martes, 24 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




Nuevas ideas, ideas viejas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  singularidad? ¿Salió el Universo del interior de un A.N.?

 

                                                 El Tiempo, el Universo, el Inicio de todo.

 

Se han llevado a cabo muchos modelos y las distintas teorías que circulan por ahí nos hablan de muchas cuestiones. Sin embargo, la relatividad general predice que tiene que haber una singularidad en el pasado, y cerca de esa singularidad la curvatura (del espacio) debe de ser muy alta; la relatividad clásica se anula, y habrá que tomar en cuenta los efectos cuánticos. A fin de comprender las condiciones iniciales del universo, debemos dirigirnos a la mecánica cuántica, y el estado cuántico del universo determinará las condiciones del universo clásico.

– Una de las principales finalidades de la Geoquímica es establecer las leyes que rigen el comportamiento, distribución, proporciones relativas y relaciones entre los distintos elementos químicos.

– Los datos de abundancias de elementos e isótopos en los distintos tipos de estrellas nos van a servir para establecer hipótesis del origen de los elementos.

– Los datos de composición del Sol y las estrellas nos permiten establecer hipótesis sobre el origen y evolución de las estrellas. Cualquier hipótesis que explique el origen del Sistema Solar debe explicar también el origen de la Tierra, como planeta de dicho Sistema Solar.

 

Resultado de imagen de Einstein irrumpió en la física siendo un desconocido Blog de emilio silvera

 

Cuando Einstein irrumpió en la Física, nadie le conocía y sólo era un oscuro empleado de la Oficina de Patentes de Berna en Suiza. Él, sin embargo, no había dejado de estar al día y seguí todo aquello que se pudiera mover en relñación a su pasión: La Física. Los escritos de Mach, de Lorentz, de Maxwell, de Planck… Todo ello le llevó a elaborar su famosa teoría relativista que convulsionó el mundo de la ciencia y, si me apuras mucho, hasta el ámbito filosófico cambió a partir de la relatividad. Una teoría que venía a decir cosas increibles como que la masa era energía congelada, que la luz marcaba el límite de la velocidad del universo, o, que el tiempo se ralentizaba si se marcha a velocidades cercanas a c. Esos extraños postulados no fueron, en un principio, bien entendidos por la física del momento.

 

 

Manuscrito de Einstein con la fórmula de la Teoría de la Relatividad. Cuando esto se dio a conocer al mundo, muchos miraron escépticos la fórmula y las implicaciones que de ella se podrían derivar, aquello podría cambiar lo firmemente establecido: ¡sacrilegio! ¿qué será de la Física si hacemos caso a lo que diga cualquiera?

Siempre ha sido así, el Status Institucional establecido, bien acomodado en los sillones de las academias y corporaciones, hacen la señal de la cruz, como para espantar al diablo, cada vez que aparecen nuevas ideas que, en realidad, les aterra, toda vez que les puede remover de sus asientos y prebendas, ya que, generalmente, dejan al descubierto que todo lo que predomina, está asentado en una falsa base de criterios y teorías que no siempre, son las correctas ni pueden ser demostradas y, mientras tanto eso ocurre, ellos, ¡a vivir que son dos días!

 

 

En el trabajo “No siempre la física se puede explicar con palabras”, el amigo Tom Vood nos deja el siguiente comentario que, siendo de interés aquí os lo inserto para que todos, podáis pensar en lo que aquí expone: Creo que sus ideas deben ser divulgadas.

!”Te dejo una entre muchas “revelaciones” reciente, calentitas solo para ti; que no quisiera que se divulgaran. Pero le dejo a su responsabilidad, si borrarlas, si usted cree que debo seguir como guerrillero de la ciencia o debe ser conocidas estas ideas por toda la comunidad científica. Disculpa, pero no logro discernir eso. Pero como admiras tanto a Einstein y yo soy tan tonto, te la insinúo por arribita: (Según el modelo de la interacción Luz-Luz).

https://www.emiliosilveravazquez.com/blog/2024/10/31/acercarse-a-la-velocidad-de-la-luz-trae-consecuencias-3/
 

¿Sabes por que las energíasmasas (partículas, o electromagnéticos confinados) no pueden superar la velocidad de la luz?

Bueno Einstein se moriría por explicárselo; a pesar de que para los modernos físicos esas preguntas ilegales no se le hacen a la física; recuerda el famoso: ¡no preguntes y calcula! Como diciendo, no eres físico, sino físico-matemático. O lo que no se, o no me puedo explicar, no lo puedes preguntar, es de mal gusto hacerlo, o de ignorantes. ¡Que daño Dios!

Bueno, pues una partícula según mi modelo es energíacampo confinada o electromagnético confinado en forma de energíamasa y por lo tanto cuando alcanza la velocidad de la luz, ocurre la ruptura de simetría que lo regresa a ser de nuevo energíacampo.

Más riguroso: Si una energíamasa alcanza la velocidad de la luz, se convierte en energíacampo.

De aquí se extraen miles de corolarios:

-Las energíasmasas (partículas) si alcanzan la velocidad de la luz, solo que una vez que la alcanzan, se rompe su topología de confinación, de energíasmasas y se liberan de nuevo como energíascampos. Algo que nunca dejaron de ser. Es que eso nunca las cinco física anteriores lo prohibían; por algo era. Mi modelo no mutila, incorpora,… Son los físicos, los que al no tener un buen modelo, medio que lo veían implícito así en la teoría; que eso no podía suceder. Pero si sucede, solo que nunca pueden sostenerse así.

 

 

 Tom parece tener en sus manos las respuestas pero… se les escapa entre los dedos

-Nunca una energíamasa (partícula con masa) podrá superar la velocidad de la luz. La conclusión Eisteniana que nadie se ha podido explicar. Vez que fácil es todo, una vez que se va ha la física.

-La velocidad de la luz no es una barrera, la barrera es la ley que confina la energíacampo, en forma de energíamasa. Esa topología, geometría; o relaciona geometrías/energía.

-Toda aniquilación, desintegración y  explosión tipo Big Bang (odio, o no creo lo del Big Bang) de los cuerpos del macrocosmo, es por la misma causa.

-De esto se extrae (del modelo también) la ley universal permitibilidad máxima de energía por unidad de espaciotiempo… El VICEVERSA; porque si no todo fuera energíascampos y la naturaleza no ocurre así: Toda energíacampo (luz,…) se confina como energíamasa, cuando su velocidad se hace cero.

-O lo que es lo mismo, ninguna partícula sin masa puede llegar a alcanzar el estado de reposo. Otra cosa que ningún modelo ha explicado, aunque es evidente que es un principio natural. Como todo lo que les explico. ¡Total, si eso es ilegal para el establishment!

De aquí se infieren muchas preguntas, conclusiones, paradojas, o explicaciones más racionales, a muchas cosas que decimos explicadas o que no hemos explicado todavía.

 

También nosotros estamos inmersos en un campo de energía-masa

 

La energíascampos (ustedes siempre piensen en la luz como yo al principio, para que no se pierdan) nunca puede estar en reposo (que la energía no puede estar en reposo es conocido, por eso es energía), pero como si existen circunstancias físicas muy especiales, donde esta puede ir disminuyendo su velocidad hasta que sea cero; la naturaleza resuelve esta paradoja, confinando las energíascampos, en diferentes topologías que donde se conserva como energíascampos (mas fácil verlo si piensan en luz); pero exteriormente se manifiesta como un ente, que puede estar en reposo o moverse como un todo; como lo que llamamos partículas con masa ( para mi energíasmasas).

Otra idea que puede ayudarlos a digerir esto: la energíacampo oscila, están acotadas entre la velocidad cero y la velocidad “c”. Esa oscilación, tipo superficie de agua hirviente, es lo que ocurre en la superficie de un agujero negro. Otra revelación de la riqueza física que despliega el modelo.

 

 

Te explico mejor: Cuando una energíacampo (luz) cae en un campo tan intenso como el de un agujero negro, su velocidad comienza a disminuir, llegado al “horizonte” (concepto que hay que ampliar) donde su velocidad seria cero; según mi modelo se confina como una energíamasa y trataría de moverse como un todo. Y aquí pueden ocurrir varias cosas que no te he explicado. Según la geometría que adopte la confinación, podrá ser un fermión izquierdo o derecho (una partícula o una antipartícula); así que puede ocurrir aniquilación…

También podría ocurrir que esa partícula (o energíamasa) alcance la velocidad de la luz; es decir regrese ha ser energíacampo, ya te explique por que. Ahora, la gravitación es energíacampo también, y aquí ocurre que ella penetra a la partícula (el mismo proceso de la aniquilación, todo es lo mismo, hay una regularidad natural entre el micromundo y el macromundo, que nadie ve), satura la estabilidad de su topología, y esta se desintegra (aquí tienes la explicación de todos los procesos de desintegración y con el, los tiempos de vida). Pero desintegración en mi razonamientos, en el modelo; es decaer en otra topología de menor energía y cuando esas topologías estables, quedan agotadas por las leyes naturales, que los físicos llamamos de conservación (carga, spin, Isoespin, CP, CPT,…); no le queda otro remedio a la energíamasa; que volver ha ser una energíacampo.

 

 

 

  Estaría bien que Tom pudiera, por fín, atrapar con los dedos de la Mente,  su teoría Luz-Luz (débil-fuerte) para asombrar al mundo.

Bueno espero haberte complacido en algo, “tuvisteis la exclusividad”, lo dejo ahí porque para que lo digieran y porque tengo muchos problemas que resolver. Tampoco tengo tiempo de leer lo que escribí (como ya es costumbre); pero ustedes son inteligentes como para no crucificarme, así que corrígeme ha tus Dones. Pueden divulgar a su antojo, como siempre les digo, “mi física de café con leche”. Tómense su tiempo para digerirlo, para acostumbrarse a estas nuevas concepciones físicas, esto párese merecerlo, parece novedoso.

