jueves, 26 de diciembre del 2024 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




El universo de lo muy pequeño

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

“Adentrarse en el universo de las partículas que componen los elementos de la tabla periódica, y en definitiva, la materia conocida, es verdaderamente fantástico”.

 

 

 

Tan pronto como los Joliot-Curie crearon el primer isótopo radiactivo artificial, los físicos se lanzaron en tropel a producir tribus enteras de ellas. En realidad, las variedades radiactivas de cada elemento en la tabla periódica son producto de laboratorio. En la moderna tabla periódica, cada elemento es una familia con miembros estables e inestables, algunos procedentes de la naturaleza, otros sólo del laboratorio. Por ejemplo, el hidrógeno presenta tres variedades: en primer lugar, el corriente, que tienen un solo protón. En 1932, el químico Harold Urey logró aislar el segundo. Lo consiguió sometiendo a lenta evaporación una gran cantidad de agua, de acuerdo con la teoría de que los residuos representarían una concentración de la forma más pesada del hidrógeno que se conocía, y, en efecto, cuando se examinaron al espectroscopio las últimas gotas de agua no evaporadas, se descubrió en el espectro una leve línea cuya posición matemática revelaba la presencia de hidrógeno pesado.

Cuadernos de Física: El átomo de Hidrógeno

 

El núcleo de hidrógeno pesado está constituido por un protón y un neutrón. Como tiene un número másico de 2, el isótopo es hidrógeno. Urey llamó a este átomo deuterio (de la voz griega deutoros, “segundo”), y el núcleo deuterón. Una molécula de agua que contenga deuterio se denomina agua pesada, que tiene puntos de ebullición y congelación superiores al agua ordinaria, ya que la masa del deuterio es dos veces mayor que la del hidrógeno corriente. Mientras que ésta hierve a 100º C y se congela a 0º C, el agua pesada hierve a 101’42º C y se congela a 3’79º C. El punto de ebullición del deuterio es de -23’7º K, frente a los 20’4º K del hidrógeno corriente. El deuterio se presenta en la naturaleza en la proporción de una parte por cada 6.000 partes de hidrógeno corriente. En 1934 se otorgó a Urey el premio Nobel de Química por su descubrimiento del deuterio.El deuterio resultó ser una partícula muy valiosa para bombardear los núcleos. En 1934, el físico australiano Marcus Lawrence Edwin Oliphant y el austriaco P. Harteck atacaron el deuterio con deuterones y produjeron una tercera forma de hidrógeno, constituido por un protón y dos neutrones. La reacción se planteó así:

 

Isótopos de hidrógeno. | Download Scientific Diagram

hidrógeno 2 + hidrógeno 2 = hidrógeno 3 + hidrógeno 1

Este nuevo hidrógeno superpesado se denominó tritio (del griego tritos, “tercero”); su ebullición a 25º K y su fusión  a 20’5º K.

Leer más

El placer de Descubrir: Aventurarse por nuevos caminos.

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

                               

La molécula de agua es polar en virtud principalmente de su geometría angular

Maravillas de la Naturaleza

 

Cómo surgió la vida en la Tierra? - fundbmarch.esDiez últimas teorías científicas sobre extraterrestres

Rho OphiuchiNuevas pistas sobre el origen de los rayos cósmicos de ultra-alta energía - IGFAELa química universal: el estudio de las moléculas en el espacio y su relación con la vida

 

Actualmente, gracias a la Astrofísica y la Astroquímica, sabemos que, además de los rayos cósmicos, los átomos y las moléculas están presentes también en todo el universo, pues sus señales en forma de radiación electromagnética nos llegan desde las más lejanas galaxias hasta el medio interestelar de la nuestra, pasando por atmósferas estelares, por enanas marrones, por discos que rodean las estrellas, por planetas, etc, donde también existen átomos y moléculas con los que pueden interaccionar.
Primera detección de una molécula interestelar con tres átomos de oxígenoESPECTROSCOPIA ASTRONÓMICA | christian5341Espectroscopía – UNIVERSO Blog
La Astroquímica utiliza telescopios, que generalmente son radiotelescopios, que junto con el empleo de la “espectroscopia” hace posible detectar y determinar la naturaleza de las sustancias presentes en el universo. Después de la invención del telescopio, es probablemente la invención del espectroscopio y la ciencia a él ligada, la espectroscopía, uno de los mayores hitos de la historia de la instrumentación astronómica. En 1860 se construyó el primer espectroscopio, instrumento que revolucionó la química y la astronomía y que abrió las puertas a un camino nuevo para entender el Cosmos.
Espectro de emisión - Wikipedia, la enciclopedia libreEL FÍSICO LOCO: Espectros atómicos. Emisión y absorción
Cuando se calienta un elemento químico, emite luz a frecuencias características, el  “espectro de emisión”, luz que una vez analizada mediante un espectroscopio y convertida en un “espectro”, se transforma en la “huella dactilar” que lo identifica sin el menor equívoco. Asimismo, los elementos pueden absorber a las mismas frecuencias que emiten, dando lugar a los “espectros de absorción”, que son una especie de arco iris al que le faltan los colores correspondientes a las frecuencias absorbidas por la sustancia. Ambos espectros son complementarios.
https://youtu.be/L0Kwlirekv4

 Los organismos vivos somos sistemas extremadamente complejos, formados por un elevado número de elementos interrelacionados que deben mantener sus características a lo largo del tiempo, de una generación a otra. Esto supone que debe existir algún mecanismo para que cada elemento de los organismos se elabore de acuerdo a un “plan”, a un modelo de organización establecido, y que ese modelo pueda ser transmitido de una célula a sus descendientes. Esta necesidad de los seres vivos nos acerca a la noción de información genética.

 

 

Pasa el Tiempo, las Ideas fluyen y… ¡Vamos comprendiendo! : Blog de Emilio Silvera V.
“Que no está muerto lo que duerme eternamente, y, con el paso de los Eones, hasta la muerte tendrá que morir”

“Quien ha visto las cosas presentes ha visto todo, todo lo ocurrido desde la eternidad y todo lo que ocurrirá en el tiempo sin fin; pues todas las cosas son de la misma clase y la misma ”.

Marco Aurelio

Claro que él, quería significar que todo, desde el comienzo del mundo, ha sido igual, sigue unos patrones que se repiten una y otra vez a lo largo del transcurso de los tiempos: el día y la noche, las estaciones, el frío y el calor, el río muerto por la sequía o aquel que, cantarino y rumoroso ve correr sus aguas cristalinas hasta que desembocan en el océano. La Bondad y la maldad… Y, también, el Hombre y la Mujer. Así ha sido desde que podemos recordar y, así continuará siendo.

 

Para fugarnos de la tierra

un libro es el mejor bajel;

y se viaja mejor en el poema

que en más brioso corcel.

Whitman

 

El mañana siempre será incierto, lo único que sabemos es que el Presente es la semilla del Futuro

“Todo presente de una sustancia simple es naturalmente una consecuencia de su estado anterior, de modo que su presente está cargado de su futuro.”

Leibniz

 

2022 agosto 01 : Blog de Emilio Silvera V.

¿Cuál es el camino? No hay ningún camino – Soñé que subía la escalera al infinito

Está claro el mensaje que tal pregunta y tal respuesta nos quiere hacer llegar, el camino, tendremos que hacerlo nosotros mediante la exploración hacia el futuro en el que está lo que deseamos encontrar. Hay que explorar y arriesgarse para tenemos que ir más allá de las regiones habituales y conocidas que nos tienen estancados siempre en el mismo lugar. ¡Arriesguémonos!

 

Homero nos contó como Ulises de Ítaca se arriesgó a oír el canto de las sirenas amarrado al palo de la vela mayor de su embarcación. Él no que´ria ser atraído por aquellas fuerzas malignas pero quería sentir los efectos de aquella llamada en lugar seguro. Eso nos lleva a pensar que hay un mensaje en el pasaje de Homero: Arriesgarse… ¡Sí! Pero con las precauciones necesarias. Así que, cuidado con los Robots, con los experimentos científicos de todo tipo, y, sobre todo, no debemos creer que lo sabemos todo. Tenemos que ser conscientes de que, el peligro nos acecha por todas partes.

 

Marco Polo y la Ruta de la SedaEl primer viaje de Cristóbal Colón a América: ruta, fechas y datos clave | Diariocrítico.com

 

Pero, no cabe duda alguna de que, el acto de exploración modifica la perspectiva del explorador; Ulises, Marco Polo y Colón habían cambiado cuando volvieron a sus lugares de partida . Lo mismo ha sucedido en la investigación científica de los extremos en las escalas, desde la grandiosa extensión del espacio cosmológico hasta el mundo minúsculo y enloquecido de las partículas subatómicas.

 

                 

La galaxia conocida por el nombre de Bella Durmiente

                                     Una bella galaxia espiral de cien mil años-luz de diámetro que podemos comparar con…¡Un átomo! El tema de las medidas es relativo y todo se supedita a su ámbito natural, cada cosa tiene la medida que requiere su funciòn en el Universo, desde un átomo hasta una galaxia.

En ambos “universos” existe una descomunal diferencia en los extremos de las escalas. Sin embargo, la inmensa galaxia de arriba no sería posible sin la existencia de infinitesimal átomo de abajo. ¡Todo lo grande está hecho de cosas pequeñas!

