sábado, 11 de enero del 2025 Fecha
Ir a la página principal Ir al blog

IMPRESIÓN NO PERMITIDA - TEXTO SUJETO A DERECHOS DE AUTOR




¿Son importantes las ecuaciones?

Autor por Emilio Silvera    ~    Archivo Clasificado en Las ecuaciones    ~    Comentarios Comments (11)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

DDLA: mayo 2019

Aquí tenemos la ecuación que representa el Tiempo de Planck.  Se ha desatado un debate entre los contertulios Nelson y Pedro, cada cual tiene una perspectiva muy distinta de las ecuaciones, de su importancia y, de sí realmente significan lo que dicen que quieren decir.

Desde siempre, cuando hemos oído mencionar la palabra “ecuaciones” nuestros sentidos se han puesto alerta y se han esperado lo peor. Y, sin embargo, no podemos dejar de reconocer que sin ellas, las matemáticas no tendrían “alma”, los científicos y los modernos técnicos de las maravillas del futuro, sin ellas, no podrían pasar, toda vez que, en sus guarismos están encerradas las claves de todo cuanto podemos hacer, de todo lo que podemos comprender, y, también, es la mejor manera que tenemos para explicar el Universo.

De manera muy breve, sin profundizar, dejemos aquí hoy algunas de esas ecuaciones que cambiaron el mundo.

La hipotenusa al cuadrado


Teorema de Pitágoras

cap01.jpg

 

¿Qué nos dice?
Como están relacionados los tres lados de un triángulo rectángulo.

¿Por qué es importante?


Nos proporciona un vínculo Importante entre la geometría y el álgebra, permitiéndonos calcular distancias en términos de coordenadas. También inspiró la trigonometría.

¿Qué provocó?


Topografía, navegación y, más recientemente, relatividad general y especial, la mejor de las actuales teorías del espacio, el tiempo y la gravedad.

Acortando los procesos


Logaritmos

 

cap02.jpg

 

¿Qué nos dice?


Cómo multiplicar números sumando, en su lugar, números que están relacionados.

¿Por qué es importante?


Sumar es mucho más simple que multiplicar.

 

¿Qué provocó?


Métodos eficientes para calcular fenómenos astronómicos como eclipses y órbitas planetarias. Modos rápidos de realizar cálculos científicos. La compañera fiel de los ingenieros, la regla de cálculo. Descomposición radiactiva y la psicofísica de la percepción humana.

Patrones del azar
Distribución normal

 

cap07.jpg

 

¿Qué dice?


La probabilidad de observar un valor concreto de un dato es mayor cerca del valor de la media y se desvanece rápidamente a medida que la diferencia con la media incrementa. Cómo de rápido se desvanece depende de una cantidad llamada desviación estándar.

 

¿Por qué es importante?


Define una familia especial de distribuciones de probabilidad con forma de campana, que son, con frecuencia, modelos buenos para observaciones comunes del mundo real.

¿Qué provocó?


El concepto de «hombre medio», testes de la importancia de los resultados experimentales, como pruebas médicas, y una tendencia desafortunada a tomar por defecto la campana de Gauss como si nada más existiese.

 

Buenas vibraciones
Ecuación de onda

cap08.jpg

 

¿Qué dice?


La aceleración de un pequeño segmento de la cuerda de un violín es proporcional al desplazamiento medio de los segmentos vecinos.

 

¿Por qué es importante?


Predice que la cuerda se moverá en ondas, y se generaliza de manera natural a otros sistemas físicos en los cuales aparecen ondas.

 

Ondas e instantes
Transformada de Fourier

 

cap09.jpg

 

¿Qué dice?


Cualquier patrón en el espacio y el tiempo se puede pensar como una superposición de patrones sinusoidales con diferentes frecuencias.

 

¿Por qué es importante?


Las frecuencias constituyentes se pueden usar para analizar los patrones, hacerlas a medida, extraer características importantes y eliminar ruido aleatorio.