Gracias amigo, te agradecemos las revelaciones que, si al fin se abren camino, nos podrían llevar a terrenos más cercanos a la realidad física del mundo. Daríamos un paso adelante en la comprensión del Universo y, como pasa siempre que obtenemos alguna nueva respuesta…¡Podríamos seguir planteando nuevas preguntas! que por cierto, ahora no podemos hacer por no tener ese conocimiento que tú tratas de entregar al mundo.

 

Gravedad cuántica

            Sigamos con la Gravedad Cuántica

 

La física será incompleta y conceptualmente insatisfactoria en tanto no se disponga de una teoría adecuada de la gravedad cuántica. Todos hemos oido hablar de la incompatibilidad de las dos teorías que sustentan hoy por hoy toda la Física  y que, todosm también sabemos que, son teorías incompletas que necesitan de una reunificación en un todo poderoso que todo lo puesda explicar.

Durante el siglo XX, la física se fundamentó, en general, sobre dos grandes pilares: la mecánica cuántica y la teoría de relatividad. Sin embargo, a pesar de los enormes éxitos logrados por cada una de ellas, las dos aparecen ser incompatibles. Esta embarazosa contradicción, en el corazón mismo de física teórica, se ha transformado en uno de los grandes desafíos permanentes en la ciencia.

La teoría de la relatividad general da cuenta a la perfección de la gravitación. Por su parte, la aplicación a la gravedad de la mecánica cuántica requiere de un modelo específico de gravedad cuántica. A primera vista, parecería que la construcción de una teoría de gravedad cuántica no sería más problemático que lo que resultó la teoría de la electrodinámica cuántica (EDC), que ya lleva más de medio siglo con aplicaciones más que satisfactorias.

En lo medular, la EDC describe la fuerza electromagnética en términos de los cambios que experimentan las llamadas partículas virtuales, que son emitidas y rápidamente absorbidas de nuevo; el principio de incertidumbre de Heisenberg nos dice que ellas no tienen que conservar la energía y el movimiento. Así la repulsión electrostática entre dos electrones puede ser considerada como la emisión, por parte de un electrón, de fotones virtuales y que luego son absorbidos por el otro.

La misma mecánica, pero a través de los cambios de la partícula virtual de la gravedad el «gravitón» (el quantum del campo gravitacional), podría considerarse para estimar la atracción gravitacional entre dos cuerpos. Pero gravitones nunca se han visto. La gravedad es tan débil que puede obviarse a escala molecular, donde los efectos cuánticos son importantes. Ahora, si los cambios que podrían realizarse en los gravitones sólo se producen en la interacción entre dos puntos de masa, es posible, entonces, que en los cuerpos masivos se ignore los efectos cuánticos. El principio de incertidumbre de Heisenberg nos señala que no podemos medir simultáneamente la posición y la velocidad de una partícula subatómica, pero esta indeterminación es imperceptible para los planetas, las estrellas o las galaxias.

 

        Sí, pero, ¿qué me dices del gravitón?

 

Pero el principal obstáculo, sin embargo, es la cantidad de complicados procesos que implica examinar un gran número de gravitones. La gravedad se diferencia crucialmente del electromagnetismo al no ser lineal. Esta inlinealidad surge porque la gravedad posee la energía, y ésta tiene la masa, que gravita. En el lenguaje cuántico, esto implica que gravitones interactúan recíprocamente con otro gravitones, a diferencia de los fotones, que interactúan sólo con cargas y corrientes eléctricas y no con otros fotones. Ahora, como los gravitones interactúan el uno con el otro, las partículas de materia son rodeadas por complejas redes de gravitones virtuales que forman «lazos cerrados», muy semejante a «árboles bifurcados».

En la teoría de campo cuántica, los lazos cerrados son un signo de problema; ellos normalmente producen respuestas infinitas en los cálculos de procesos físicos. En EDC, tales lazos ocurren cuando un electrón emite y absorbe de nuevo su propio fotón. En ese caso, los infinitos son soslayados a través de un procedimiento matemático conocido como renormalización. Si éste es hecho correctamente, se obtienen razonables respuestas. La QED es lo que se llama una teoría renormalizable porque todos los infinitos pueden ser soslayados sistemáticamente; en efecto, solo un conjunto de operaciones matemáticas es suficiente para eliminar los infinitos.

 

      Parece que aquí puede estar la solución

 

Lamentablemente, tal procedimiento sistemático no es operativo cuando la mecánica cuántica es aplicada a la relatividad general; la teoría es, por lo tanto, «no-renormalizable». Cada proceso que implique progresivamente más lazos cerrados de gravitones introduce nuevas variantes de términos infinitos. Lo anterior, coarta la investigación para muchísimos fenómenos de interés, y sugiere que puede que haya básicamente algo que esté errado en la relatividad general, en la mecánica cuántica, o en ambas.

Pero miremos más allá del problema de renormalización, ¿qué pasaría si nos remontáramos a un momento en que todo lo que podemos ver, y hasta lo que hay más allá de nuestro «horizonte» de 13.000 millones de años luz, estaba comprimido hasta un volumen menor que el de un núcleo atómico? A estas densidades descomunales, que se dieron durante los primeros 10-43 segundos del universo (lo que se conoce como «tiempo de Planck»), tanto los efectos cuánticos como la gravedad habrían sido importantes. ¿Qué pasa cuando los efectos cuánticos convulsionan todo un universo?

 

http://farm6.static.flickr.com/5106/5682735713_f587c82312.jpg

 

Por ello, la física será incompleta y conceptualmente insatisfactoria en tanto no se disponga de una teoría adecuada de la gravedad cuántica. Algunos teóricos creen que ya es tiempo de explorar las leyes físicas que prevalecían en el tiempo de Planck, y han propuesto algunas hipótesis interesantes. Sin embargo, no hay consenso sobre qué ideas hay que descartar. Lo que es seguro es que debemos rechazar nuestras queridas concepciones del espacio y el tiempo basadas en el sentido común: el espaciotiempo a muy pequeña escala podría tener una estructura caótica, espumosa, sin ninguna flecha temporal bien definida; puede que haya una generación y fusión continua de agujeros negros primores y minúsculos. La actividad podría ser lo bastante violenta para generar nuevos dominios espaciotemporales que evolucionarían como universos independientes. Eventos más tardíos (en particular la fase inflacionaria que se describe en el capítulo XVI) podrían haber borrado cualquier rastro de la era cuántica inicial. El único lugar donde podrían observarse efectos cuántico-gravitatorios sería cerca de las singularidades centrales de los agujeros negros (de donde ninguna señal puede escapar). Una teoría sin consecuencias evidentes fuera de estos dominios tan exóticos e inaccesibles no es verificable. Para que se la tome en serio debe estar íntimamente insertada o, en su efecto, articulada en alguna teoría con fundamento empírico, o bien debe percibirse como una conclusión inevitable y convincente.

Durante las últimas décadas, varias tentativas han sido hechas para buscarle una solución al problema de la no-renormalización de la gravedad cuántica y caminar hacia la unificación de todas las fuerzas. La aproximación más esperanzadora para alcanzar ese viejo anhelo de los físicos es la teoría de las «supercuerdas», que ya anteriormente vimos.

 

 

Sin embargo, recordemos aquí que en la teoría de las supercuerdas se presume una escala natural energética determinada por la energía de Planck, alrededor de unos 1019 GeV. Esto es 1017 veces más alto que los tipos de energías que pueden ser producidos en los aceleradores de partículas más grandes, lo que imposibilita contrastar con la teoría la existencia misma de las supercuerdas. No obstante, los teóricos esperan que a escala de energía accesible tanto la física, la relatividad general, el electromagnetismo, las fuerzas nucleares débiles y fuertes, las partículas subatómicas surjan de la teoría de las supercuerdas como una aproximación. Así, se espera conseguir con ese modelo de cuerdas no sólo una ajustada descripción de la gravedad cuántica, sino que también intentar con ella la anhelada unificación de las fuerzas.

 

 

La teoría defiende la existencia de diez dimensiones espaciales y una temporal. Esas dimensiones estarían en las propias cuerdas, y por eso no las vemos. Con esto de las dimensiones me pasa lo mismo que con la “materia oscura”, son buenos artilugios para pasar página y dar por bueno lo que aún no se ha podido verificar.

Lamentablemente, no hay un único límite de baja energía para la teoría de las supercuerdas como tampoco un sólo modelo de la teoría. Por un tiempo, lo anterior pareció como una barrera infranqueable, pero en años recientes, y a través de una mayor abstractación matemática, se ha construido un nuevo modelo de supercuerdas conocido como «la teoría M» que amalgama dentro de ella otras teorías de supercuerdas.

Por ahora, es demasiado pronto para pronunciarse si la teoría M es finalmente el medio que reconciliará la gravitación y la mecánica cuántica, pero sí debería poder cumplir con algunas expectativas, como ser las de explicar algunos hechos básicos sobre el mundo físico. Por ejemplo, el espaciotiempo de cuatro dimensional tendría que surgir de la teoría, más bien que ser insertado en ella. Las fuerzas y las partículas de naturaleza también deberían ser descritas, preferentemente incluyendo sus propiedades claves, como fuerzas de interacción y masas. Sin embargo, a no ser que la teoría M, o una variante futura, pueda ser proyectada a la baja energía de los laboratorio de física para poder ser contrastada, corre el riesgo de empezar a ser olvidada y finalmente archivada como uno más de los muchos y elegantes ejercicios matemáticos que se han elaborado para la física en los últimos tiempos.