Así que, cuando hacemos esos viajes, irremediablemente nos cambian, y, desde luego, desafían muchas de las concepciones científicas y filosóficas que, hasta ese momento, más valorábamos. Algunas tienen que ser desechadas, como el bagaje que se deja atrás en una larga travesía por el desierto. Otras tienen que ser modificadas y reconstruidas hasta quedar casi irreconocibles, ya que, lo que hemos podido ver en esos viajes, lo que hemos descubierto, nos han cambiado por completo el concepto y la perspectiva que del mundo teníamos, conocemos y sabemos.

La exploración del ámbito de las galaxias extendió el alcance de la visión humana en un factor de 1026 veces mayor que la escala humana, y produjo la revolución que identificamos con la relatividad, la cual reveló que la concepción newtoniana del mundo sólo era un parroquianismo en un universo más vasto donde el espacio es curvo y el tiempo se hace flexible.

 

La exploración del dominio subatómico nos llevó lejos en el ámbito de lo muy pequeño, a 10-15 de la escala humana, y también significó una revolución. fue la Física cuántica que, transformó todo lo que abordó.

La teoría cuántica nació en 1900, Max Planck comprendió que sólo podía explicar lo que llamaba la curva del cuerpo negro -el espectro de energía que genera un objeto de radiación perfecta- si abandonaba el supuesto clásico de que la emisión de energía es continua, y lo reemplazó por la hipotesis sin precedentes de que la energía se emite en unidades discretas. Planck llamó cuantos a estas unidades.

 

 

1) Figura animada que representa un rayo de luz incidiendo sobre un cuerpo negro hasta su total absorción. 2) En la gráfica se representa la intensidad de la radiación emitida por el cuerpo negro en función de la longitud de onda a diferentes temperaturas. El máximo de la curva aumenta al ir hacia menores longitudes de onda (Ley de Wien). Se compara con el modelo clásico de Rayleigh-Jeans a altas temperaturas (5000 K) comprobándose la llamada catástrofe del ultravioleta

La constante de Planck es una constante física que desempeña un papel central en la teoría de la mecánica cuántica y recibe su nombre de su descubridor, Max Plancc, uno de los padres de dicha teoría. Denotada como h, es la constante que frecuentemente se define como el cuanto elemental de acción. Planck la denominaría precisamente «cuanto de acción»

Fue inicialmente propuesta como la constante de proporcionalidad entre la energía E de un fotón y la frecuencia f de su onda electromagnética asociada. Esta relación entre la energía y la frecuencia se denomina «relación de Planck»:

E = h.f \,.

Dado que la frecuencia f, la longitud de onda \<a href=lambda” />, y la velocidad de la luz c cumplen \<a href=lambda . f = c ” />, la relación de Planck se puede expresar como:

E = \frac{hc}{\<a href=

Otra ecuación fundamental en la que interviene la constante de Planck es la que relaciona el momento lineal p de una partícula con la longitud de onda de De Broglie λ de la misma:

\<a href=

En aplicaciones donde la frecuencia viene expresada en términos de radianes por segundo o frecuencia angular, es útil incluir el factor 1/2 dentro de la constante de Planck. La constante resultante, «constante de Planck reducida» o «constante de Dirac», se expresa como ħ (“h barra“):

\hbar = \frac{h}{2 \pi}.

De esta forma la energía de un fotón con frecuencia angular \<a href=omega” />, donde \<a href=omega = 2 \pi . f

Por otro lado, la constante de Planck reducida es el cuanto del momento angular en mecánica cuántica.

Ley de Planck a diferentes temperaturas en función de la frecuencia para la radiación del cuerpo negro

Planck definió a “sus” cuantos en términos del “cuanto de acción”, simbolizado por la letra h que ahora, se ha convertido en el símbolo de una constante,  la constante de Planck, h.  Planck no era ningún revolucionario – a la edad de cuarenta y dos años era un viejo, juzgado por patrones de la ciencia matemática y, además, un pilar de la elevada cultura alemana del siglo XIX-, pero se percató fácilmente de que el principio cuántico echaría abajo buena de la física clásica a la que había dedicado la mayor parte de su carrera. “Cuanto mayores sean las dificultades -escribió-…tanto más importante será finalmente para la ampliación y profundización de nuestros conocimientos en la física.”

Sus palabras fueron proféticas: cambiando y desarrollándose constantemente, modificando su coloración de manera tan impredecible como una reflexión en una burbuja de , la física cuántica pronto se expandió practicamente a todo el ámbito de la física, y el cuanto de acción de Planck, h llegó a ser considerado una constante de la Naturaleza tan fundamental como la velocidad de la luz, c, de Einstein.

 

Max Planck, el padre de la teoría cuántica que intentó convencer a Hitler de que permitiera trabajar a los científicos judíos - BBC News Mundo

           Dos buenos amigos, dos genios

Max Planck es uno de los científicos a los que más veces se le han reconocido sus méritos y, su , está por todas partes: La Constante de Planc, las Unidades de Planck, El cuanto de Planck, la Radiación de Planck, El Tiempo de Planck, la masa de Planck, la Energía de Planck, la Longitud de Planck… ¡Todo merecido!

 

GAE UNAM: Gravitación y Altas Energías - Cuando uno empieza a estudiar física, seguirle la pista a las unidades parece primero algo molesto; pero pronto se vuelve una herramienta crucial. No tendría

Cosas curiosas : Blog de Emilio Silvera V.

El Tiempo de Planck se considera como el intervalo temporal más pequeño que puede ser medido. El tiempo de Planck representa el tiempo que tarda un fotón viajando a la velocidad de la luz en atravesar una distancia igual a la longitud de Planck.

Confinados en nuestro pequeño mundo, una mota de polvo en la inmensidad de una Galaxia grandiosa que, a su vez, forma parte de un universo “infinito”, hemos podido darnos traza para poder saber, a pesar de las enormes distancias, sobre lo que existe en regiones remotas del Universo.  Un Universo formado por Supercúmulos de galaxias que formadas en grupos conforman la materia visible, y, dentro de cada una de esas galaxias, como si de universos se tratara, se reproducen todos los objetos y fenómenos que en el Universo son.

https://youtu.be/uaGEjrADGPA

 

Aplicativo The Scale of the Universe 2-http://htwins.net/scale2/ | Download Scientific Diagram

 

Sigamos con la escala del Universo conocido y hagamos un pequeño esquema que lo refleje: El Universo Observable, la mayor escala que abarca más de 100 mil trillones de kilómetros (según nos cuenta Timothy Ferris:

 

Radio en metros                                                                   Objetos característicos

1026                                                                                                 Universo observable

1024                                                                                                 Supercúmulos de Galaxias

1023                                                                                                 Cúmulos de Galaxias

1022                                                                                                 Grupo de Galaxias (por ejemplo el Grupo Local)

1021                                                                                                  Galaxia La Vía Láctea

 

 

Nube Molecular gigante muy masiva, de gas y polvo compuesta fundamentalmente de moléculas con diámetro típico de 100 a.l. Tienen masa de diez millones de masas solares (moléculas de Hidrógeno (H2) el 73% en masa), átomos de Helio (He, 25%), partículas de polvo (1%), Hidrógeno atómico neutro (H I, del 1%) y, un rico coctel de moléculas interestelares. En nuestra galaxia existen al menos unas 3000 Nubes Moleculares Gigantes, estando las más masivas situadas cerca de la radiofuente Sagitario B en el centro Galáctico.

 

1018                                                                                                  Nebulosas Gigantes, Nubes Moleculares

1012                                                                                                                                                   Sistema Solar

1011                                                                                                  Atmósfera externa de las Gigantes rojas

 

Distancias interplanetarias: La Unidad astronómica – UNIVERSO Blog

 

Aunque a una Unidad Astronómica de distancia (150 millones de Kilómetros de la Tierra), el Sol caliente el planeta y nos da la vida

 

109                                                                                                  El Sol

108                                                                                                  Planetas Gigantes Júpiter

107                                                                                                  Estrellas enanas,  planetas similares a la Tierra

105                                                                                                  Asteroides, núcleos de cometas

104                                                                                                  Estrellas de Neutrones

 

          Los seres humanos son parte del Universo que tratan de descubrir

 

1                                                                                                      Seres Humanos

10-2                                                                                                Molécula de ADN (eje largo)

10-5                                                                                                Células vivas

 

Ultrasonido a nanoescala para visualizar células vivasPágina 7 | Imágenes de Celulas Vivas - Descarga gratuita en Freepik

                                 Células vivas

10-9                                                                                                Molécula de ADN (eje corto)

10-10                                                                                              Átomos

10-14                                                                                             Núcleos de átomos pesados

10-15                                                                                             Protones y Neutrones

10-35                                                                                            Longitud de Planck: cuanto de espacio; radio de partículas sin dimensiones = la cuerda.

 

 

Es la escala de longitud a la que la descripción clásica de la Gravedad cesa de ser válida y debe ser tenida en la mecánica cuántica. Está dada por la ecuación de arriba, donde G es la constante gravitacional, ħ es la constante de Planck racionalizada y c es la velocidad de la luz. El valor de la longitud de Planck es del orden de 10-35 m (veinte órdenes de magnitud menorque el tamaño del protón 10-15 m).

Me llama la atención y me fascina la indeterminación que está inmersa en el mundo cuántico. La indeterminación cuántica no depende del aparato experimental empleado investigar el mundo subatómico. Se trata, en la medida de nuestro conocimiento, de una limitación absoluta, que los más destacados sabios de una civilización extraterrestre avanzada compartirían con los más humildes físicos de la Tierra.

 

Principio de incertidumbre | Bienvenidos a DescubrirlaquimicaRelación de indeterminación de Heisenberg - Wikipedia, la enciclopedia libre

 

Por muy avanzados que pudieran estar, ellos también estarían supeditados al Principio de Incertidumbre o Indeterminación cuántica, y, como nosotros, cuando trataran de encontrar (sea cual fuese las matemáticas o sistemas que emplearan para hallarlo) el resultado de la constante de estructura fina, la respuesta sería la misma: 137, puro y adimensional.