¿Qué provocó?


La técnica de Fourier se usa muchísimo, por ejemplo, en tratamiento de imágenes y mecánica cuántica. Se usa para encontrar la estructura de moléculas biológicas grandes como el ADN, para comprimir datos de imágenes en fotografía digital, para limpiar grabaciones de audio viejas o dañadas y para analizar terremotos. Variantes modernas se usan para almacenar datos de huellas digitales de manera eficiente y mejorar escáneres médicos.

 

La ascensión de la humanidad
Ecuación de Navier-Stokes

 

cap10.jpg

 

¿Qué dice?


Es la segunda ley de movimiento de Newton disfrazada. La parte izquierda es la aceleración de una región pequeña de un fluido. La parte derecha son las fuerzas que actúan en ella: presión, tensión y las fuerzas internas de los cuerpos.

¿Por qué es importante?


Proporciona un modo realmente preciso de calcular cómo los fluidos se mueven. Esto es una característica clave en innumerables problemas científicos y tecnológicos.

¿Qué provocó?


Aviones de pasajeros modernos, submarinos rápidos y silenciosos, coches de Fórmula 1 que se mantienen en la pista a velocidades altas y avances médicos en el flujo sanguíneo en venas y arterias. Métodos computacionales para resolver ecuaciones, conocidos como mecánica de fluidos computacional o CFD (por su nombre en inglés computational fluid dynamics), son muy usados por ingenieros para mejorar la tecnología en sus áreas.

Ondas en el éter


Ecuaciones de Maxwell

 

cap11.jpg

 

 

¿Qué dicen?


La electricidad y el magnetismo no pueden desvanecerse sin más. Una región de un campo eléctrico girando crea un campo magnético perpendicular al giro. Una región de un campo magnético girando crea un campo eléctrico perpendicular al giro, pero en el sentido opuesto.

¿Por qué es importante?


Fue la primera unificación importante de fuerzas físicas, mostrando que la electricidad y el magnetismo están íntimamente interrelacionados.

¿Qué provocó?

La predicción de que las ondas electromagnéticas existen, desplazándose a la velocidad de la luz, de modo que la propia luz es una de dichas ondas. Esto motivó la invención de la radio, el radar, la televisión, las conexiones inalámbricas para los ordenadores y la mayoría de las comunicaciones modernas.

 

La ley y el desorden
Segunda ley de la termodinámica

 

 

cap12.jpg

 

 

¿Qué dice?


La cantidad de desorden en un sistema termodinámico siempre aumenta.

 

¿Por qué es importante?


Pone límites a cuánto trabajo útil puede extraerse a partir del calor.

 

¿Qué provocó?


Mejores máquinas de vapor, estimaciones de la eficiencia de energía renovable, el escenario de «la gran congelación», la prueba de que la materia está hecha de átomos, y conexiones paradójicas con la flecha del tiempo.

 

Una cosa es absoluta
Relatividad

 

 

cap13.jpg

 

¿Qué dice?


La materia contiene energía igual a su masa multiplicada por el cuadrado de la velocidad de la luz.

¿Por qué es importante?


La velocidad de la luz es enorme y su cuadrado es absolutamente monumental. Un kilogramo de materia liberaría alrededor del 40 % de la energía en el arma nuclear más grande que jamás ha explotado. Es parte de un paquete de ecuaciones que cambiaron nuestra visión del espacio, tiempo, materia y gravedad.

¿Qué provocó?

 


Indudablemente, física radicalmente nueva. Armas nucleares… bueno, solo quizá, aunque no tan directamente o de manera concluyente como los mitos urbanos reclaman. Agujeros negros, el Big Bang, GPS y navegación vía satélite.

 

Códigos, comunicaciones y ordenadores
Teoría de la información

 

cap15.jpg

¿Qué dice?