 

Cuerdas o filamentos vibrantes en el corazón de la materia

 

Si la teoría de supercuerda es una pérdida de tiempo o no, ello está por verse. Por ahora, el desafío más duro a superar por la teoría es entender por qué el espacio de 9 dimensiones más el tiempo se «comprime» bajo el aspecto de nuestro espacio habitual tetradimensional (el tiempo más las tres dimensiones espaciales), en vez de hacerlo en tres o cinco dimensiones, y ver cómo sucede esto. Aún hay un espacio infranqueable entre la teoría de supercuerdas y los fenómenos observables. La teoría de supercuerdas plantea problemas demasiado difíciles ahora mismo para los matemáticos. En este aspecto, es muy diferente de la mayor parte de teorías físicas: normalmente, el aparato matemático de las teorías se desarrolla antes que éstas. Por ejemplo, Einstein utilizó conceptos geométricos desarrollados en el siglo XIX, no tuvo que partir de cero para construir las matemáticas que necesitaba.

Por su parte, los físicos cuerdistas se acorralan en lo que es fácil de comprobar, es difícil de calcular y lo que es fácil de calcular, es difícil comprobar. En consecuencia, pareciera que el camino que se está siguiendo es pretender desarrollar la teoría más y más, y hacer cálculos cada vez más difíciles de manera de poder predecir cosas que sean fáciles de observar. ¿El camino tendrá tiempo y final? Nadie tiene por ahora la respuesta.

 

Aquella charla … 23-28 Julio, MPI, Múnich, Alemania, a cargo de John H. Schwarz (Caltech), uno de los padres de la teoría de cuerdas, no tuvo desperdicio.

El físico Eugene Wigner escribió un célebre artículo sobre este particular que llevaba por título «La irrazonable efectividad de la matemática en las ciencias físicas». También es un hecho notable que el mundo exterior muestre tantas estructuras susceptibles de descripción en «lenguaje» matemático (sobre todo cuando tales estructuras se alejan mucho de las experiencias cotidianas que moldearon la evolución de nuestros cerebros). Edward Witten, el principal experto en supercuerdas, describe dicha teoría como «una física del siglo XXI que cayó en el siglo XX». Sin embargo, sería más extraordinario que seres humanos de cualquier siglo llegaran a desarrollar una teoría tan «final» y general como pretenden ser las supercuerdas.

Salvo mejor parecer.

 

Emilio Silvera

Teorías, masas, partículas, dimensiones…

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Enséñame de Ciencia - En física, las ecuaciones de campo de Einstein son un conjunto de diez ecuaciones de la teoría de la relatividad general de Albert Einstein, que describen la interacción

 

Una nos habla del Cosmos y de como el espacio se curva ante la presencia de masas, la otra, nos habla de funciones de ondas, entrelazamientos cuánticos, de diminutos objetos que conforman la materia y hacen posibles los átomos y la vida.

 

Cuál es el planeta con mayor gravedad del Sistema Solar?Super Simetría Del Cielo Foto de stock y más banco de imágenes de Infinito - Infinito, Constelación, Estrella - iStockLos orígenes de la teoría de supercuerdas: la primera revolución - INVDESLa Búsqueda de una Teoría del Todo: Unificando las Fuerzas Fundamentales | Club de los Teoremas

 

Entre los teóricos, el casamiento de la relatividad general y la teoría cuántica es el problema central de la física moderna. A los esfuerzos teóricos que se realizan con ese propósito se les llama “super-gravedad“, “súper-simetría“, “super-cuerdas” “teoría M” o, en último caso, “teoría de todo o gran teoría unificada“.

Ahí tenemos unas matemáticas exóticas que ponen de punta hasta los pelos de las cejas de algunos de los mejores matemáticos del mundo (¿y Perelman? ¿Por qué nos se ha implicado?).  Hablan de 10, 11 y 26 dimensiones, siempre, todas ellas espaciales menos una que es la temporal.  Vivimos en cuatro: tres de espacio (este-oeste, norte-sur y arriba-abajo) y una temporal. No podemos, ni sabemos o no es posible instruir, en nuestro cerebro (también tridimensional), ver más dimensiones. Pero llegaron Kaluza y Klein y compactaron, en la longitud de Planck las dimensiones que no podíamos ver.

¡Problema solucionado!

 

Resultado de imagen de Imagenes del Tiempo de PlanckResultado de imagen de Imagenes del Tiempo de PlanckResultado de imagen de Imagenes del Tiempo de Planck

 

Unidades de Planck

 

La longitud de Planck (P) u hodón (término acuñado en 1926 por Robert Lévi) es la distancia o escala de longitud por debajo de la cual se espera que el espacio deje de tener una geometría clásica. Una medida inferior previsiblemente no puede ser tratada adecuadamente en los modelos de física actuales debido a la aparición de efectos de Gravedad Cuántica.

 

¿Quién puede ir a la longitud de Planck para verla? A distancias comparables con la longitud de Planck, se cree que están sucediendo cosas muy curiosas que rebasan ampliamente los límites de nuestra imaginación. A diferencia de la filosofía reduccionista que propone que lo más complejo está elaborado -axiomáticamente- a partir de lo más elemental, lo que está sucediendo en la escala de Planck no parece tener nada de elemental o sencillo. Se cree que a esta escala la continuidad del espacio-tiempo en vez de ir marchando sincronizadamente al parejo con lo que vemos en el macrocosmos de hecho stá variando a grado tal que a nivel ultra-microscópico el tiempo no sólo avanza o se detiene aleatoriamente sino inclusive marcha hacia atrás, una especie de verdadera máquina del tiempo. Las limitaciones de nuestros conocimientos sobre las rarezas que puedan estar ocurriendo en esta escala en el orden de los 10-35 metros, la longitud de Planck, ha llevado a la proposición de modelos tan imaginativos y tan exóticos como la teoría de la espuma cuántica que supuestamente veríamos aún en la ausencia de materia-energía si fuésemos ampliando sucesivamente una porción del espacio-tiempo plano.

 

Resultado de imagen de ¿Donde están las dimensiones extra?Teoría de las Supercuerdas: Explorando el Universo de las Dimensiones Extras | Club de los Teoremas

Resultado de imagen de ¿Donde están las dimensiones extra?Resultado de imagen de ¿Donde están las dimensiones extra?

 

No pocos han tratado de encontrar la puerta para acceder a esas dimensiones extras que pregonan algunas teorías. Sin embargo, hasta el momento, nadie ha dado con el camino para poder llegar a ellas y traspasarlas para ver, lo que pueda existir más allá de las dimensiones que rigen en nuestro propio mundo.

 

Resultado de imagen de ¿Donde están las dimensiones extra?Resultado de imagen de ¿Donde están las dimensiones extra?

 

La puerta de las dimensiones más altas quedó abierta y, a los teóricos, se les regaló una herramienta maravillosa.  En el Hiperespacio, todo es posible.  Hasta el matrimonio de la relatividad general y la mecánica cuántica, allí si es posible encontrar esa soñada teoría de la Gravedad cuántica.

Así que, los teóricos, se han embarcado a la búsqueda de un objetivo audaz: buscan una teoría que describa la simplicidad primigenia que reinaba en el intenso calor del universo en sus primeros tiempos, una teoría carente de parámetros, donde estén presentes todas las respuestas.  Todo debe ser contestado a partir de una ecuación básica.

¿Dónde radica el problema?

 

Resultado de imagen de ¿Donde están las dimensiones extra?

 

El problema está en que la única teoría candidata no tiene conexión directa con el mundo de la observación, o no lo tiene todavía si queremos expresarnos con propiedad. La energía necesaria para ello, no la tiene ni el LHC que ha trabajado a 14 TeV, y, necesitaria disponer de la energía de Planck, es decir 1019 GeV, y dicha energía, queda lejos, muy lejos de nuestro alcance en el presente y, si alguna vez podemos disponer de ella esrtaría situada muy lejos en el futuro.

 

Resultado de imagen de El Modelo Estándarç+El modelo estándar extendido SM*A*S*H - La Ciencia de la Mula Francis

 

La verdad es que, la teoría que ahora tenemos, el Modelo Estándar, concuerda de manera exacta con todos los datos a bajas energías y contesta cosas sin sentido a altas energías.

¡Necesitamos algo más avanzado!

 

 

Cada partícula tiene encomendada una misión, la de Higgs, ya sabemos lo que dicen por ahí.es la dadora de masa a las demás partículas (cosa que -particularmente- no tengo nada claro).

Se ha dicho que la función de la partícula de Higgs es la de dar masa a las Cuando su autor lanzó la idea al mundo, resultó además de nueva muy extraña.  El secreto de todo radica en conseguir la simplicidad: el átomo resulto ser complejo lleno de esas infinitesimales partículas electromagnéticas que bautizamos con el nombre de electrones, resultó que tenía un núcleo que contenía, a pesar de ser tan pequeño, casi toda la masa del átomo.  El núcleo, tan pequeño, estaba compuesto de otros objetos más pequeños aún, los quarks que estaban instalados en nubes de otras partículas llamadas gluones y, ahora, queremos continuar profundizando, sospechamos, que después de los quarks puede haber algo más.

 

Resultado de imagen de Que hay más allá de los Quarks

 

Bueno, la idea nueva que surgió es que el espacio entero contiene un campo, el campo de Higgs, que impregna el vacío y es el mismo en todas partes. Es decir, que si miramos a las estrellas en una noche clara estamos mirando el campo de Higgs.  Las partículas influidas por este campo, toman masa.  Esto no es por sí mismo destacable, pues las partículas pueden tomar energía de los campos (gauge) de los que hemos comentado, del campo gravitatorio o del electromagnético.  Si llevamos un bloque de plomo a lo alto de la Torre Eiffel, el bloque adquiriría energía potencial a causa de la alteración de su posición en el campo gravitatorio de la Tierra.