Todo esto nos ha llevado a la más firme convicción definir la visión del mundo de la física que nos revelaba que no sólo la materia y la energía sino que también el conocimiento están cuantizados. Cuando un fotón choca con un átomo, haciendo saltar un electrón a una órbita más elevada, el electrón se mueve de la órbita inferior a la superior instantáneamente, sin tener que atravesar el espacio intermedio. Los mismos radios orbitales están cuantizados, y el electrón simplemente deja de existir en un punto para aparecer simultáneamente en otro. Este es el famoso “salto cuántico” que tanto desconcierta, y no es un mero problema filosófico, es una realidad que, de , no hemos llegado a comprender.

 

179.400+ Mujer Saltando Fotografías de stock, fotos e imágenes libres de derechos - iStock | Mujeres, Libertad, Felicidad

           No, esto no es un salto cuántico. Simplemente le tocó la Lotería

Pero, ¿quién sabe? Quizás un día lejano aún en el tiempo, cuando descubramos el secreto que salto cuántico nos esconde, poderemos aprovechar la misma técnica que emplea la Naturaleza con los electrones hacer posible que se transporten de un lugar a otro sin tener que recorrer las distancias que separan ambos destinos.

 

    Estaría bien poder trasladarse las estrellas por ese medio

Bueno, pongamos los pies en el suelo, volvamos a la realidad. La revolución cuántica ha sido penosa, pero podemos agradecerle que, nos haya librado de muchas ilusiones que afectaban a la visión clásica del mundo. Una de ellas era que el hombre es un ser aparte, separado de la naturaleza a la que en realidad, no es que esté supeditado, sino que es, ella. ¡Somos Naturaleza!

 

Immanuel Kant – Alba Editorial

Está claro, como nos decía Immanuel Kant que:

La infinitud de la creación es suficientemente grande como para que un mundo, o una Vía Láctea de mundos, parezca, en comparación con ella, lo que una flor o un insecto en comparación con la Tierra.”

 

 

Algún día podríamos desaparecer en una especie de plasma como ese de la imagen y salir al “otro lado” que bien (¡Por qué no) podría ser otra galaxias lejana. Creo que la imaginación se nos ha dado para algo y, si todo lo que podemos imaginar se realizar, la conclusión lógica es que sólo necesitamos ¡Tiempo!

Sí, amigos míos, la Naturaleza vive en constante movimiento, y, nosotros, que formamos parte de ella…También vivimos en una constante evolución física y del conocimiento. Tenemos que llegar a conocerla.

 

Kepler-16b, el planeta con dos soles que es el equivalente a Tatooine - Vandal Random

Existen muchos mundos con dos soles, ¿Cómo será vivir en uno de ellos?

 

En tiempos y lugares totalmente inciertos,

Los átomos dejaron su camino celeste,

Y mediante abrazos fortuitos,

Engendraron todo lo que existe.

Maxwell

Doy las gracias a Timothy Ferris de cuyo libro, La Aventura del Universo, he podido obtener bellos pasajes que aquí quedan incluidos.

Emilio Silvera Vázquez

La vida de las partículas

Autor por Emilio Silvera    ~    Archivo Clasificado en Física Cuántica    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

La mente humana es tan compleja que no todos ante la misma cosa vemos lo mismo. Nos enseñan figuras y dibujos y nos piden que digamos (sin pensarlo) la primera cosa que nos sugiere. De entre diez personas, sólo coinciden tres, los otros siete divergen en la apreciación de lo que el dibujo o la figura les sugiere. Un paisaje puede ser descrito de muy distintas maneras según quién lo pueda contar.

 

Solo el 1% de las formas de vida que han vivido en la Tierra están ahora presentes, el 99%, por una u otra razón se han extinguido. Sin embargo, ese pequeño tanto por ciento de la vida actual, supone unos cinco millones de especies según algunas estimaciones. La  Tierra acoge a todas esas especies u palpita de vida que prolifera por doquier. Hay seres vivos por todas partes y por todos los rincones del inmenso mosaico de ambientes que constituye nuestro planeta encontramos formas de vida, cuyos diseños parecen hechos a propósito para adaptarse a su hábitat, desde las profundidades abisales de los océanos hasta las más altas cumbres, desde las espesas selvas tropicales a las planicies de hielo de los casquetes polares. Se ha estimado la edad de 3.800 millones de años desde que aparecieron los primeros “seres vivos” sobre el planeta (dato de los primeros microfósiles). Desde entonces no han dejado de aparecer más y más especies, de las que la mayoría se han ido extinguiendo. Desde el siglo XVIII en que Carlos Linneo propuso su Systema Naturae no han cesado los intentos por conocer la Biodiversidad…, de la que por cierto nuestra especie, bautizada como Homo sapiens por el propio Linneo, es una recién llegada de apenas 200.000 años.

Los tres reinos

Ahora, hablaremos de la vida media de las partículas elementales (algunas no tanto). Cuando hablamos del tiempo de vida de una partícula nos estamos refiriendo al tiempo de vida media, una partícula que no sea absolutamente estable tiene, en cada momento de su vida, la misma probabilidad de desintegrarse. Algunas partículas viven más que otras, pero la vida media es una característica de cada familia de partículas.

También podríamos utilizar el concepto de “semivida”. Si tenemos un gran número de partículas idénticas, la semivida es el tiempo que tardan en desintegrarse la mitad de ese grupo de partículas. La semivida es 0,693 veces la vida media.

 

http://www.monografias.com/trabajos75/agua-pesada/image003.gifPartícula alfa - Wikipedia, la enciclopedia libre

Si miramos una tabla de las partículas más conocidas y familiares (fotónelectrón muón tau, la serie de neutrinos, los mesones con sus pioneskaones, etc., y, los Hadrones bariones como el protónneutrónlambdasigmapsi y omega, en la que nos expliquen sus propiedades de masa, carga, espín, vida media (en segundos) y sus principales maneras de desintegración, veríamos como difieren las unas de las otras.

 

Nuevas medidas de la vida media del neutrón y de la carga débil del protón  - La Ciencia de la Mula Francis

Fuera del núcleo atómico, los neutrones son inestables, teniendo una vida media de 14.7 minutos (879,4 ± 0,6 s);​ cada neutrón libre se descompone en un electrón, un antineutrino electrónico y un protón. Su masa es muy similar a la del protón, aunque ligeramente mayor.

El Protón: 

Protón p, p+, N+
Masa 1,672 621 923 69 × 1027 kg​ 938,272 088 16(29) MeV/c2​ 1,007 276 466 621(53) Da​
Vida media 3,6 × 1035 años
Carga eléctrica 1 e 1,602 176 634 × 1019 C​
Radio de carga 0,8414(19) fm​

17 filas más.

Se encuentran compuestos por tres partículas elementales o quarks: dos “up” (arriba) y uno “down” (abajo). Su vida media es superior a 1035 años, momento a partir del cual son susceptibles de descomponerse.

Algunas partículas tienen una vida media mucho más larga que otras. De hecho, la vida media difiere enormemente. Un neutrón por ejemplo, vive 10¹³ veces más que una partícula Sigma⁺, y ésta tiene una vida 10⁹ veces más larga que la partícula sigma cero. Pero si uno se da cuenta de que la escala de tiempo “natural” para una partícula elemental (que es el tiempo que tarda su estado mecánico-cuántico, o función de ondas, en evolucionar u oscilar) es aproximadamente 10ˉ²⁴ segundos, se puede decir con seguridad que todas las partículas son bastantes estables. En la jerga profesional de los físicos dicen que son “partículas estables”. Representa el tiempo que tarda la mitad de los núcleos de una muestra de sustancia radiactiva en desintegrarse. La vida media se calcula utilizando la siguiente fórmula: T = (0.693 / λ) Donde: T es la vida media.

Imagen

¿Cómo se determina la vida media de una partícula?

Representa el tiempo que tarda la mitad de los núcleos de una muestra de sustancia radiactiva en desintegrarse. La vida media se calcula utilizando la siguiente fórmula: T = (0.693 / λ) Donde: T es la vida media.

 

Gas Radón 220 aplicado en chorro en una cámara de niebla

chorro en una cámara de niebla

 

Así funcionan las cámaras de burbuja, el gran detector de ...

Cámara de burbujas

Las partículas de vida larga, tales como el neutrón y el muón, tienen que ser capturadas, preferiblemente en grandes cantidades, y después se mide electrónicamente su desintegración. Las partículas comprendidas entre 10ˉ¹⁰ y 10ˉ⁸ segundos solían registrarse con una cámara de burbujas, pero actualmente se utiliza con más frecuencia la cámara de chispas. Una partícula que se mueve a través de una cámara de burbujas deja un rastro de pequeñas burbujas que puede ser fotografiado. La Cámara de chispas contiene varios grupos de de un gran número de alambres finos entrecruzados entre los que se aplica un alto voltaje. Una partícula cargada que pasa cerca de los cables produce una serie de descargas (chispas) que son registradas electrónicamente. La ventaja de esta técnica respecto a la cámara de burbujas es que la señal se puede enviar directamente a una computadora que la registra de manera muy exacta.

