican de manera oficial bajo el nombre de fullerenos).
El descubrimiento del equipo liderado por Cami se realizó de manera inesperada cuando observaban una nebulosa planetaria conocida como Tc 1. Estas nebulosas son restos de estrellas que se desprendieron de sus capas exteriores en la medida que iban envejeciendo.
En el año 1970, el japonés Eiji Osawa predijo la existencia de las Buckyball; pero estas no pudieron ser observadas en experimentos de laboratorio hasta el año 1985.
La importancia del estudio de los fulleneros radica en que la fuerza única de las moléculas que los conforman, sumado a sus extraordinarias propiedades físicas y químicas; podrán ser aplicados a futuro en la creación de escudos más resistentes, en nuevas vías de administración de medicamentos e, incluso, en tecnologías superconductoras.
Fuente: Todos los medios de comunicación en sus apartados de Ciencia.
Oct
5
D-Branas, dimensiones extra
por Emilio Silvera ~ Clasificado en Ciencia futura ~ Comments (2)
Howard Phillips Lovecraft
“El hombre que conoce la verdad está más allá del bien y del mal. El hombre que conoce la verdad ha comprendido que la ilusión es la realidad única y que la sustancia es la gran impostora”.
“Que no está muerto lo que duerme eternamente; y en el paso de los eones, aún la misma Muerte puede morir.”
“A mi parecer, no hay nada más misericordioso en el mundo que la incapacidad del cerebro humano de correlacionar todos sus contenidos. Vivimos en una plácida isla de ignorancia en medio de mares negros e infinitos, pero no fue concebido que debiéramos llegar muy lejos. Hasta el momento las ciencias, cada una orientada en su propia dirección, nos han causado poco daño; pero algún día, la reconstrucción de conocimientos dispersos nos dará a conocer tan terribles panorámicas de la realidad, y lo terrorífico del lugar que ocupamos en ella, que sólo podremos enloquecer como consecuencia de tal revelación, o huir de la mortífera luz hacia la paz y seguridad de una nueva era de tinieblas.”
“¿Quién conoce el fin? Lo que ha emergido puede hundirse y lo que se ha hundido puede emerger.”
-
El Big Bang es una de las teorías astrofísicas que más ha dado que hablar, de ese hipotético suceso se han escrito miles de libros y artículos, entrevistas y conferencias y, al menos hasta el momento, parece que no hemos encontrado una teoría mejor para que pueda explicar de dónde surgió nuestro Universo. Sin embargo, nada es eterno y tampoco esta teoría lo es, se han hecho estudios y se llevan a cabo proyectos que buscan otras explicaciones al origen de todo esto pero, nuestro intelecto no llega a poder profundizar tanto como para haber podido hallar una explicación mejor. Y, mientras tanto, seguimos imaginando. ¿Llegaremos algún día a comprender, como nos decía Lovecraft:
“… El hombre que conoce la verdad ha comprendido que la ilusión es la realidad única y que la sustancia es la gran impostora”.
El físico y astrónomo inglés sir James Jeans escribió sobre la muerte final del universo, que él denominó “muerte térmica”, a comienzos del siglo XX : “La segunda ley de la termodinámica predice que sólo puede haber un final para el universo, una “muerte térmica” en la que la temperatura es tan baja que hace la vida imposible”. Toda la energía tenderá a acabar en la forma más degradada, la energía térmica; en un estado de total equilibrio termodinámico y a una temperatura cercana al cero absoluto, que impedirán cualquier posibilidad de extracción de energía útil. Será el desorden más absoluto (la máxima entropía) del que ya no se podrá extraer orden (baja entropía).
No podemos olvidarnos de que dentro de varios eones, nuestro Universo podría morir. Estamos obligados a buscar la manera (si existe), de escapar de ese destino fatal. Si el Universo, finalmente, se convierte en una singularidad que es una región donde (según las leyes de la relatividad general) la curvatura del espacio-tiempo se hace infinitamente grande, y el espacio-tiempo deja de existir, toda vez que, la singularidad es también una región de gravedad de marea infinita, es decir, una región donde la gravedad ejerce un tirón infinito sobre todos los objetos a lo largo de algunas direcciones y una compresión infinita a lo largo de otras, o, el otro modelo más probable que el anterior según todos los indicios, será el de la “muerte térmica”, la Entropía será la dueña absoluta, nada se moverá en la reinante temperatura del cero absouto.