 

Masa y energía son dos aspectos de la misma cosa

Cuando los físicos hablan de la belleza de algunas ecuaciones, se refieren a las que, como ésta, dicen mucho con muy pocos caracteres. De hecho, puede que ésta sea la ecuación más famosa conocida en nuestro mundo.

Como E=mc2, ese aumento de la energía potencial equivale a un aumento de la masa, en este caso la masa del Sistema Tierra-bloque de plomo.  Aquí hemos de añadirle amablemente un poco de complejidad a la venerable ecuación de Einstein.  La masa, m, tiene en realidad dos partes.  Una es la masa en reposo, m0, la que se mide en el laboratorio cuando la partícula está en reposo.  La partícula adquiere la otra parte de la masa en virtud de su movimiento (como los protones en el acelerador de partículas, o los muones, que aumentan varias veces su masa cuando son lanzados a velocidades cercanas a c) o en virtud de su energía potencial de campo. Vemos una dinámica similar en los núcleos atómicos.  Por ejemplo, si separamos el protón y el neutrón que componen un núcleo de deuterio, la suma de las masas aumenta.

 

 

Pero la energía potencial tomada del campo de Higgs difiere en varios aspectos de la acción de los campos familiares. La masa tomada de Higgs es en realidad masa en reposo. De hecho, en la que quizá sea la versión más apasionante de la teoría del campo de Higgs, éste genera toda la masa en reposo.  Otra diferencia es que la cantidad de masa que se traga del campo es distinta para las distintas partículas.

Los teóricos dicen que las masas de las partículas de nuestro modelo estándar miden con qué intensidad se acoplan éstas al campo de Higgs.

La ruptura de la simetría temporal produce moléculas capaces de codificar información

La influencia de Higgs en las masas de los quarks y de los leptones, nos recuerda el descubrimiento por Pieter Zeeman, en 1.896, de la división de los niveles de energía de un electrón cuando se aplica un campo magnético al átomo.  El campo (que representa metafóricamente el papel de Higgs) rompe la simetría del espacio de la que el electrón disfrutaba.

Hasta hace bien poco no teniamos ni idea de que reglas controlan los incrementos de masa generados por el Higgs (de ahí la expectación creada por el nuevo acelerador de partículas LHC cuando la buscaba). Pero el problema es irritante: ¿por qué sólo esas masas -Las masas de los W+, W, y Zº, y el up, el down, el encanto, el extraño, el top y el bottom, así como los leptones – que no forman ningún patrón obvio?

 

Positrón - EcuRed

Positrón. Electrón con carga positiva. La interacción con el electrón puede resultar en la aniquilación de ambos, con lo que se produce un par de fotones cuya energía equivale a la masa del par electrón-positrón. Esta propiedad define al positrón como la antipartícula asociada al electrón.

Las masas van de la del electrón 0’0005 GeV, a la del top, que tiene que ser mayor que 91 GeV.  Deberíamos recordar que esta extraña idea (el Higgs) se empleó con mucho éxito para formular la teoría electrodébil (Weinberg-salam).  Allí se propuso el campo de Higgs como una forma de ocultar la unidad de las fuerzas electromagnéticas y débiles.  En la unidad hay cuatro partículas mensajeras sin masa -los W+, W, Zº y fotón que llevan la fuerza electrodébil.  Además está el campo de Higgs, y, rápidamente, los W y Z chupan la esencia de Higgs y se hacen pesados; el fotón permanece intacto. La fuerza electrodébil se fragmenta en la débil (débil porque los mensajeros son muy gordos) y la electromagnética, cuyas propiedades determina el fotón, carente de masa.  La simetría se rompe espontáneamente, dicen los teóricos.  Prefiero la descripción según la cual el Higgs oculta la simetría con su poder dador de masa.

 

LA TEORÍA DE UNIFICACIÓN ELECTRODÉBIL - Curso en nueve lecciones

Las masas de los W y el Z se predijeron con éxito a partir de los parámetros de la teoría electrodébil. Y las relajadas sonrisas de los físicos teóricos nos recuerdan que Gerard ^t Hooft y Veltman dejaron sentado que la teoría entera esta libre de infinitos.

Pero, encierra tantos misterios la materia que, a veces me hace pensar en que la podríamos denominar de cualuquier manera menos de inerte ¡Parece que la materia está viva!

Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas.

 

Teorías, masas, partículas, dimensiones… : Blog de Emilio Silvera V.

 

La Teoría  de las masas de las partículas

El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lentos, que significa “delgado”).

Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto.  Conocemos su masa y su carga negativa que responden a 9,1093897 (54) x 10-31 Kg la primera y, 1,602 177 33 (49) x 10-19 culombios, la segunda, y también su radio clásico: r0 = e2/mc2 = 2’82 x 10-13 m. No se ha descubierto aún ninguna partícula que sea menos cursiva que el electrón (o positrón) y que lleve  una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.

Lo cierto es que, el electrón, es una maravilla en sí mismo.  El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.

 

10 datos curiosos sobre los recién nacidos - Blog Dexeus Mujer

¡No por pequeño, se es insignificante! Para sus padres lo más grande del mundo

Recordémoslo, todo lo grande está hecho de cosas pequeñas.

En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo).  Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones*.

Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”.

 

 

El fotón tiene una masa de 1, una carga eléctrica de o, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín).  La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.

Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales.  Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

 

Gravedad sin masa: descubren una nueva fuerza que desafía los principios de la física - El Cronista

Aunque sea la más débil de las cuatro fuerzas elementales… ¡Es inmensamente importante para nuestro Universo!

La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética.  Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón.  Llegó a emplear un par de cilindros de aluminio de 153 cm. De longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío.  Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cienmillonésima parte de un centímetro.

 

Han llevado años captarlas, las ondas gravitatorias llevadas por el gravitón son débiles

Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea.  En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias.  Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general).  Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.

De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria.  La masa del gravitón es o, su carga es o, y su espín de 2.  Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.

 

 

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros.  Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones.

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo.  Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, limite_planck es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica.  El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.

 

Resultado de imagen de La entropía de un agujero negro

 

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e in-eliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven.

 

Qué queda cuando vaciamos todo?, un experto resuelve el misterio

El vacío no existe… ¡Siempre hay!  

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas.  En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita.  En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales.  Por debajo de 10-7 pascales se conoce como un vacío ultraalto.

No puedo dejar de referirme al vaciotheta (vació θ) que, es el estado de vacío de un campo gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs).

 

El vacío theta es el punto de partida para comprender el estado de vacío de las teoría gauge fuertemente interaccionantes, como la cromodinámica cuántica. En el vacío theta hay un número infinito de estados degenerados con efecto túnel entre estos estados.  Esto significa que el vacío theta es análogo a una fundón de Bloch* en un cristal.

Se puede derivar tanto como un resultado general o bien usando técnicas de instantón.  Cuando hay un fermión sin masa, el efecto túnel entre estados queda completamente suprimido.

Resultado de imagen de Campos fermiónicosResultado de imagen de Campos fermiónicos

 

Cuando hay campos fermiónicos con masa pequeña, el efecto túnel es mucho menor que para campos gauge puros, pero no está completamente suprimido.

Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos.

 

 

“Los elementos transuránicos o elementos transuránicos son elementos químicos con número atómico mayor que 92, el número atómico del elemento Uranio. El nombre de trans-uránidos significa «más allá del uranio».”

93. Neptunio

94. Plutonio

95. Americio

96. Curio

97. Berkelio

98. Californio

99. Einstenio

100. Fermio

101. Mendelevio

102. Nobelio

103. Lawrencio

104. Rutherfordio

105. hahnium

06. Seaborgio

107. Bohrio

108. hassio

109. meitnerio

110. darmstadtio

111. roentgenio

112 copernicio

113 nihonio

114 flerovio

115 moscovio

116 livermorio

117 teneso

118 oganesón

La mayoría de los elementos generados de forma artificial se pueden obtener como elemento sintético  vía reacciones nucleares o acelerador de partículas. La vida media de estos elementos suele decrecer con el número atómico. Existen, no obstante excepciones, que incluyen el dubnio y algunos isótopos del curio.  El químico Glenn T. Seaborg (Premio Nobel de Química) llegó a crear leyes empíricas capaces de predecir estas anomalías. Todas ellas se categorizan en lo que viene a denominarse como “isla de estabilidad”.  Los elementos transuránicos no descubiertos todavía, o que no han sido denominados de forma oficial, emplearán la nomenclatura indicada por la ITUPAC. A pesar de ello la denominación de algunos elementos transuránicos en el pasado y hoy en día son fuentes de  controversia.

 

Elementos transuránicos en las estrellas: ¿Cómo se forman?

 

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobre pasando a la emisión de partículas alfa.

Emilio Silvera Vázquez

El fascinante “universo” cuántico

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Las leyes que gobiernan el mundo físico tienen dos características importantes: muchas leyes de la naturaleza permanecen inalterables, no se alteran cuando cambia la escala, pero hay otros fenómenos, tales como una vela encendida o las gotas de agua, que no cambian del mismo modo. La implicación final es que el mundo de los objetos muy pequeños será completamente diferente del mundo ordinario.

 

Heisenberg o el discreto encanto de la incertidumbre | Babelia | EL PAÍS

 

El producto de la incertidumbre en la posición de una partícula y la incertidumbre en su momento nunca puede ser inferior a la mitad de la constante de Planck reducida: Δ x Δ p ≥ ℏ / 2 . Δ x Δ p ≥ ℏ / 2 . Esta relación expresa el principio de incertidumbre de Heisenberg.