 

Una partícula eléctricamente neutra nunca deja una traza directamente, pero si sufre algún tipo de interacción que involucre partículas cargadas (bien porque colisionen con un átomo en el detector o porque se desintegren en otras partículas), entonces desde luego que pueden ser registradas. Además, realmente se coloca el aparato entre los polos de un fuerte imán. Esto hace que la trayectoria de las partículas se curve y de aquí se puede medir la velocidad de las partículas. Sin embargo, como la curva también depende de la masa de la partícula, es conveniente a veces medir también la velocidad de una forma diferente.

 

 

 

Una colisión entre un protón y un anti-protón registrada mediante una cámara de chispas del experimento UA5 del CERN.

En un experimento de altas energías, la mayoría de las partículas no se mueven mucho más despacio que la velocidad de la luz. Durante su corta vida pueden llegar a viajar algunos centímetros y a partir de la longitud media de sus trazas se puede calcular su vida. Aunque las vidas comprendidas entre 10ˉ¹³ y 10ˉ²⁰ segundos son muy difíciles de medir directamente, se pueden determinar indirectamente midiendo las fuerzas por las que las partículas se pueden transformar en otras. Estas fuerzas son las responsables de la desintegración y, por lo tanto, conociéndolas se puede calcular la vida de las partículas, Así, con una pericia ilimitada los experimentadores han desarrollado todo un arsenal de técnicas para deducir hasta donde sea posible todas las propiedades de las partículas. En algunos de estos procedimientos ha sido extremadamente difícil alcanzar una precisión alta. Y, los datos y números que actualmente tenemos de cada una de las partículas conocidas, son los resultados acumulados durante muchísimos años de medidas  experimentales y de esa manera, se puede presentar una información que, si se valorara en horas de trabajo y coste de los proyectos, alcanzaría un precio descomunal pero, esa era, la única manera de ir conociendo las propiedades de los pequeños componentes de la materia.

 

 

Que la mayoría de las partículas tenga una vida media de 10ˉ⁸ segundos significa que son ¡extremadamente estables! La función de onda interna oscila más de 10²² veces/segundo. Este es el “latido natural de su corazón” con el cual se compara su vida. Estas ondas cuánticas pueden oscilar 10ˉ⁸ x 10²², que es 1¹⁴ o 100.000.000.000.000 veces antes de desintegrarse de una u otra manera. Podemos decir con toda la seguridad que la interacción responsable de tal desintegración es extremadamente débil.

 

Imagen relacionada

Se habla de ondas cuánticas y también, de ondas gravitacionales. Las primeras han sido localizadas y las segundas estaban siendo perseguidas desde hace algún tiempo con algunos proyectos como LIGO, hasta que, al fin, parece que las han encontrado.

Aunque la vida de un neutrón sea mucho más larga (en promedio un cuarto de hora), su desintegración también se puede atribuir a la interacción débil. A propósito, algunos núcleos atómicos radiactivos también se desintegran por interacción débil, pero pueden necesitar millones e incluso miles de millones de años para ello. Esta amplia variación de vidas medias se puede explicar considerando la cantidad de energía que se libera en la desintegración. La energía se almacena en las masas de las partículas según  la bien conocida fórmula de Einstein E = Mc². Una desintegración sólo puede tener lugar si la masa total de todos los productos resultantes es menor que la masa de la partícula original. La diferencia entre ambas masas se invierte en energía de movimiento. Si la diferencia es grande, el proceso puede producirse muy rápidamente, pero a menudo la diferencia es tan pequeña que la desintegración puede durar minutos o incluso millones de años. Así, lo que determina la velocidad con la que las partículas se desintegran no es sólo la intensidad de la fuerza, sino también la cantidad de energía disponible.

 

Los LEPTONES y la INTERACCIÓN NUCLEAR DÉBIL...

Si no existiera la interacción débil, la mayoría de las partículas serían perfectamente estables. Sin embargo, la interacción por la que se desintegran las partículas π°, η y Σ° es la electromagnética. Se observará que estas partículas tienen una vida media mucho más corta, aparentemente, la interacción electromagnética es mucho más fuerte que la interacción débil.

Durante la década de 1950 y 1960 aparecieron tal enjambre de partículas que dio lugar a esa famosa anécdota de Fermi cuando dijo: “Si llego a adivinar esto me hubiera dedicado a la botánica.”

Si la vida de una partícula  es tan corta como 10ˉ²³ segundos, el proceso de desintegración tiene un efecto en la energía necesaria para producir las partículas ante de que se desintegre. Para explicar esto, comparemos la partícula con un diapasón que vibra en un determinado modo. Si la “fuerza de fricción” que tiende a eliminar este modo de vibración es fuerte, ésta puede afectar a la forma en la que el diapasón oscila, porque la altura, o la frecuencia de oscilación, está peor definida. Para una partícula elemental, esta frecuencia corresponde a su energía. El diapasón resonará con menor precisión; se ensancha su curva de resonancia. Dado que para esas partículas extremadamente inestable se miden curvas parecidas, a medida se las denomina resonancias. Sus vidas medias se pueden deducir directamente de la forma de sus curvas de resonancia.

The Delta Baryon

La partícula delta es un barión que contiene sólo quarks up y down. El Δ+ y el Δ0 tienen las mismas composiciones de quarks que el protón y el neutrón, respectivamente, y decae rápidamente por la interacción fuerte en un protón, un neutrón y un π0. Si para una partícula está disponible tal vía de decaimiento, se descompone muy rápidamente -sobre el orden de 10-23 segundos-. Otro ejemplo es el decaimiento Δ0 –> p+ + π. Téngase en cuenta que el barión delta Δ0 tiene la misma composición de quarks que el neutrón, pero su masa es mucho mayor. Su masa es suficiente para que este decaimiento sea energéticamente favorable. Las cuatro variedades tienen masas similares y se dice que son un cuarteto isospín con isospin 3/2.

Bariones Delta. Un ejemplo típico de una resonancia es la delta (∆), de la cual hay cuatro especies ∆ˉ, ∆⁰, ∆⁺ y ∆⁺⁺(esta última tiene doble carga eléctrica). Las masas de las deltas son casi iguales 1.230 MeV. Se desintegran por la interacción fuerte en un protón o un neutrón y un pión.

Existen tanto resonancias mesónicas como bariónicas . Las resonancias deltas son bariónicas. Las resonancias deltas son bariónicas. (También están las resonancias mesónicas rho, P).

Neutrinos superlumínicos: desintegración de un pión | TARDÍGRADOS

Todos los mesones son inestables y decaen desintegrándose en cuestiones de millonési- mas de segundos. Por ejemplo, los mesones π “pi”cargados y los K “Kaones”, que son los que tienen un mayor tiempo de vida se desintegran en una cienmillonésima de segundo, transformándose, finalmente, en protones y electrones

También se desintegran los mesones π. De qué modo las resonancias pueden captarse también en semejantes sistemas lo mostraremos en el ejemplo de la resonancia en el sistema mesón π — hiperón Λ0.

Las resonancias parecen ser solamente una especie de versión excitada de los Hadrones estable. Son réplicas que rotan más rápidamente de lo normal o que vibran de diferente manera. Análogamente a lo que sucede cuando golpeamos un gong, que emite sonido mientras pierde energía hasta que finalmente cesa de vibrar, una resonancia termina su existencia emitiendo piones, según se transforma en una forma más estable de materia.

Por ejemplo, la desintegración de una resonancia ∆ (delta) que se desintegra por una interacción fuerte en un protón o neutrón y un pión, por ejemplo:

∆⁺⁺→р + π⁺;  ∆⁰→р + πˉ; o п+π⁰

En la desintegración de un neutrón, el exceso de energía-masa es sólo 0,7 MeV, que se puede invertir en poner en movimiento un protón, un electrón y un neutrino. Un Núcleo radiactivo generalmente tiene mucha menos energía a su disposición.

El estudio de los componentes de la materia tiene una larga historia en su haber, y, muchos son los logros conseguidos y muchos más los que nos quedan por conseguir, ya que, nuestros conocimientos de la masa y de la energía (aunque nos parezca lo contrario), son aún bastante limitados, nos queda mucho por descubrir antes de que podamos decir que dominamos la materia y sabemos de todos sus componentes. Antes de que eso llegue, tendremos que conocer, en profundidad, el verdadero origen de la Luz que esconde muchos secretos que tendremos que desvelar.

 

Reconstrucción de uno de los eventos en los que se observa un candidato a pentaquark | Imagen: CERN

 

Los científicos del CERN, el mayor laboratorio de física de partículas del mundo, anunciaron hace algún tiempo ya que, en uno de sus experimentos están presentes los indicios del descubrimiento de una nueva partícula jamás observada hasta el momento, llamada pentaquark.   Esta nueva partícula tiene la peculiaridad de que está compuesta por cinco quarks a diferencia de las partículas de materia ordinaria como protones y neutrones que están compuestas tan sólo por tres.

 

    Una “bolsa” de 5 quarks
  Modelo “mesón+barión”

Esperemos que con los futuros experimentos del LHC y de los grandes Aceleradores de partículas del futuro,  se nos aclaren algo las cosas y podamos avanzar en el perfeccionamiento del Modelo Estándar de la Física de Partículas que, como todos sabemos es un Modelo incompleto que no contiene a todas las fuerzas de la Naturaleza y, cerca de una veintena de sus parámetros son aleatorios y no han sido explicados.(Bueno, ahora son 19 después del descubrimiento del Bosón de Higgs).

Sin embargo, a mí particularmente me quedan muchas dudas al respecto.

Pero, no debemos olvidar que… ¡Todo lo grande está hecho de “cosas” pequeñas!

Emilio Silvera Vázquez

¿Qué será la materia?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (4)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

  Higgs? ¡Si existen!