Pero, ¿que ocurriría en el primer caso del Big Crung, es decir, un estado final en un universo cerrado donde la densidad excede a ña Densidad Crítica?
Después de crear un horizonte de agujero negro a su alrededor, dicen las ecuaciones que describen este fenómeno, la materia toda que compone nuestro Universo, continuará implosionando, inexorablemente, hasta alcanzar densidad infinita y volumen cero, creándose así la singularidad que estará fundida con el espacio-tiempo.
Si eso llegara a suceder, seguramente, de esa “nada” que se ha formado, más pronto o más tarde surgirá, mediante una enorme explosión, un nuevo Universo que, no sabemos si será igual, con las mismas fuerzas y las mismas leyes que el que ahora tenemos.
Así que, si todo esto resulta ser así, y si es cierto que pueden existir otros universos, si para cuando todo eso llegue aún nuestra especie hubiera sobrevivido (que no es probable) a la evoluciòn lógica de la vida… ¿No sería una irresponsabilidad, el no hacer nada? Tratar de saber, de desvelar los secretos que el Universo esconde para poder, en su caso, escapar de este universo nuestro para instalarnos en algún otro que, como ahora este, nos de cobijo.
Tenemos que continuar, cada uno en la medida de sus posibilidades, procurando avanzar hacía un futuro de profundos conocimientos que nos permitan, algún día lejano, muy lejano situado en eso que llamamos futuro, escapar de ese escenario de destrucción.
Si llega la muerte térmica, los átomos se paralizan, las estrellas dejan de brillar… ¿qué nos queda?
Si por el contrario, el final del Universo, no es el Big Crunch, y resulta que estamos viviendo en un Universo plano con expansión eterna, tampoco parece que el panorama sea más alentador, sólo varía que, en lugar de terminar con una enorme bola de fuego a miles de millones de grados, el alejamiento paulatino de las galaxias por la expansión imparable del Universo, nos traerá el frío del cero absoluto, -273 grados, con lo cual, de la misma manera, el fina sería igual de triste para nosotros: ¡La desaparición de la Humanidad! El Universo, sin estrellas que brillen sería en toda su extensión una terrible oscuridad, sin energía y sin vida.
Como nos queda aún mucho tiempo para llegar a ese hipotético final, retomemos mejor, otras cuestiones futuras pero, más cercanas.
Fluctuaciones de vacío, dimensiones extra, ¿un universo en la sombra?
¿Qué son las D-branas? ¿Por qué las requiere la teoría de cuerdas? La respuesta básica a la segunda pregunta es que dan sentido a las cuerdas abiertas que intervienen en la teoría tipo I: cada uno de los dos extremos de una cuerda abierta debe residir en una D-brana. Así lo han deducido las matemáticas imaginadas por nuestras mentes.
Los dos extremos de la cuerda abierta residen en un subespacio (q+l)-dimensional de género tiempo llamado una D-brana, o D-q-brana que es una entidad esencialmente clásica (aunque posee propiedades de súpersimetría), que representa una solución de la teoría de la supergravedad 11 dimensional.
En respuesta a la primera pregunta, una D-Brana es una estructura de genero tiempo, como más arriba indico, 1+q dimensiones espaciotemporales. (Invocando una de las dualidades de la teoría M, alternativamente podemos considerar una D-Brana como una solución de las ecuaciones de alguna otra versión de la teoría M de cuerdas.)
Las D-branas aparecen en muchas discusiones modernas relacionadas con las cuerdas (por ejemplo, en la entropía de los agujeros negros). Suelen tratarse como si fueran objetos clásicos que yacen dentro del espaciotiempo completo 1+9 (° 1+10) dimensiones. La “D” viene de “Dirichlet”, por analogía con el tipo de problema de valor de frontera conocido como un problema de Dirichlet, en el que hay una frontera de género tiempo sobre la que se especifican datos (según Meter G. Lejeune Dirichlet, un eminente matemático francés que vivió entre 1805 y 1859.)