 

Cuando el 'dirac' fue una unidad de medida

 

En 1928 Dirac se propuso encontrar la ecuación del electrón libre relativista, porque la ecuación de Schrödinger no cumplía con los requisitos de la teoría de Einstein¹, es decir, no trataba por igual espacio y tiempo, y no incorporaba la energía en reposo (el famoso E=mc²). Además de eso no explicaba el espín, una propiedad fundamental de las partículas sin equivalencia clásica, pero que separa la naturaleza en dos familias totalmente distintas: bosones (como el fotón, de espín entero) y fermiones (como el electrón, de espín semientero). Para los que no sois físicos el espín os resultará una tontería pero debéis saber que es tan importante que las fuerzas de la naturaleza se transmiten sólo por bosones, mientras que las partículas más elementales están formadas sólo por fermiones.

La Ecuación

 

{\displaystyle \left(\alpha _{0}mc^{2}+\sum _{j=1}^{3}\alpha _{j}p_{j}\,c\right)\psi (\mathbf {x} ,t)=i\hbar {\frac {\partial \psi }{\partial t}}(\mathbf {x} ,t)}

 

siendo m la masa en reposo del electrónc la velocidad de la luz p el operador de momento,  la constante reducida de Planckx y t las coordenadas del Espacio y el Tiempo, respectivamente; y ψ (x, t) una función de onda de cuatro componentes. La función de onda ha de ser formulada como un espinor (objeto matemático similar a un vector que cambia de signo con una rotación de descubierto por Pauli y Dirac) de cuatro componentes, y no como un simple escalar, debido a los requerimientos de la relatividad especial. Los α son operadores lineales que gobiernan la función de onda, escritos como una matriz y son matrices de 4×4 conocidas como matrices de Dirac. Hay más de una forma de escoger un conjunto de matrices de Dirac; un criterio práctico es:

La ecuación de Dirac es una ecuación de ondas relativista de la mecánica cuántica formulada por Paul Dirac en 1928. Da una descripción de las partículas elementales con masa de espín 1/2 como el electrón, y es consistente con los principios de la mecánica cuántica y de la teoría de la relatividad especial, explicando de forma natural la existencia del espín y de las antipartículas. Sin embargo, es sólo una aproximación a la electro dinámica cuántica que describe la interacción de partículas cargadas mediante interacciones eléctricas.

 

4 de enero de 1961: muere el austriaco Erwin Schrödinger, ganador del  Premio Nobel de Física en 1933 - El Orden Mundial - EOM

 

$\displaystyle \fbox{\ \ \ $\displaystyle i\hbar\, \frac{\partial \,}{\partial t...
...\frac{\hbar^2}{2m}\, \nabla^2\psi(\bm{r},t) \rule[-1.75em]{0em}{4.2em} $\ \ \ }$

 

La ecuación de Schrödinger independiente del tiempo predice que las funciones de onda pueden tener la forma de ondas estacionarias, denominados estados estacionarios (también llamados “orbitales”, como en los orbitales atómicos o los orbitales moleculares).

La función de onda de Schrödinger es un constructo matemático, que no representa una realidad física, asociada a una partícula libre, de energía y momento , que se mueve con velocidad , el cual, multiplicada con su conjugada, nos da la función de probabilidad de encontrar una partícula en determinado punto del espacio tiempo.

Schrödinger sugirió que el movimiento de los electrones en el átomo correspondía a la dualidad onda-partícula y, en consecuencia, los electrones podían moverse alrededor del núcleo como ondas estacionarias.

La función de onda en la mecánica cuántica se puede considerar como una representación del estado de movimiento discontinuo aleatorio de las partículas, y en un nivel más profundo, puede representar la propiedad disposicional de las partículas que determina su movimiento discontinuo aleatorio.

 

Relación de indeterminación de Heisenberg - Wikipedia, la enciclopedia libreEspínLa inteligencia artificial resuelve la ecuación de Schrödinger

 

Ahora tendríamos que hablar algo de la mecánica cuántica y, en ese ámbito, las reglas de la mecánica cuántica funcionan tan bien que resultaría realmente difícil refutarlas. Acordaos de los trucos ingeniosos descubiertos por Werner Heisenberg, Paul Dirac, o, Schrödinger que vinieron a mejorar y completar  las reglas generales. Sin embargo, algunos de aquellos pioneros (Einstein y el mismo Schrödinger), sin embargo, presentaron serias objeciones a dicha interpretación de la naturaleza de lo muy pequeño.

 

La función de onda, su ecuación y su interpretación. Postulados. – Física  cuántica en la red

Resuelta la ecuación, con ayuda de Weyl, Schrödinger obtuvo el espectro del átomo de hidrógeno, partes discreta y continua, para lo que añadió la condición \delta \psi \rightarrow constante a largas distancias.

 

Esta cosita tan pequeñita, el electrón,  es inversamente proporcional en importancia para que el mundo, la Naturaleza, y,  nuestro Universo sea como es. Se ha conseguido fotografiar a un electrón. Poder filmar y fotografiar un electrón no es fácil por dos razones: primero, gira alrededor del núcleo atómico cada 0,000000000000000140 segundos , y, porque para fotografiar un electrón es necesario bombardearlo con partículas de luz (y cualquier que haya intentado sacarle una foto a un electrón sabe que hay que hacerlo sin flash). La imagen de la izquierda es el resultado.

 

Resultado de imagen de Descubrimiento del electrón

El electrón fue descubierto en 1.897 por el físico británico Joseph John Thomson (1.856 – 1940). El problema de la estructura (si la hay) del electrón no está resuelto. Si el electrón se considera como una carga puntual, su autoenergía es infinita y surgen dificultades en la ecuación conocida como de Lorentz–Dirac.

Muchas veces hemos hablado del electrón que rodea el núcleo, de su carga eléctrica negativa que complementa la positiva de los protones y hace estable al átomo; tiene una masa de solamente 1/1.836 de la del núcleo más ligero, el del hidrógeno que está formado por un solo protón. La importancia del electrón es vital en el universo.

Constante de Planck - Wikipedia, la enciclopedia libre

 

Pero busquemos los “cuantos”. La física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menor intensidad, por los objetos más fríos (radiación de cuerpo negro).

 

Resultado de imagen de La radiación tiene origen electromagnético

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía. Pero si utilizamos las leyes de la termodinámica para calcular la intensidad de una radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico a una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para menores. Esta longitud de onda característica es inversamente proporcional a la temperatura absoluta de objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273º bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de luz visible.

 

Resultado de imagen de Los cuantos de Planck

 

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda, y por tanto, proporcional a la frecuencia de radiación emitida. La fórmula es E = hν, donde E es la energía del paquete, ν es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

Constante de Planck - Wikipedia, la enciclopedia libreEfecto fotoeléctrico - Wikipedia, la enciclopedia libre

 

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: él sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck. El príncipe francés Louis-Victor de Broglie, dándole otra vuelta a la teoría, propuso que no sólo cualquier cosa que oscila tiene energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta región del espacio, y que la frecuencia ν de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas  diferentes ondas oscilantes de campos de fuerza, pero esto lo veremos más adelante.

 

dibujo26ene2008a.jpg

     El Electrón como Onda y partícula

El curioso comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de de Broglie. Poco después, en 1926, Edwin Schrödinger descubrió cómo escribir la teoría ondulatoria de de Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de ondas cuánticas”.

Está bien comprobado que la mecánica cuántica funciona de maravilla…, pero, sin embargo, surge una pregunta muy formal: ¿qué significan realmente estas ecuaciones?, ¿qué es lo que están describiendo? Cuando Isaac Newton, allá en 1867 formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo qué significaban sus ecuaciones: que los planetas estaban siempre en una posición bien definida des espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades en el tiempo.

Pero para los electrones todo es diferente. Su comportamiento parece estar envuelto en misterio. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras.

¿Qué puede significar todo esto?

 

Superposición cuántica | Descubre el mundo cuántico

      Superposición cuántica

 

 

La notable capacidad de un electrón de existir en dos lugares al mismo tiempo ha sido controlada en el material electrónico más comun el – silicio – por primera vez, siendo este un gran avance para la electrónica moderna y tiene un potencial enorme para el futuro y para la creación de la computadora cuántica.

Imagen: El movimiento de los electrones en el silicio. El electrón gira alrededor de una átomo de fósforo embebido en la estructura cristalina del silicio, que se muestra en plata. La distribución de densidad electrónica no perturbado, a partir de la ecuaciones de la mecánica cuántica del movimiento se muestra en amarillo. Un pulso de láser de electrones puede modificar el estado de manera que tiene la distribución de la densidad se muestra en verde. Nuestro pulso láser en primer lugar, que llegan desde la izquierda, pone el electrón en una superposición de ambos estados, que podemos controlar con un segundo impulso, también desde la izquierda, para dar un pulso que se detecte que, saliendo a la derecha. Las características de este “eco” del pulso nos hablan de la superposición que hemos hecho.

Cuando podamos dominar el “universo” de lo muy pequeño… ¡Nuestro Universo será otro para nosotros!

Leyes de la mecánica cuántica

 

Las leyes de la mecánica cuántica han sido establecidas con mucha precisión; permite cómo calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas de manera simultánea. Por ejemplo, podemos determinar la velocidad de una partícula con mucha precisión, pero entonces no sabremos exactamente dónde se encuentra; o a la inversa, podemos determinar la posición con precisión, pero entonces su velocidad queda mal definida. Si una partícula tiene espín (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar de forma sencilla de dónde viene esta incertidumbre, pero existen ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar. Para afinar un instrumento musical se debe escuchar una nota durante un cierto intervalo de tiempo y compararla, por ejemplo, con un diapasón que debe vibrar también durante un tiempo. Notas muy breves no tienen bien definido el tono.