En primaria, nos decían que estaba en tres estados. Se profundizaba poco más y, el desconocimiento de la materia era grande: Sólido, Líquido y Gaseoso, esa era toda la explicación que sobre la materia nos daban.

 

El Plasma! Ese estado de la materia del que están hechas las estrellas :  Blog de Emilio Silvera V.

En la física clásica y la química general, la materia se define como todo aquello que posee una masa, ocupa un volumen y es capaz de interactuar gravitatoriamente

 

La naturaleza de la materia | PPTSeres Vivos: Concepto, Características y Ciclo de vida

Y, desde la materia “inerte” se evolucionó hasta alcanzar la consciencia de Ser ¿Cómo pudo ser?

Tiene y encierra tantos misterios la materia que estamos aún y años-luz de saber y conocer sobre su verdadera naturaleza. Nos podríamos preguntar miles de cosas que no sabríamos contestar.  Nos maravillan y asombran fenómenos naturales que ocurren ante nuestros ojos pero que tampoco sabemos, en realidad, a que son debidos.  Si, sabemos ponerles etiquetas como, por ejemplo, la fuerza nuclear débil, la fisión espontánea que tiene lugar en algunos elementos como el protactinio o el torio y, con mayor frecuencia, en los elementos que conocemos como transuránicos.

No hay ninguna descripción de la foto disponible.

 

 

A medida que los núcleos se hacen más grandes, la probabilidad de una fisión espontánea aumenta.  En los elementos más pesados de todos (einstenio, fermio y mendelevio), esto se convierte en el método más importante de ruptura, sobrepasando a la emisión de partículas alfa.

 

 

Maravillas como el proceso triple Alfa nos hace pensar que la materia está viva. La radiación ha sido muy bien estudiada y hoy se conocen sus secretos. Sin embargo,  son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas.

 El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lepto que significa “delgado”).

 

             El electrón es onda y partícula

Aunque el electrón fue descubierto en 1.897 por el físico británico Josepth John Thomson (1856-1940), el problema de su estructura, si la hay, no está resuelto.  Conocemos su masa y su carga negativa que responden a 9,1093897 (54)x10-31kg la primera y, 1,602 177 33 (49)x10-19 culombios, la segunda, y también su radio clásico. No se ha descubierto aún ninguna partícula que sea menos masiva que el electrón (o positrón) y que lleve  una carga eléctrica, sea lo que fuese (sabemos como actúa y cómo medir sus propiedades, pero aun no sabemos qué es), tenga asociada un mínimo de masa, y que esta es la que se muestra en el electrón.

 

              41.000+ Electrón Fotografías de stock, fotos e imágenes libres de derechos  - iStock

Lo cierto es que, el electrón, es una maravilla en sí mismo.  El Universo no sería como lo conocemos si el electrón (esa cosita “insignificante”), fuese distinto a como es, bastaría un cambio infinitesimal para que, por ejemplo, nosotros no pudiéramos estar aquí ahora.

 

Son muchas las cosas que desconocemos y, nuestra curiosidad nos empuja continuamente a buscar esas respuestas. Me gustaría comprender lo que realmente es ese cuanto de energía que llamamos fotón y es el responsable de transmitir todas las formas de radiación que existen en nuestro Universo, la luz entre ellas, para que podamos ver lo que nos rodea y llegar a comprender.

El electrón y el positrón son notables por sus pequeñas masas (sólo 1/1.836 de la del protón, el neutrón, el antiprotón o antineutrón), y, por lo tanto, han sido denominados leptones (de la voz griega lepto que significa “delgado”).

 

Átomos

                Primeras imágenes de átomos en movimiento en una molécula

Investigadores de la Universidad Estatal de Ohio (Estados Unidos), han registrado, utilizando una nueva cámara ultrarrápida, la primera imagen en tiempo real de dos átomos vibrando en una molécula. La clave del experimento, que ha sido publicado en la revista ‘Nature’, fue la utilización de la energía del propio electrón de una molécula.

 

agosto 2022 – Física Tabú

Función de onda de electrones

Previamente dos físicos de la Universidad Brown habían mostrado películas de electrones que se movían a través de helio líquido en el International Symposium on Quantum Fluids and Solids del 2006. Dichas imágenes, que mostraban puntos de luz que bajaban por la pantalla fueron publicadas en línea el 31 de mayo de 2007, en el Journal of Low Temperature Physics.

En el experimento que ahora nos ocupa y dada la altísima velocidad de los electrones el equipo de investigadores ha tenido que usar una nueva tecnología que genera pulsos cortos de láser de luz intensa (“Attoseconds Pulses”), habida cuenta que un attos-egundo equivalente a la trillonésima parte de un segundo”.)

 

La corriente electrica. El movimiento de los electrones..flv on Make a GIF

Sin electrones no habría átomos, ni materia, ni vida

¡No por pequeño, se es insignificante! Recordémoslo, todo lo grande está hecho de cosas pequeñas. Las inmensas galaxias son el conjunto de muchos pequeños átomos unidos para formar moléculas que a su vez se juntan y forman cuerpos. Los océanos de la Tierra, las montañas de Marte, los lagos de metano de Titán, los hielos de Europa… ¡Todo está hecho de materia bariónica! Es decir, son pequeños Quarks y Leptones que conforman los átomos de lo que todo está hecho en nuestro Universo. Bueno, al menos todo lo que podemos ver.

 

Un “simple” átomo está conformado de una manera muy compleja. Por ejemplo, un protón está hecho de tres quarks: 2 up y 1 down. Mientras tanto, un neutrón está constituido de 2 quarks down y 1 quark up. Los protones y neutrones son hadrones de la rama barión, es decir, que emiten radiación. También son fermiones y, debido a su función en el átomo, se les suele llamar nucleones. Dichos quarks existen confinados dentro de los protones y neutrones inmersos en una especie de pegamento gelatinoso formado por unas partículas de la familia de los Bosones que se llaman Gluones y son los transmisores de la Fuerza nuclear fuerte. Es decir, si los quarks se quieren separar son atrapados por esa fuerza que los retiene allí confinados.

 

Louis de Broglie | Biography, Atomic Theory, Discovery, & Facts | Britannica

Louis de Broglie

Estudiar el “universo” de las partículas subatómicas es fascinante y se pueden llegar a entender las maravillas que nos muestra la mecánica cuántica, ese extraño mundo que nada tiene que ver con el nuestro cotidiano situado en el macromundo. En realidad, existen partículas que no tienen en absoluto asociada en ellas ninguna masa (es decir, ninguna masa en reposo).  Por ejemplo, las ondas de luz y otras formas de radiación electromagnéticas se comportan como partículas (Einstein en su efecto fotoeléctrico y De Broglie en la difracción de electrones.)

 

Dualidade Onda-Partícula - Física Avançada

 

Imagen ilustrativa de la dualidad onda-partícula, en el cual se puede ver cómo un mismo fenómeno puede tener dos percepciones distintas. Esta manifestación en forma de partículas de lo que, de ordinario, concebimos como una onda se denomina fotón, de la palabra griega que significa “luz”. Recientemente he podido leer que unos científicos han logrado (de alguna manera) “congelelar” la luz y hacerla sólida. Cuando recabe más información os lo contaré con todo detalle. El fotón, el cuanto de luz, es en sí mismo una maravilla.

El fotón tiene una masa de 1, una carga eléctrica de 0, pero posee un espín de 1, por lo que es un bosón. ¿Cómo se puede definir lo que es el espín? Los fotones toman parte en las reacciones nucleares, pero el espín total de las partículas implicadas antes y después de la reacción deben permanecer inmutadas (conservación del espín).  La única forma que esto suceda en las reacciones nucleares que implican a los fotones radica en suponer que el fotón tiene un espín de 1. El fotón no se considera un leptón, puesto que este termino se reserva para la familia formada por el electrón, el muón y la partícula Tau con sus correspondientes neutrinos: Ve, Vu y VT.

 

 

Existen razones teóricas para suponer que, cuando las masas se aceleran (como cuando se mueven en órbitas elípticas en torno a otra masa o llevan a cabo un colapso gravitacional), emiten energía en forma de ondas gravitacionales.  Esas ondas pueden así mismo poseer aspecto de partícula, por lo que toda partícula gravitacional recibe el nombre de gravitón.

La fuerza gravitatoria es mucho, mucho más débil que la fuerza electromagnética.  Un protón y un electrón se atraen gravitacionalmente con sólo 1/1039 de la fuerza en que se atraen electromagnéticamente. El gravitón (aún sin descubrir) debe poseer, correspondientemente, menos energía que el fotón y, por tanto, ha de ser inimaginablemente difícil de detectar.

 

Dibujo20090715_graviton_cartoon_(C)_animaginator

El gravitón parece estar riéndose de todos y no se deja ver. El gravitón es la partícula elemental responsable de la fuerza de la gravedad. Todavía no ha sido descubierto experimentalmente. Teóricamente debería tener masa en reposo nula. ¿Qué límites para la masa del gravitón ofrece el fondo cósmico de microondas? El gravitón es la partícula elemental responsable de la “versión” cuántica de gravedad. No ha sido descubierto aún, aunque pocos dudan de su existencia. ¿Qué propiedades tiene? Debe ser un bosón de espín 2 y como la gravedad parece ser una fuerza de largo alcance, debe tener masa en reposo muy pequeña (billones de veces más pequeña que la del electrón), posiblemente es exactamente cero (igual que parecer ser la del fotón).

 

El CERN busca la partícula que revolucionará la física

Podría ser el descubrimiento más importante de la física de partículas desde los años 70”, ha proclamado la revista Nature en un editorial. Más importante, por lo tanto, que el bosón de Higgs. O que la docena de partículas descubiertas desde que se demostró la existencia de los quarks hace más de 40 años. El Gravitón es la próxima hazaña que será difícil de f8inalizar con éxito.