Con la introducción de tales “D-branas” varios teóricos han expresado una “filosofía de cuerdas” que parece representar un profundo cambio respecto a lo anterior. En efecto, se afirma con cierta frecuencia que podríamos “vivir en” esta o esa D-brana, lo que significa que nuestro espaciotiempo percibido podría yacer realmente dentro de una D-brana, de modo que la razón de que no se perciban ciertas “dimensiones extra” se explicaría por el hecho de que “nuestra” D-brana no se extiende a esas dimensiones extra.
La última posibilidad sería la postura más económica, por supuesto, de modo que “nuestra” D-brana (una D-3 brana) sería de 1+3 dimensiones. Esto no elimina los grados de libertad en las dimensiones extra, pero los reduce drásticamente. ¿Por qué es así? Nuestra perspectiva ahora es que somos “conscientes” de los grados de libertad que están implicados en el interior profundo del espacio de mayores dimensiones entre los D-branas, y es en esto donde se está dejando sentir la excesiva libertad funcional.
Solo vamos a ser conscientes de dimensiones extra allí donde inciden directamente sobre las D-brana en la que “vivimos”. Más que una imagen de tipo “espacio cociente” que evoca la analogía de Kaluza-Klein original:
El gráfico anterior representa un Modelo de manguera de un espaciotiempo de dimensiones más altas de tipo kaluza-klein, donde la longitud o mejor la dimensión a lo largo de la longitud de la manguera representa al u-espaciotiempo normal y la dimensión alrededor de la manguera representa la dimensión extra “pequeños” (quizá a escala de Planck). Imaginemos un “ser” que habite en este mundo, que rebasa estas dimensiones extra “pequeñas”, y por ello no es realmente consciente de ellas.
Así, nuestro espaciotiempo observado aparece ahora como un subespacio 4-dimensional del espacio real de dimensiones más altas. Con algo de imaginación, lo podemos visualizar en nuestra mente. Yo por más que me esfuerzo no consigo imaginar nuestro universo con más dimensiones de las que podemos constatar, mi intleecto no llega para poder llegar tan lejos.
¿Cuánta libertad funcional esperamos ahora? La situación es ahora algo parecida a la imagen geométrica que hemos adoptado en el gráfico para obtener una perspectiva más convencional con respecto a la “supergeometría”. Puesto que ahora estamos interesados solo en el comportamiento en la D-brana (que suponemos que es geométricamente una (1+3)-superficie ordinaria), podemos imaginar que nuestra libertad funcional se ha convertido en una aceptable. Sin embargo, incluso esto supone que la restricción de la dinámica en el 10-espacio (u 11-espacio) completo nos proporciona ecuaciones dinámicas dentro de “nuestra” D-brana 4-dimensional que son del tipo convencional, de modo que bastará los datos iniciales en una 3-superficie para determinar el comportamiento en todo el 4-espacio.
¡El problema no ha desaparecido todavía! Tal actitud hacia las D-branas se ha utilizado para intentar resolver el “problema de la jerarquía”
Según cierta perspectiva de “gran unificación”, las constantes de acoplamiento de las interacciones fuerte, débil y electromagnética, tratadas como constantes de acoplamiento móviles, deberían alcanzar exactamente el mismo valor a temperaturas suficientemente grandes, aproximadamente 1028k, que habrían dado alrededor de 10.000 instantes de Planck después del big bang (»10-39s). Se ha visto que la súpersimetría es necesaria para resolver que los tres valores coincidan exactamente.
En concreto, esta es la cuestión de por qué las interacciones gravitatorias son tan minúsculas comparadas con las demás fuerzas importantes de la naturaleza o, de manera equivalente, por qué es la masa de Planck tan enormemente mayor que las masas de las partículas elementales de la naturaleza (en un factor de aproximadamente 1020). La aproximación de la D-brana a este problema parece requerir la existencia de más de una D-brana, una de las cuales es “grande” y la otra “pequeña”. Hay un factor exponencial involucrado en cómo se estira la geometría desde una D-brana hasta la otra, y esto es considera una ayuda para abordar la discrepancia en 1040, más o menos, entre las intensidades de la fuerza gravitatoria y las otras fuerzas.