 

Música y Cerebro | Centro Integral Creciendo

        Sí, la música influye en el cerebro

Para que las reglas de la mecánica cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuando más grande y más pesado es un objeto, más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica. Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por holismo, y que podría definir como “el todo es más que la suma de sus partes”. Si la física nos ha enseñado algo es justo lo contrario. Un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (partículas); basta que sepamos sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes. Por ejemplo,  la constante de Planckh, que es igual a 6’626075… × 10-34 Julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

 

Aunque la semilla la puso Planck en 1900, fue a partir de 1930 cuando la mecánica cuántica se aplicó con mucho éxito a problemas relacionados con núcleos atómicos, moléculas y materia en estado sólido. La mecánica cuántica hizo posible comprender un extenso conjunto de datos, de otra manera enigmáticos. Sus predicciones han sido de una exactitud notable. Ejemplo de esto último es la increíble precisión de diecisiete cifras significativas del momento magnético del electrón calculadas por la EDC (Electrodinámica Cuántica) comparadas con el experimento.

 

 

Si viajamos hacia lo muy pequeño tendremos que ir más allá de los átomos, que son objetos voluminosos y frágiles comparados con lo que nos ocupará a continuación: el núcleo atómico y lo que allí se encuentra. Los electrones,  que ahora vemos “a gran distancia” dando vueltas alrededor del núcleo, son muy pequeños y extremadamente robustos. El núcleo está constituido por dos especies de bloques: protones y neutrones. El protón  (del griego πρώτος, primero) debe su nombre al hecho de que el núcleo atómico más sencillo, que es el hidrógeno, está formado por un solo protón. Tiene una unidad de carga positiva. El neutrón recuerda al protón como si fuera su hermano gemelo: su masa es prácticamente la misma, su espín es el mismo, pero en el neutrón, como su propio nombre da a entender, no hay carga eléctrica; es neutro.

La masa de estas partículas se expresa en una unidad llamada mega-electrón-voltio o MeV, para abreviar. Un MeV, que equivale a 106 electrón-voltios, es la cantidad de energía de movimiento que adquiere una partícula con una unidad de carga (tal como un electrón o un protón) cuando atraviesa una diferencia de potencial de 106 (1.000.000) voltios. Como esta energía se transforma en masa, el MeV es una unidad útil de masa para las partículas elementales.

 

http://2.bp.blogspot.com/_XGCz7tfLmd0/TCu_FS8raaI/AAAAAAAAGTs/6GWffvsxzPc/s320/image012.jpgEL PENSAMIENTO HUMANO OBEDECE LAS MISMAS REGLAS DE LA FISICA CUANTICA –  UNIVERSITAM

     Sí, las reglas de la mecánica cuántica son extrañas y misteriosas, pero… ¿Las vamos entendiendo?

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisemberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros como Erwin Schrödinger siempre presentaron serias objeciones a esta interpretación. Quizá funcione bien, pero ¿dónde está exactamente el electrón?, ¿en el punto x o en el punto y? En pocas palabras, ¿dónde está en realidad?, y ¿cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

Danza Cuántica : Ilustración Hipnotizante De Partículas Subatómicas En  Movimiento Stock de ilustración - Ilustración de fotones, protones:  311114599CÓMO IMAGINAR LA CUARTA DIMENSIÓN ESPACIAL? En este video, Carl Sagan   nos guía para entender cómo podríamos representar una dimensión más allá de  las tres que percibimos. Es importante destacar que

Hablar de Mecánica Cuántica es como hacerlo de la Quinta (la Cuarta es el Tiempo) Dimensión

La mecánica cuántica puede ser definida o resumida así: en principio, con las leyes de la naturaleza que conocemos ahora se puede predecir el resultado de cualquier experimento, en el sentido que la predicción consiste en dos factores: el primer factor es un cálculo definido con exactitud del efecto de las fuerzas y estructuras, tan riguroso como las leyes de Isaac Newton para el movimiento de los planetas en el Sistema Solar; el segundo factor es una arbitrariedad estadística e incontrolable definida matemáticamente de forma estricta. Las partículas seguirán una distribución de probabilidades dadas, primero de una forma y luego de otra. Las probabilidades se pueden calcular utilizando la ecuación de Schrödinger de función de onda (Ψ) que, con muchas probabilidades nos indicará el lugar probable donde se encuentra una partícula en un momento dado.

 

Resultado de imagen de Teoría de probabilidades

  ¿Ganaré algún día esa lotería que me quite de trabajar por necesidad?

Muchos estiman que esta teoría de las probabilidades desaparecerá cuando se consiga la teoría que explique, de forma completa, todas las fuerzas; la buscada teoría del todo, lo que implica que nuestra descripción actual incluye variables y fuerzas que (aún) no conocemos o no entendemos. Esta interpretación se conoce como hipótesis de las variables ocultas.

 

La Paradoja EPR, el talón de Aquiles de la mecánica cuántica

 

Por primera vez, se observa la paradoja de Einstein-Podolsky-Rosen en un sistema de muchas partículas

 

Por primera vez, se observa la paradoja de Einstein-Podolsky-Rosen en un sistema de muchas partículas

Albert Einstein, Nathan Rosen y Boris Podolski idearon un “Gedankenexperiment”, un experimento hipotético, realizado sobre el papel, para el cual la mecánica cuántica predecía como resultado algo que es imposible de reproducir en ninguna teoría razonable de variables ocultas. Más tarde, el físico irlandés John Stewar Bell consiguió convertir este resultado en un teorema matemático; el teorema de imposibilidad.

 

Mente Maravillosa": un encuentro de Mentes en el Laberinto de la Conciencia  | Pint of Science ES

Bueno, a todo esto, una cosa sí que nos queda clara, como la posibilidad asombrosa de nuestras Mentes a germinar ideas que salen bulliciosas al mundo. No todas llegan a su destino. Sin embargo, las que lo hacen, marcan un hito y nos señalan el camino a seguir en ese largo viaje (en realidad interminable -nunca podremos saberlo todo sobre todas las cosas-), a la búsqueda del saber del Mundo y del Universo en fin.

Emilio Silvera Vázquez

La Masa y la Energía ¿Qué son en realidad?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

Todos los intentos y los esfuerzos por hallar una pista del cuál era el origen de la masa fallaron.  Feynman escribió su famosa pregunta: “¿Por qué pesa el muón?”.  Ahora, por lo menos, tenemos una respuesta parcial, en absoluto completa.  Una voz potente y ¿segura? nos dice: “!Higgs¡” Durante más de 60 años los físicos experimentadores se rompieron la cabeza con el origen de la masa, y ahora el campo Higgs presenta el problema en un contexto nuevo; no se trata sólo del muón. Proporciona, por lo menos, una fuente común para todas las masas. La nueva pregunta feynmaniana podría ser: ¿Cómo determina el campo de Higgs la secuencia de masas, aparentemente sin patrón, que da a las partículas de la materia?

 

La variación de la masa con el estado de movimiento, el cambio de masa con la configuración del sistema y el que algunas partículas (el fotón seguramente y los neutrinos posiblemente) tengan masa en reposo nula son tres hechos que ponen entre dicho que el concepto de masa sea un atributo fundamental de la materia.  Habrá que recordar aquel cálculo de la masa que daba infinito y nunca pudimos resolver; los físicos sólo se deshicieron de él “re-normalizándolo”, ese truco matemático que emplean cuando no saben encontrar la respuesta al problema planteado.

Ese es el problema de trasfondo con el que tenemos que encarar el problema de los quarks, los leptones y los vehículos de las fuerzas, que se diferencian por sus masas.  Hace que la historia de Higgs se tenga en pie: la masa no es una propiedad intrínseca de las partículas, sino una propiedad adquirida por la interacción de las partículas y su entorno.

La idea de que la masa no es intrínseca como la carga o el espín resulta aún más plausible por la idílica idea de que todos los quarks y fotones tendrían masa cero. En ese caso, obedecerían a una simetría satisfactoria, la quiral, en laque los espines estarían asociados para siempre con su dirección de movimiento. Pero ese idilio queda oculto por el fenómeno de Higgs.

 

¡Ah, una cosa más! Hemos hablado de los bosones gauge y de su espín de una unidad; hemos comentado también las partículas fermiónicas de la materia (espin de media unidad). ¿Cuál es el pelaje de Higgs? Es un bosón de espin cero.  El espín supone una direccionalidad en el espacio, pero el campo de Higgs da masa a los objetos dondequiera que estén y sin direccionalidad.  Al Higgs se le llama a veces “bosón escalar” [sin dirección] por esa razón.

La interacción débil, recordareis, fue inventada por E. Fermi para describir la desintegración radiactiva de los núcleos, que era básicamente un fenómeno de poca energía, y a medida que la teoría de Fermi se desarrolló, llegó a ser muy precisa a la hora de predecir un enorme número de procesos en el dominio de energía de los 100 MeV.  Así que ahora, con las nuevas tecnologías y energías del LHC, las esperanzas son enormes para, por fin, encontrar el bosón Higgs origen de la masa… y algunas cosas más.

 

Imagen relacionada

     Fabiola Gianotti, portavoz del experimento ATLAS, hablando con Peter Higgs y le dice:

“En nuestros datos observamos claros signos de una nueva partícula compatible con la teoría de Higgs, con un nivel aproximado de 5 sigma [99,977% de eficiencia], en la región de masa alrededor de los 126 GeV. El increíble rendimiento del LHC y el ATLAS y los enormes esfuerzos de mucha gente nos han traído a este excitante punto, pero hace falta un poco más de tiempo para preparar estos resultados cara a su publicación.”

Reseña: "El modelo estándar de partículas" de Mario E. Gómez Santamaría -  La Ciencia de la Mula Francis

 

El Modelo Estándar describe las partículas de todo cuanto nos rodea, incluso de nosotros mismos. Toda la materia que podemos observar, sin embargo, no parece significar más que el 4% del total. Higgs podría ser el puente para comprender el 96% del universo que permanece oculto.