 

Joseph Weber - Wikipedia, la enciclopedia libre

 

De todos modos, el físico norteamericano Joseph Weber emprendió en 1.957 la formidable tarea de detectar el gravitón.  Llegó a emplear un par de cilindros de aluminio de 153 cm., de longitud y 66 de anchura, suspendidos de un cable en una cámara de vacío.  Los gravitones (que serían detectados en forma de ondas), desplazarían levemente esos cilindros, y se empleó un sistema para detectar el desplazamiento que llegare a captar la cien millonésima parte de un centímetro.

 

LIGO: el detector que ha registrado 6 veces las ondas gravitacionales  predichas por Einstein - BBC News MundoOndas gravitacionales: descubiertas más largas del universo | National  Geographic

El programa LIGO ya ha conseguido detectar las ondas gravitatorias

Para detectar ondas gravitacionales necesitamos instrumentos extremadamente precisos que puedan medir distancias en escalas diminutas. Una onda gravitacional afecta longitudes en escalas de una millonésima de billonésima de metro, así que ¡necesitamos un instrumento que sea lo suficientemente sensible para “ver” a esas escalas! Parece que LIGO y otros lo han conseguido (al menos eso nos dijeron).

 

El interferómetro funciona enviando un haz de luz que se separa en dos haces; éstos se envían en direcciones diferentes a unos espejos donde se reflejan de regreso, entonces los haces al combinarse presentarán interferencia.

Las débiles ondas de los gravitones, que producen del espacio profundo, deberían chocar contra todo el planeta, y los cilindros separados por grandes distancias se verán afectados de forma simultánea.  En 1.969, Weber anunció haber detectado los efectos de las ondas gravitatorias.  Aquello produjo una enorme excitación, puesto que apoyaba una teoría particularmente importante (la teoría de Einstein de la relatividad general).  Desgraciadamente, nunca se pudo comprobar mediante las pruebas realizadas por otros equipos de científicos que duplicaran el hallazgo de Weber.

De todas formas, no creo que, a estas alturas, nadie pueda dudar de la existencia de los gravitones, el bosón mediador de la fuerza gravitatoria.  La masa del gravitón es 0, su carga es 0, y su espín de 2.  Como el fotón, no tiene antipartícula, ellos mismos hacen las dos versiones.

Tenemos que volver a los que posiblemente son los objetos más misteriosos de nuestro Universo: Los agujeros negros.  Si estos objetos son lo que se dice (no parece que se pueda objetar nada en contrario), seguramente serán ellos los que, finalmente, nos faciliten las respuestas sobre las ondas gravitacionales y el esquivo gravitón.

 

Imagen de un agujero negro en el núcleo de una galaxia arrasando otra próxima- NASA

La onda gravitacional emitida por el agujero negro produce una ondulación en la curvatura del espacio-temporal que viaja a la velocidad de la luz transportada por los gravitones. Algunos proyectos como LIGO, están a la caza de esas ondas gravitacionales y, los expertos dicen que, cuando podamos leer sus mensajes, se presentará ante nosotros todo un nuevo universo que aíún no conocemos. Ahora, todo lo que captamos, las galaxias y estrellas lejanas, son gracias a la luz que viaja desde miles de millones de años luz hasta nosotros, los telescopios la captan y nos muestran esas imágenes de objetos lejanos pero, ¿Qué veremos cuando sepamos captar esas ondas gravitatorias que viajan por el Espacio a la velocidad de la luz como los fotones y, son el resultado del choque de galaxias, de agujeros negros y de estrellas de neutrones?

Hay aspectos de la física que me dejan totalmente sin habla, me obligan a pensar y me transporta de este mundo material nuestro a otro fascinante donde residen las maravillas del Universo.  Hay magnitudes asociadas con las leyes de la gravedad cuántica. La longitud de Planck-Wheeler, limite_planck es la escala de longitud por debajo de la cual el espacio tal como lo conocemos deja de existir y se convierte en espuma cuántica.  El tiempo de Planck-Wheeler (1/c veces la longitud de Planck-Wheeler o aproximadamente 10-43 segundos), es el intervalo de tiempo más corto que puede existir; si dos sucesos están separados por menos que esto, no se puede decir cuál sucede antes y cuál después. El área de Planck-Wheeler (el cuadrado de la longitud de Planck-Wheeler, es decir, 2,61×10-66cm2) juega un papel clave en la entropía de un agujero negro.

 

Me llama poderosamente la atención lo que conocemos como las fluctuaciones de vacío, esas oscilaciones aleatorias, impredecibles e ineliminables de un campo (electromagnético o gravitatorio), que son debidas a un tira y afloja en el que pequeñas regiones del espacio toman prestada momentáneamente energía de regiones adyacentes y luego la devuelven. Hace un par de días que hablamos de ello.

Ordinariamente, definimos el vacío como el espacio en el que hay una baja presión de un gas, es decir, relativamente pocos átomos o moléculas.  En ese sentido, un vacío perfecto no contendría ningún átomo o molécula, pero no se puede obtener, ya que todos los materiales que rodean ese espacio tienen una presión de vapor finita.  En un bajo vacío, la presión se reduce hasta 10-2 pascales, mientras que un alto vacío tiene una presión de 10-2-10-7 pascales.  Por debajo de 10-7 pascales se conoce como un vacío ultra-alto.

 

 

El primer gran vacío en ser detectado fue el de Boötes en 1.981; tiene un radio de unos 180 millones de años luz y su centro se encuentra a aproximadamente 500 millones de años luz de la Vía Láctea. La existencia de grandes vacíos no sorprende a la comunidad de astrónomos y cosmólogos, dada la existencia de cúmulos de galaxias y supercúmulos a escalas muy grandes. Claro que, según creo yo personalmente, ese vacío, finalmente, resultará que está demasiado lleno, hasta el punto de que su contenido nos manda mensajes que, aunque lo hemos captado, no lo sabemos descifrar.

No puedo dejar de referirme al vacío-theta (vació θ) que, es el estado de vacío de un campo gauge no abeliano (en ausencia de campos fermiónicos y campos de Higgs). En el vacío theta hay un número infinito de estados degenerados con efecto túnel entre estos estados.  Esto significa que el vacío theta es análogo a una fundón de Bloch en un cristal.

 

 

 

Se puede derivar tanto como un resultado general o bien usando técnicas de instantón.  Cuando hay un fermión sin masa, el efecto túnel entre estados queda completamente suprimido. Cuando hay campos fermiónicos con masa pequeña, el efecto túnel es mucho menor que para campos gauge puros, pero no está completamente suprimido.

Emilio Silvera Vázquez

Hoy un sueño ¿Realidad mañana?

Autor por Emilio Silvera    ~    Archivo Clasificado en Física    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

 

 

Las mejores preguntas de naturaleza - QuoLa furia de la naturaleza desatada - Abadía Digital

Pin by Johelmedina on Beautiful World | Nature photography, Nature, Beautiful natureLos fenómenos naturales más impresionantes del mundo | Paisaje increibles, Fotos de paisajes naturales, Viajes22 fenómenos naturales como nunca los habías visto | Gif de paisajes, Imágenes bellas, Paisajes

 

Cuando la Naturaleza realiza sus actividades físicas para poner en orden sus parámetros planetarios, poco podemos hacer los habitantes de éste mundo por frenar sus estiramientos y ejercicios encaminados a regenerarse y hacer posible nuevos comienzos. Kas placas tectónicas se mueven y provocan terremotos y hace que los volcanes se despierten , crean tsunamis y, de ese enorme Caos, surge una sabia nueva y una nueva vida.

 

Nuestro ecosistema planetario está gravemente enfermo - Cambio16

 

La evolución de una Atmósfera planetaria que sustente la Vida requiere de una serie de requisitos en la fase inicial en la cual, el Oxígeno es liberado por foto-disociación de vapor de agua. en la Tierra esto sucedido en unos 2.400 millones de años y llevó el oxígeno atmosférico aproximadamente a una milésima del actual…

 

 

Llegará un día en el que, podremos entrar en un inmenso espacio, una enorme habitación, en la que, previa elección de la  programación adecuada, todo se transformará en un “mundo ficticio”, un holograma que, lo mismo podrá ser una playa luminosa con arena dorada por el Sol que, una Selva tropical o un desierto, dependiendo de los gustos del usuario.

 

Teoría de Cuerdas - www.jrzetina.comTeoría M | Filosofía en ColmenarejoEl estado actual de la teoría M - La Ciencia de la Mula Francis

 

Si repasamos la historia de la ciencia, seguramente encontraremos muchos motivos para el optimismo. Witten (el Físico de la Teoría M),  está convencido de que la ciencia será algún día capaz de sondear hasta las energías de Planck. Como ya he referido en otras ocasiones, él dijo:

“No siempre es tan fácil decir cuáles son las preguntas fáciles y cuáles las difíciles. En el siglo XIX, la pregunta de por qué el agua hierve a 100 grados era desesperadamente inaccesible. Si usted hubiera dicho a un físico del siglo XIX que hacia el siglo XX sería capaz de calcularlo, le habría parecido un cuento de hadas… La teoría cuántica de campos es tan difícil que nadie la creyó completamente durante 25 años.”