Es posible que en el Universo estén presentes dimensiones que no podemos percibir. Sin embargo, las estamos buscando.
Se puede decir que este tipo de imagen de espaciotiempo de dimensiones más altas, que se estira desde la frontera de una D-brana hasta la otra, es uno de los tipos de geometría sugeridos por las teorías 11 dimensionales, tales como la teoría M, donde la undécima dimensión tiene la forma de un segmento abierto, y la geometría de cada frontera tiene la forma topológica (por ejemplo, MxV) de los 10 espacios considerados antes. En otros modelos, la undécima dimensión es topológicamente S1.
¿Qué harán de todo esto los físicos con respecto al estatus de la teoría de cuerdas como una teoría física para el futuro?
Como hemos referido en otras ocasiones, la mayoría de las versiones de la teoría de cuerdas implican dos tipos de cuerda: cuerdas abiertas con puntos finales desligados y cuerdas cerradas que forman lazos cerrados. Explorando las consecuencias de la acción Nambu-Goto, queda claro que la energía puede fluir a lo largo de una cuerda, deslizándose hasta el punto final y desapareciendo. Esto plantea un problema: la conservación de la energía establece que la energía no debe desaparecer del sistema. Por lo tanto, una teoría consistente de cuerdas debe incluir lugares en los cuales la energía pueda fluir cuando deja una cuerda; estos objetos se llaman D-branas. Cualquier versión de la teoría de cuerdas que permite cuerdas abiertas debe incorporar necesariamente D-branas, y todas las cuerdas abiertas debe tener sus puntos finales unidos a estas branas. Para un teórico de cuerdas, las D-branas son objetos físicos tan “reales” como las cuerdas y no sólo entes matemáticos que reflejan un valor.
Se espera que todas las partículas elementales sean estados vibratorios de las cuerdas cuánticas, y es natural preguntarse si las D-branas están hechas de alguna modo con las cuerdas mismas. En un sentido, esto resulta ser verdad: entre el espectro de las partículas que las vibraciones de la cuerda permiten, encontramos un tipo conocido como taquión, que tiene algunas propiedades raras, como masa imaginaria. Las D-branas se pueden imaginar como colecciones grandes de taquiones coherentes, de un modo parecido a los fotones de un rayo láser.
Todo esto tiene implicaciones en la cosmología, porque la teoría de cuerdas implica que el universo tienen más dimensiones que lo esperado (26 para las teorías de cuerdas bosónicas y 10 para las teorías de supercuerdas) tenemos que encontrar una razón por la cual las dimensiones adicionales no son evidentes. Una posibilidad sería que el universo visible es una D-brana muy grande que se extiende sobre tres dimensiones espaciales. Los objetos materiales, conformados de cuerdas abiertas, están ligados a la D-brana, y no pueden moverse “transversalmente” para explorar el universo fuera de la brana. Este panorama se llama una Cosmología de branas. La fuerza de la Gravedad no se debe a las cuerdas abiertas; los gravitones que llevan las fuerzas gravitacionales son estados vibratorios de cuerdas cerradas. Ya que las cuerdas cerradas no tienen porque estar unidas a D-branas, los efectos gravitacionales podrían depender de las dimensiones adicionales perpendiculares a la brana.
Los dos extremos de la cuerda abierta residen en un subespacio (q+l)- dimensional de género tiempo llamado una D-brana, o D-q-brana que es una entidad esencialmente clásica (aunque posee propiedades de súpersimetría=, que representa una solución de la teoría de la supergravedad 11 dimensional.
Las teorías de dimensiones extra permiten transitar por otros caminos que, el mundo tetradimensional prohibe. No cabe duda de que la física ha desarrollado un “mundo” fantástico e imaginativo en el que existe un “universo” desconocido. Sin embargo, es una lástima que no podamos comprobar toda esa riqueza imaginativa a la que nos llevan las difíciles ecuaciones donde la topología es la reina del “baile” y, la complejidad su “compañera”.
emilio silvera