El 4 de julio de 2012 se anunció el descubrimiento de un nuevo bosón. Punto. En diciembre de 2012 se empezó a hablar de “un” Higgs (en lugar de “el” Higgs), pero oficialmente seguía siendo un nuevo bosón. ¿Importa el nombre? El Premio Nobel de Física para el bosón de Higgs sólo será concedido cuando el CERN afirme con claridad y rotundidad que se ha descubierto “el” Higgs, si el CERN es conservador, la Academia Sueca lo es aún más. Sin embargo, el rumor es que quizás baste con que el CERN diga que se ha descubierto “un” Higgs.

 

¿Por qué, a pesar de todas las noticias surgidas desde el CERN, creo que no ha llegado el momento de celebrarlo? ¿Es acaso el Higgs lo encontrado?

Hay que responder montones de preguntas.  ¿Cuáles son las propiedades de las partículas de Higgs y, lo que es más importante, cuál es su masa? ¿Cómo reconoceremos una si nos la encontramos en una colisión de LHC? ¿Cuántos tipos hay? ¿Genera el Higgs todas las masas, o solo las hace incrementarse? ¿Y, cómo podemos saber más al respecto? También a los cosmólogos les fascina la idea de Higgs, pues casi se dieron de bruces con la necesidad de tener campos escalares que participasen en el complejo proceso de la expansión del Universo, añadiendo, pues, un peso más a la carga que ha de soportar el Higgs.

 

El campo de Higgs, tal y como se lo concibe ahora, se puede destruir con una energía grande, o temperaturas altas. Estas generan fluctuaciones cuánticas que neutralizan el campo de Higgs. Por lo tanto, el cuadro que las partículas y la cosmología pintan juntas de un universo primitivo puso y de resplandeciente simetría es demasiado caliente para Higgs. Pero cuando la temperatura cae bajo los 10’5 grados kelvin o 100 GeV, el Higgs empieza a actuar y hace su generación de masas.  Así por ejemplo, antes de Higgs teníamos unos W, Z y fotones sin masa y la fuerza electro-débil unificada.

El Universo se expande y se enfría, y entonces viene el Higgs (que engorda los W y Z, y por alguna razón ignora el fotón) y de ello resulta que la simetría electrodébil se rompe. Tenemos entonces una interacción débil, transportada por los vehículos de la fuerza W+, W, Z0, y por otra parte una interacción electromagnética, llevada por los fotones. Es como si para algunas partículas del campo de Higgs fuera una especie de aceite pesado a través del que se moviera con dificultad y que las hiciera parecer que tienen mucha masa. Para otras partículas, el Higgs es como el agua, y para otras, los fotones y quizá los neutrinos, es invisible.

VEVOR VEVOR Malla de Alambre Soldada 610mm x 15,24m Rollo de Malla de  Alambre Galvanizado en Caliente 12,7x12,7 mm Valla de Alambre de Gallinero  Calibre 19 para Jaulas de Conejos, Jardín, Roedores

 

Para cada suceso, la línea del haz es el eje común de los cilindros de malla de alambre ECAL y HCAL. ¿Cuál es el mejor candidato W? el mejor candidato Z? En cada evento, ¿dónde ocurrió la colisión y el decaimiento de las partículas producidas? Lo cierto es que, en LHC se hacen toda clase de pruebas para saber del mundo de las partículas, de dónde vienen y hacia dónde se dirigen y, el Bosón de Higgs, es una asignatura pendiente a pesar de las noticias y de los premios

De todas las maneras, es tanta la ignorancia que tenemos sobre el origen de la masa que, nos agarramos como a un clavo ardiendo el que se ahoga, en este caso, a la partícula de Higgs que viene a ser una de las soluciones que le falta al Modelo Estándar para que todo encaje con la teoría.

¡Ya veremos en que termina todo esto! Dicen que descubrieron el famoso Bosón pero… Y, aunque el que suena siempre es Higgs, lo cierto es que los autores de la teoría del “Bosón de Higgs”, son tres a los que se ha concedido, junto al CERN, el Premio Principe de Asturias. Peter Ware Higgs —el primero en predecir la existencia del bosón— junto a los físicos François Englert, y el belga Robert Brout—fallecido en el año 2011— y que no ha podido disfrutar del Nóbel.

 

 

Peter Higgs, de la Universidad de Edimburgo, introdujo la idea en la física de partículas.  La utilizaron los teóricos Steven Weinberg y V. Salam, que trabajaban por separado, para comprender como se convertía la unificada y simétrica fuerza electrodébil, transmitida por una feliz familia de cuatro partículas mensajeras de masa nula, en dos fuerzas muy diferentes: la QED con un fotón carente de masa y la interacción débil con sus W+, W– y Z0de masa grande.  Weinberg y Salam se apoyaron en los trabajos previos de Sheldon Glasgow, quien tras los pasos de Julian Schwinger, sabía sólo que había una teoría electrodébil unificada, coherente, pero no unió todos los detalles. Y estaban Jeffrey Goldstone y Martines Veltman y Gerard’t Hooft.  También hay otras a los que había que mencionar, pero lo que siempre pasa, quedan en el olvido de manera muy injusta.  Además, ¿Cuántos teóricos hacen falta para encender una bombilla?

La verdad es que, casi siempre, han hecho falta muchos.  Recordemos el largo recorrido de los múltiples detalle sueltos y físicos que prepararon el terreno para que, llegara Einstein y pudiera, uniéndolo todo, exponer su teoría relativista.

Sobre la idea de Peter Higgs, Veltman, uno de sus arquitectos, dice que es una alfombra bajo la que barremos nuestra ignorancia.  Glasgow es menos amable y lo llamó retrete donde echamos las incoherencias de nuestras teorías actuales.  La objeción principal: que no teníamos la menor prueba experimental que ahora parece que va asomando la cabeza en el LHC.

Esperemos que la partícula encontrada, el bosón hallado, sea en realidad el Higgs dador de masa a las demás partículas pero… ¡Cabe la posibilidad de que sólo sea el hermano menor! de la familia. El modelo estándar es lo bastante fuerte para decirnos que la partícula de Higgs de menor masa (podría haber muchas) debe “pesar” menos de 1 TeV. ¿Por qué? Si tiene más de 1 TeV, el modelo estándar se vuelve incoherente y tenemos la crisis de la unitariedad.

Después de todo esto, tal como lo están planteando los del CERN,  se puede llegar a la conclusión de que, el campo de Higgs, el modelo estándar y nuestra idea de cómo se hizo el Universo dependen de que se encuentre el Bosón de Higgs.  Y ahora, por fin, el mayor Acelerador del mundo, el LHC, nos dice que el Bosón ha sido encontrado y las pruebas tienen una fiabilidad enorme.

¡La confianza en nosotros mismos, no tiene límites! Pero el camino no ha sido recorrido por completo y quedan algunos tramos que tendremos que andar para poder, al fín, dar una explicación más completa, menos oscura y neblinosa que lo que hasta el momento tenemos, toda vez que, del Bosón de Higgs y de su presencia veráz, dependen algunos detalles de cierta importancia para que sean confirmados nuestros conceptos de lo que es la masa y, de paso, la materia.

¿Pasará igual con las cuerdas?

Emilio Silvera Vázquez

Agradecido le quedo a León Lederman que con sus ideas ha nutrido el presente trabajo.

La maravilla de… ¡Los cuantos!

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  

La radiación del cuerpo negro – Física cuántica en la red

La Física del siglo XX empezó exactamente en el año 1900, cuando el físico alemán Max Planck propuso una posible solución a un problema que había estado intrigando a los físicos durante años. Es el problema de la luz que emiten los cuerpos calentados a una cierta temperatura, y también la radiación infrarroja emitida, con menos intensidad, por los objetos más fríos. Planck escribió un artículo de ocho páginas y el resultado fue que cambió el mundo de la física y aquella páginas fueron la semilla de la futura ¡mecánica cuántica! que, algunos años más tardes, desarrollarían físicos como Einstein (Efecto fotoeléctrico), Heisenberg (Principio de Incertidumbre), Feynman, Bhor, Schrödinger, Dirac…

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado: E = hv

Donde es la energía del paquete, v es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

 La expresión radiación se refiere a la emisión continua de energía de la superficie de todos los cuerpos. Los portadores de esta energía son las ondas electromagnéticas  producidas por las vibraciones de las partículas cargadas  que forman parte de los átomos y moléculas de la materia. La radiación electromagnética que se produce a causa del movimiento térmico de los átomos y moléculas de la sustancia se denomina radiación térmica o de temperatura.

 

 Ley de Planck para cuerpos a diferentes temperaturas.

Curvas de emisión de cuerpos negros a diferentes temperaturas comparadas con las predicciones de la física clásica anteriores a la ley de Planck.

Estaba bien aceptado entonces que esta radiación tenía un origen electromagnético y que se conocían las leyes de la naturaleza que regían estas ondas electromagnéticas. También se conocían las leyes para el frío y el calor, la así llamada “termodinámica”, o al menos eso parecía.

 

Pero si usamos las leyes de la termodinámica para calcular la intensidad de la radiación, el resultado no tiene ningún sentido. Los cálculos nos dicen que se emitiría una cantidad infinita de radiación en el ultravioleta más lejano, y, desde luego, esto no es lo que sucede. Lo que se observa es que la intensidad de la radiación muestra un pico o una cierta longitud de onda característica, y que la intensidad disminuye tanto para longitudes mayores como para longitudes menores. Esta longitud característica es inversamente proporcional a la temperatura absoluta del objeto radiante (la temperatura absoluta se define por una escala de temperatura que empieza a 273 ºC bajo cero). Cuando a 1.000 ºC un objeto se pone al “rojo vivo”, el objeto está radiando en la zona de la luz visible.