 

Relación de indeterminación de Heisenberg - Wikipedia, la enciclopedia librePrincipio de incertidumbre | Bienvenidos a Descubrirlaquimica

 

 

En su opinión, las buenas ideas siempre se verifican. Los ejemplos son innumerables: la gravedad de Newton, el campo eléctrico de Faraday y el electromagnetismo de Maxwell, la teoría de la relatividad de Einstein en sus dos versiones y su demostración del efecto fotoeléctrico, la teoría del electrón de Paul Dirac, el principio de incertidumbre de Heisenberg, la función de ondas de Schrödinger, y tantos otros. Algunos de los físicos teóricos más famosos, sin embargo, protestaban de tanto empeño en la experimentación. El astrónomo arthur Eddington se cuestionaba incluso si los científicos no estaban forzando las cosas cuando insistían en que todo debería ser verificado. ¡Cómo cambia todo con el Tiempo! Hasta la manera de pensar.

 

La ecuación más bonita. – Vasos Comunicantes

Esta belleza es la eçuación de Dirac. La belleza viene de que, con unos pocos signos se dicen muchas cosas

“Gracias a esto, se describe el fenómeno de entrelazamiento cuántico, que en la práctica dice que: ‘Si dos sistemas interactúan uno con el otro durante un cierto período de tiempo y luego se separan, lo podemos describir como dos sistemas separados, pero de alguna manera sutil están convertidos en un solo sistema. Uno de ellos sigue influyendo en el otro, a pesar de kilómetros de distancia o años luz’. Esto es el entrelazamiento cuántico o conexión cuántica. Dos partículas que, en algún momento estuvieron unidas, siguen estando de algún modo relacionadas. No importa la distancia entre ambas, aunque se hallen en extremos opuestos del universo. La conexión entre ellas es instantánea.”

Sin embargo, muchos son los ejemplos de un ingenio superior que nos llevaron a desvelar secretos de la Naturaleza que estaban profundamente escondidos, y, el trabajo de Dirac en relación al electrón, es una buena muestra de ese ingenio humano que, de vez en cuando vemos florecer.

 

El mar de Dirac y su relacion en NGE

El mar de Dirac: un mar infinito de partículas con energía negativa

Ya que la ecuación de Dirac fue originalmente formulada para describir el electrón, las referencias se harán respecto a “electrones”, aunque actualmente la ecuación se aplica a otros tipos de partículas elementales de espín ½, como los quarks. Una ecuación modificada de Dirac puede emplearse para describir de forma aproximada los protones y los neutrones, formados ambos por partículas más pequeñas llamadas quarks (por este hecho, a protones y neutrones no se les da la consideración de partículas elementales).

La ecuación de Dirac la podemos ver de  la siguiente forma:

 

 \left(\alpha_0 mc^2 + \sum_{j = 1}^3 \alpha_j p_j \, c\right) \<a href=

Siendo m la masa en reposo del electrón, c la velocidad de la luz,  p el operador de momento, \hbar la constante reducida de Planck,  x y t las coordenadas del espacio y el tiempo,  respectivamente; y ψ (x, t) una función de onda de cuatro componentes. La función de onda ha de ser formulada como un espinor (objeto matemático similar a un vectorque cambia de signo con una rotación de 2π descubierto por Pauli y Dirac) de cuatro componentes, y no como un simple escalar,  debido a los requerimientos de la relatividad especial. Los α son operadores lineales que gobiernan la función de onda, escritos como una matriz y son matrices de 4×4 conocidas como matrices de Dirac.

 

Paul Dirac Fotos e Imágenes de stock - Alamy

El premio Nobel Paul Dirac incluso llegó a decir de forma más categórica: “Es más importante tener belleza en las ecuaciones que tener experimentos que se ajusten a ellas“, o en palabras del físico John Ellis del CERN, “Como decía en una envoltura de caramelos que abrí hace algunos años, «Es sólo el optimista el que consigue algo en este mundo».

Yo, como todos ustedes, un hombre normal y corriente de la calle, escucho a unos y a otros, después pienso en lo que dicen y en los argumentos y motivaciones que les han llevado a sus respectivos convencimientos, y finalmente, también decido según mis propios criterios mi opinión, que no obligatoriamente coincidirá con alguna de esas opiniones, y que en algún caso, hasta me permito emitirla.

Lo que todo físico debe saber sobre la teoría de cuerdas - La Ciencia de la Mula Francis

Y, k en el momento más inesperado, allí aparece…

Relatividad general I: conceptos – Sólo es Ciencia

Esto parece indicar que la Teoría M (o de cuerdas), aunque por el momento no se puede verificar, está en el buen camino y ahí subyace una Teoría cuántica de la Gravedad, es decir, en la amplitud de las 11 dimensiones, sí se pueden juntar (sin provocar infinitos), la Cuántica y la Relatividad, lo cual no se produce en el Modelo Estaándar.

 

EL MODELO ESTÁNDAR DE LA FÍSICA DE PARTÍCULAS, Ciencias Para Todo con Jaume  Campos

20 - Curso de Relatividad General [aceleración en Relatividad Especial] - YouTube

 

¿No es curioso que, cuando se formula la moderna Teoría M, surjan, como por encanto, las ecuaciones de Einstein de la Relatividad General? Nadie las llama y, sin embargo, allí aparecen para decirnos que, la Teoría de cuerdas es un buen camino a seguir, ya que, si en ella subyacen las ecuaciones de Einstein de la relatividad General… ¡No debe ser por casualidad!

Suponiendo que algún físico brillante nos resuelva la teoría de campos de cuerdas y derive las propiedades conocidas de nuestro universo, con un poco de suerte, podría ocurrir en este mismo siglo, lo que no estaría nada mal considerando las dificultades de la empresa. El problema fundamental es que estamos obligando a la teoría de supercuerdas a responder preguntas sobre energías cotidianas, cuando “ámbito natural” está en la energía de Planck. Esta fabulosa energía fue liberada sólo en el propio instante de la creación, lo que quiere decir que la teoría de supercuerdas es naturalmente una teoría de la creación.

 

1965. El eco del 'Big Bang' | Ciencia | elmundo.es2015 julio 26 : Blog de Emilio Silvera V.Detectadas las primeras ondas gravitacionales resultantes de la colisión de estrellas de neutrones | National Geographic2015 julio 26 : Blog de Emilio Silvera V.

                      Las primeras observaciones realizadas por Planck | ESA y Axel Mellinger.

Fuimos capaces de predecir que el Big Bang produjo un “eco” cósmico reverberando en el universo y que podría ser mesurable por los instrumentos adecuados. De hecho, Arno Penzias y Robert Wilson de los Bell Telephone Laboratories ganaron el premio Nobel en 1.978 por detectar este eco del Big Bang, una radiación de microondas que impregna el universo conocido. El que el eco del Big Bang debería estar circulando por el universo miles de millones de años después del suceso fue predicho por primera vez por George Gamow y sus discípulos Ralpher y Robert Herman, pero nadie les tomó en serio. La propia idea de medir el eco de la creación parecía extravagante cuando la propusieron por primera vez poco después de la segunda guerra mundial. Su lógica, sin embargo, era aplastante.

 

 

la estufa básicas la resistencia por hilo enrollado. Ésta se llega a poner al rojo vivo, por lo que emite también algo de calor por radiación.

Cualquier objeto, cuando se calienta, emite radiación de forma gradual. Ésta es la razón de que el hierro se ponga al rojo vivo cuando se calienta en un horno, y cuanto más se calienta, mayor es la frecuencia de radiación que emite. Una fórmula matemática exacta, la ley de Stefan-Boltzmann, relaciona la frecuencia de la luz (o el color en este caso) con la temperatura. De hecho, así es como los científicos determinan la temperatura de la superficie de una estrella lejana; examinando su color. Esta radiación se denomina radiación de cuerpo negro.

 

 

Esta radiación, cómo no, ha sido aprovechada por los ejércitos, que mediante visores nocturnos pueden operar en la oscuridad. De noche, los objetos relativamente calientes, tales como soldados enemigos o los carros de combate, pueden estar ocultos en la oscuridad, pero continúan emitiendo radiación de cuerpo negro invisible en forma de radiación infrarroja, que puede ser captada por gafas especiales de infrarrojo. Ésta es también la razón de que nuestros automóviles cerrados se calientes en verano, ya que la luz del Sol atraviesa los cristales del coche y calienta el interior. A medida que se calienta, empieza a emitir radiación de cuerpo negro en forma de radiación infrarroja. Sin embargo, esta clase de radiación no atraviesa muy bien el vidrio, y por lo tanto queda atrapada en el interior del automóvil, incrementando espectacularmente la temperatura.

Análogamente, la radiación de cuerpo negro produce el efecto invernadero. Al igual que el vidrio, los altos niveles de dióxido de carbono en la atmósfera, causados por la combustión sin control de combustibles fósiles, pueden atrapar la radiación de cuerpo negro infrarroja en la Tierra, y de este modo calentar gradualmente el planeta.

 

Big Bang: la teoría que explica el origen, y evolución del universo

 

Gamow razonó que el Big Bang era inicialmente muy caliente, y que por lo tanto sería un cuerpo negro ideal emisor de radiación. Aunque la tecnología de los años cuarenta era demasiado primitiva para captar esta débil señal de la creación, Gamow pudo calcular la temperatura de dicha radiación y predecir con fiabilidad que un día nuestros instrumentos serían lo suficientemente sensibles como para detectar esta radiación “fósil”.

 

Ya la lista de ingenios es larga. Todos quieren medir la radiación del fondo de microondas generadas por el Big Bang. Incluso hemos preparado telescopios especiales para que nos puedan captar las ondas gravitatorias surgidas en aquellos primeros momento de la inflación.

 

Origen atomos y moleculas

 

La lógica que había detrás de su razonamiento era la siguiente: alrededor de 300.000 años después del Big Bang, el universo se enfrió hasta el punto en el que los átomos pudieron empezar a componerse; los electrones pudieron empezar a rodear a los protones y neutrones formando átomos estables, que ya no serían destruidos por la intensa radiación que estaba impregnando todo el universo. Antes de este momento, el universo estaba tan caliente que los átomos eran inmediatamente descompuestos por esa radiación tan potente en el mismo acto de su formación. Esto significa que el universo era opaco, como una niebla espesa absorbente e impenetrable.

Pasados 300.000 años, la radiación no era tan potente; se había enfriado y por lo tanto la luz podía atravesar grades distancias sin ser dispersada. En otras palabras, el universo se hizo repentinamente negro y transparente.

 

Teoría cuántica | Radiación del cuerpo negro - YouTube

 

Terminaré esta parte comentando que un auténtico cuerpo negro es un concepto imaginario; un pequeño agujero en la pared de un recinto a temperatura uniforme es la mejor aproximación que se puede tener de él en la práctica.

La radiación de cuerpo negro es la radiación electromagnética emitida por un cuerpo negro. Se extiende sobre todo el rango de longitudes de onda y la disminución de energías sobre este rango tiene una forma característica con un máximo en una cierta longitud de onda, desplazándose a longitudes de onda más cortas al aumentar las temperaturas*.

Hablar, sin más especificaciones, de radiación, es estar refiriéndonos a una energía que viaja en forma de ondas electromagnéticas o fotones por el universo. También nos podríamos estar refiriendo a un chorro de partículas, especialmente partículas alfa o beta de una fuente radiactiva o neutrones de un reactor nuclear.

La radiación actínida es la electromagnética que es capaz de iniciar una reacción química. El término es usado especialmente para la radiación ultravioleta y también para denotar radiación que podría afectar a las emulsiones fotográficas.

Monografias.com

La radiación gamma es un tipo de radiación electromagnética producida generalmente por elementos radioactivos o procesos subatómicos como la aniquilación de un par positrón-electrón. Este tipo de radiación de tal magnitud también es producida en fenómenos astrofísicos de gran violencia.

 

La radiación gamma

 

Debido a las altas energías que poseen, los rayos gamma constituyen un tipo de radiación ionizante capaz de penetrar en la materia más profundamente que la radiación alfa o beta. Dada su alta energía pueden causar grave daño al núcleo de las células, por lo que son usados para esterilizar equipos médicos y alimentos.

 

radiacion ionizante

 

La Radiación expone un amplio abanico dependiendo de la fuente:  blanda, radiación cósmica, radiación de calor, radiación de fondo, de fondo de microondas, radiación dura, electromagnética, radiación gamma, infrarroja, ionizante, monocromática, policromática, de sincrotrón, ultravioleta, de la teoría cuántica, de radiactividad… y, como se puede ver, la radiación en sus diversas formas es un universo en sí misma.

Siempre me llamó la atención y se ganó mi admiración el físico alemán Max Planck (1.858 – 1.947), responsable entre otros muchos logros de la ley de radiación de Planck, que da la distribución de energía radiada por un cuerpo negro. Introdujo en física el concepto novedoso de que la energía es una cantidad que es radiada por un cuerpo en pequeños paquetes discretos, en vez de una emisión continua. Estos pequeños paquetes se conocieron como cuantos y la ley formulada es la base de la teoría cuántica.

Einstein se inspiró en este trabajo para a su vez presentar el suyo propio sobre el efecto fotoeléctrico, donde la energía máxima cinética del fotoelectrón, Em, está dada por la ecuación que lleva su nombre: Em = hf – Φ.

 

Q. Cuantización de la energía y el efecto fotoeléctrico - fisicacch4010

Cada metal requiere, para que se produzca la extracción, una radiación con una frecuencia mínima (no). Cualquier otra radiación de menor frecuencia, no será capaz de arrancar electrones. Por debajo de la frecuencia mínima la intensidad de corriente -”i” (amperios)- será cero. No hay efecto fotoeléctrico.

Planck publicó en 1.900 un artículo sobre la radiación de cuerpo negro que sentó las bases para la teoría de la mecánica cuántica que más tarde desarrollaron otros, como el mismo Einstein, Heisenberg, Schrödinger, Dirac, Feymann, etc. Todos los físicos son conocedores de la enorme contribución que Max Planck hizo en física: la constante de Planck, radiación de Planck, longitud de Planck, unidades de Planck, etc. Es posible que sea el físico de la historia que más veces ha dado su nombre a conceptos de física. Pongamos un par te ejemplos de su ingenio:

 

{\displaystyle E=hf\,}

{\displaystyle E={\frac {hc}{\lambda }}\,}

{\displaystyle \lambda ={\frac {h}{p}}}

{\displaystyle \hbar ={\frac {h}{2\pi }}}

{\displaystyle \hbar ={\frac {h}{2\pi }}}

Es interesante seguir las secuencias y ver hasta donde nos llevan

1.      Vale 10-35 metros. Esta escala de longitud (veinte órdenes de magnitud menor que el tamaño del protón, de 10-35 m) es a la que la descripción clásica de gravedad cesa de ser válida y debe ser tenida en cuenta la mecánica cuántica. En la fórmula que la describe, G es la constante gravitacional, ħ es la constante de Planck racionalizada y c en la velocidad de la luz.

2.      Es la masa de una partícula cuya longitud de onda Compton es igual a la longitud de Planck. En la ecuación, ħ es la constante de Planck racionalizada, c es la velocidad de la luz y G es la constante gravitacional. Así, Se denomina masa de Planck a la cantidad de masa (21,7644 microgramos) que, incluida en una esfera cuyo radio fuera igual a la longitud de Planck,  generaría una densidad del orden de 1093 g/cm³. Según la física actual, esta habría sido la densidad del Universo cuando tenía unos {10}^{-44} segundos, el llamado Tiempo de Planck. Su ecuación, es decir la masa de Planck se denota:

M_p = \sqrt{\frac{\hbar c}{G}} = 2,18 \times 10^{-8}\, \mbox{kg}

El valor de la masa de Planck (M_p) se expresa por una fórmula que combina tres constantes fundamentales, la constante de Planck,  (h), la velocidad de la luz (c),  y la constante de gravitación universal (G). La masa de Planck es una estimación de la masa del agujero negro primordial menos masivo, y resulta de calcular el límite donde entran en conflicto la descripción clásica y la descripción cuántica de la gravedad.

 

Al entrar en algunos límites de la materia, nos encontramos con la espuma cuántica

“Aunque todas estas descripciones reflejan más una abundante imaginación que un hecho existencial apoyado teóricamente con alguna hipótesis que pueda ser comprobada en el laboratorio sobre hechos que están más allá de poder ser medidos jamás en algún laboratorio construído por humanos. La única forma de confrontar la factibilidad o la posibilidad del modelo de la espuma cuántica nos lleva necesariamente a confrontar la carencia de un modelo que logre unificar exitosamente al macrocosmos con el microcosmos, a la Relatividad General con la Mecánica Cuántica, la Gravedad Cuántica. Si la energía y la materia (o mejor dicho la masa-energía) están discretizadas, se supone que también deben de estarlo el espacio y el tiempo (o mejor dicho, el espacio-tiempo), y la “partícula fundamental” del espacio-tiempo debe de serlo el gravitón, aunque de momento todo esto son especulaciones que seguirán siéndolo mientras no tengamos a la mano algo que pueda confirmar la existencia de tan exótica partícula, quizá la más exótica de cuantas hayan sido concebidas por la imaginación del hombre.”

 

EL GRAVITON MODELO ESTÁNDAR DE LA FÍSICA DE PARTÍCULAS - YouTube

 

La descripción de una partícula elemental de esta masa, o partículas que interaccionan con energías por partículas equivalentes a ellas (a través de E = mc2), requiere de una teoría cuántica de la gravedad. Como la masa de Planck es del orden de 10-8 Kg (equivalente a una energía de 1019 GeV) y, por ejemplo, la masa del protón es del orden de 10-27 Kg y las mayores energías alcanzables en los aceleradores de partículas actuales son del orden de 103 GeV, los efectos de gravitación cuántica no aparecen en los laboratorios de física de partículas. Únicamente en un laboratorio aparecieron partículas que tenían energías del orden de la masa de Planck: en el universo primitivo, de acuerdo con la teoría del Big Bang, motivo éste por el que es necesaria una teoría cuántica de la gravedad para estudiar aquellas condiciones. Esta energía de la que estamos hablando, del orden de 1019 GeV (inalcanzable para nosotros), es la que necesitamos para verificar la teoría de supercuerdas.

 

La solución está en las cuerdas? III. El multiverso. | Amanecer 2012

 

Siempre, desde que puedo recordar, me llamó la atención los misterios y secretos encerrados en la naturaleza, y la innegable batalla mantenida a lo largo de la historia por los científicos para descubrirlos. Muchos han sido los velos que hemos podido descorrer para que, la luz cegadora del saber pudiera entrar en nuestras mentes para hacerlas comprender cómo actuaba la Naturaleza en ciertas ocasiones y el por qué de tales comportamientos, y, sin embargo, a pesar del largo camino recorrido, es mucho más el que nos queda por andar.

 

Viaje al corazón de la materia: ¿de qué estamos hechos? – Divulgación de la  ciencia en Sagunto, Puerto y el área del Camp de Morvedre

No dejamos  de querer  viajar al corazón de la materia

Seguiremos recordando que todo lo grande… ¡Está hecho de cositas muy pequeñas!

Em9ilio Silvera Vázquez