 

         Acero al  “rojo vivo”, el objeto está radiando en la zona de la luz visible

Lo que Planck propuso fue simplemente que la radiación sólo podía ser emitida en paquetes de un tamaño dado. La cantidad de energía de uno de esos paquetes, o cuantos, es inversamente proporcional a la longitud de onda y, por lo tanto, proporcional a la frecuencia de la radiación emitida. La sencilla fórmula es:

E = hv

Donde es la energía del paquete, v es la frecuencia y h es una nueva constante fundamental de la naturaleza, la constante de Planck. Cuando Planck calculó la intensidad de la radiación térmica imponiendo esta nueva condición, el resultado coincidió perfectamente con las observaciones.

 

Poco tiempo después, en 1905, Einstein formuló esta teoría de una manera mucho más tajante: el sugirió que los objetos calientes no son los únicos que emiten radiación en paquetes de energía, sino que toda la radiación consiste en múltiplos del paquete de energía de Planck.

El príncipe francés Louis Victor de Broglie, dándole otra vuelta a la teoría, que no sólo cualquier cosa que oscila tiene una energía, sino que cualquier cosa con energía se debe comportar como una “onda” que se extiende en una cierta dirección del espacio, y que la frecuencia, v, de la oscilación verifica la ecuación de Planck. Por lo tanto, los cuantos asociados con los rayos de luz deberían verse como una clase de partículas elementales: el fotón. Todas las demás clases de partículas llevan asociadas diferentes ondas oscilatorias de campos de fuerza.

 

ESTUDIO DEL ÁTOMO» – Festival de la Quimica

Es curioso el comportamiento de los electrones en el interior del átomo, descubierto y explicado por el famoso físico danés Niels Bohr, se pudo atribuir a las ondas de De Broglie. Poco después, en 1926, Edwin Schrödinger descubrió como escribir la teoría ondulatoria de De Broglie con ecuaciones matemáticas exactas. La precisión con la cual se podían realizar los cálculos era asombrosa, y pronto quedó claro que el comportamiento de todos los objetos pequeños quedaba exactamente determinado por las recién descubiertas “ecuaciones de onda cuántica”.

 

No hay duda de que la Mecánica Cuántica funciona maravillosamente bien. Sin embargo, surge una pregunta muy formal: ¿Qué significan realmente esas ecuaciones?, ¿Qué es lo que están describiendo? Cuando Isaac Newton, allá por el año 1687, formuló cómo debían moverse los planetas alrededor del Sol, estaba claro para todo el mundo lo que significaban sus ecuaciones: que los planetas están siempre en una posición bien definida en el espacio y que sus posiciones y sus velocidades en un momento concreto determinan inequívocamente cómo evolucionarán las posiciones y las velocidades con el tiempo.

Pero para los electrones todo esto es muy diferente. Su comportamiento parece estar envuelto en la bruma. Es como si pudieran “existir” en diferentes lugares simultáneamente, como si fueran una nube o una onda, y esto no es un efecto pequeño. Si se realizan experimentos con suficiente precisión, se puede determinar que el electrón parece capaz de moverse simultáneamente a lo largo de trayectorias muy separadas unas de otras. ¿Qué puede significar todo esto?

Niels Bohr consiguió responder a esta pregunta de forma tal que con su explicación se pudo seguir trabajando y muchos físicos siguen considerando su respuesta satisfactoria. Se conoce como la “interpretación de Copenhague” de la Mecánica Cuántica. En vez de decir que el electrón se encuentra en el punto x o en el punto y, nosotros hablamos del estado del electrón. Ahora no tenemos el estado “x” o el estado “y”, sino estados “parcialmente x” o “parcialmente y. Un único electrónpuede encontrarse, por lo tanto, en varios lugares simultáneamente. Precisamente lo que nos dice la Mecánica Cuántica es como cambia el estado del electrón según transcurre el tiempo.

Un “detector” es un aparato con el cual se puede determinar si una partícula está o no presente en algún lugar pero, si una partícula se encuentra con el detector su estado se verá perturbado, de manera que sólo podemos utilizarlo si no queremos estudiar la evolución posterior del estado de la partícula. Si conocemos cuál es el estado, podemos calcular la probabilidad de que el detector registre la partícula en el punto x.

 

Las leyes de la Mecánica Cuántica se han formulado con mucha precisión. Sabemos exactamente como calcular cualquier cosa que queramos saber. Pero si queremos “interpretar” el resultado, nos encontramos con una curiosa incertidumbre fundamental: que varias propiedades de las partículas pequeñas no pueden estar bien definidas simultáneamente. Por ejemplo, podemos determinar la velocidad de una partícula con mucha exactitud, pero entonces no sabremos exactamente dónde se encuentra; o, a la inversa. Si una partícula tiene “espín” (rotación alrededor de su eje), la dirección alrededor de la cual está rotando (la orientación del eje) no puede ser definida con gran precisión.

No es fácil explicar con sencillez de dónde viene esta incertidumbre, pero hay ejemplos en la vida cotidiana que tienen algo parecido. La altura de un tono y la duración en el tiempo durante el cual oímos el tono tienen una incertidumbre mutua similar.

Física cuántica: qué es la dualidad partícula-onda de la luz y cómo su  descubrimiento revolucionó la ciencia - BBC News Mundo

         ¿Onda o partícula? ¡Ambas a la vez! ¿Cómo es eso?

Para que las reglas de la Mecánica Cuántica funcionen, es necesario que todos los fenómenos naturales en el mundo de las cosas pequeñas estén regidos por las mismas reglas. Esto incluye a los virus, bacterias e incluso a las personas. Sin embargo, cuanto más grande y más pesado es un objeto más difícil es observar las desviaciones de las leyes del movimiento “clásicas” debidas a la mecánica cuántica.

Me gustaría referirme a esta exigencia tan importante y tan peculiar de la teoría con la palabra “holismo”. Esto no es exactamente lo mismo que entienden algunos filósofos por “holismo”, y que se podría definir como “el todo es más que la suma de las partes”.

Bien, si la Física nos ha enseñado algo, es justamente lo contrario: un objeto compuesto de un gran número de partículas puede ser entendido exactamente si se conocen las propiedades de sus partes (las partículas): basta que uno sepa sumar correctamente (¡y esto no es nada fácil en mecánica cuántica!). Lo que yo entiendo por holismo es que, efectivamente, el todo es la suma de las partes, pero sólo se puede hacer la suma si todas las partes obedecen a las mismas leyes.

 

Por ejemplo, la constante de Planck, h = 6,626075…x 10 exp. -34 julios segundo, debe ser exactamente la misma para cualquier objeto en cualquier sitio, es decir, debe ser una constante universal.

Las reglas de la mecánica cuántica funcionan tan bien que refutarlas resulta realmente difícil. Los trucos ingeniosos descubiertos por Werner Heisenberg, Paul Dirac y muchos otros mejoraron y completaron las reglas generales. Pero Einstein y otros pioneros tales como Edwin Schrödinger, siempre presentaron serias objeciones a esta interpretación.

Quizá funcione bien, pero ¿Dónde está exactamente el electrón, en el punto x o en el punto y? Em pocas palabras, ¿dónde está en realidad?, ¿Cuál es la realidad que hay detrás de nuestras fórmulas? Si tenemos que creer a Bohr, no tiene sentido buscar tal realidad. Las reglas de la mecánica cuántica, por sí mismas, y las observaciones realizadas con detectores son las únicas realidades de las que podemos hablar.

 

Hasta hoy, muchos investigadores coinciden con la actitud pragmática de Bohr. Los libros de historia dicen que Bohr demostró que Einstein estaba equivocado. Pero no son pocos,  incluyéndome a mí, los que sospechamos que a largo plazo el punto de vista de Einstein volverá: que falta algo en la interpretación de Copenhague. Las objeciones originales de Einstein pueden superarse, pero aún surgen problemas cuando uno trata de formular la mecánica cuántica para todo el Universo (donde las medidas no se pueden repetir) y cuando se trata de reconciliar las leyes de la mecánica cuántica con las de la Gravitación… ¡Infinitos!

La mecánica cuántica y sus secretos han dado lugar a grandes controversias, y la cantidad de disparates que ha sugerido es tan grande que los físicos serios ni siquiera sabrían por donde empezar a refutarlos. Algunos dicen que “la vida sobre la Tierra comenzó con un salto cuántico”, que el “libre albedrío” y la “conciencia” se deben a la mecánica cuántica: incluso fenómenos paranormales han sido descritos como efectos mecano-cuánticos.

 

Yo sospecho que todo esto es un intento de atribuir fenómenos “ininteligibles” a causas también “ininteligibles” (como la mecánica cuántica) dónde el resultado de cualquier cálculo es siempre una probabilidad, nunca una certeza.

Claro que, ahí están esas teorías más avanzadas y modernas que vienen abriendo los nuevos caminos de la Física y que, a mi no me cabe la menor duda, más tarde o más temprano, podrá explicar con claridad esas zonas de oscuridad que ahora tienen algunas teorías y que Einstein señalaba con acierto.

Resultado de imagen de Las ecuaciones de Einstein de la relatividad general

¿No es curioso que, cuando se formula la moderna Teoría M, surjan, como por encanto, las ecuaciones de Einstein de la Relatividad General? ¿Por qué están ahí? ¿Quiere eso decir que la Teoría de Einstein y la Mecánica Cuántica podrán al fin unirse en pacifico matrimonio sin que aparezcan los dichosos infinitos?

Bueno, eso será el origen de otro comentario que también, cualquier día de estos, dejaré aquí para todos ustedes.

Emilio Silvera Vázquez