Define cuánta información contiene un mensaje, en términos de las probabilidades con las que los símbolos que lo componen tienen la posibilidad de darse.

 

¿Por qué es importante?


Es la ecuación que marca el comienzo de la era de la información. Estableció los límites en la eficiencia de las comunicaciones, permitiendo a los ingenieros dejar de buscar códigos que fuesen demasiado efectivos para existir. Es básica en las comunicaciones digitales de hoy en día: teléfonos, CDs, DVDs, Internet.

¿Qué provocó?


Códigos eficientes de detección y corrección de errores, usados en todo, desde CDs a sondas espaciales. Las aplicaciones incluyen estadística, inteligencia artificial, criptografía, y obtener significado de la secuencia de ADN.

 

El desequilibrio de la naturaleza
Teoría del caos

 

cap16.jpg

 

¿Qué dice?


Hace un modelo de cómo una población de criaturas vivas cambia de una generación a la siguiente, cuando hay límites en los recursos disponibles.

 

¿Por qué es importante?


Es una de las ecuaciones más simples que puede generar el caos determinista, comportamiento aparentemente aleatorio con causas no aleatorias.

 

¿Qué provocó?


La comprensión de que ecuaciones no lineales sencillas pueden crear dinámicas muy complejas, y que esa aleatoriedad aparente podría ocultar un orden escondido. Popularmente conocida como teoría del caos, este descubrimiento tiene innumerables aplicaciones en toda la ciencia, incluyendo el movimiento de los planetas del Sistema Solar, la predicción del tiempo, la dinámica de poblaciones en ecología, las estrellas variables, el modelado de terremotos y trayectorias eficientes para las sondas espaciales.

 

La fórmula de Midas
Ecuación de Black-Scholes

 

cap17.jpg

 

¿Qué dice?


Describe cómo el precio de un derivado financiero cambia en el tiempo, basándose en el principio de que cuando el precio es correcto, el derivado no conlleva riesgo y nadie puede sacar beneficio vendiéndolo a un precio diferente.

¿Por qué es importante?


Hace posible comerciar un derivado antes de que venza asignándole un valor «racional» acordado, de modo que puede convertirse en una mercancía virtual por derecho propio.

¿Qué provocó?


Crecimiento masivo del sector financiero, instrumentos financieros cada vez más complejos, aumento repentino, salpicado con quiebras, en la prosperidad económica, los turbulentos mercados de valores de los noventa del siglo pasado, la crisis financiera del 2008-2009, y la depresión económica actual.

 

“Cuando alguien pone por escrito una ecuación, no hay un repentino trueno tras el cual todo es diferente. La mayoría de las ecuaciones tiene poco o ningún efecto (yo las pongo por escrito todo el rato, y créeme, lo sé). Pero incluso las mejores y más influyentes ecuaciones necesitan ayuda para cambiar el mundo: modos eficientes de resolverlas, gente con la imaginación y el instinto para explotar lo que nos quieren decir, mecanismos, recursos, materiales, dinero. Teniendo esto en mente, las ecuaciones han establecido repetidamente nuevas direcciones para la humanidad, y actuado como nuestras guías a medida que las exploramos. “

Ian Stewart

PD

Otras muchas e importantes ecuaciones se han quedado fuera de la muestra arriba explicada. Sin embargo, a éstas alturas venir a poner en duda el valor de dicho “lenguaje” numérico y de signos … ¡No tiene ningún sentido! Todas las ecuaciones admitidas han sido el fiel reflejo de la realidad que quieren expresar..

Alguien dijo hace mucho tiempo: “Todo es número”

Autor por Emilio Silvera    ~    Archivo Clasificado en Las ecuaciones    ~    Comentarios Comments (1)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Foto del perfil de Ricard Jiménez

Ricard Jiménez

 

 

“YO SOY EGIPTO”

¿Conocieron los antiguos constructores los secretos del Universo?

¿Conocían los antiguos egipcios hace miles de años la que hoy día se conoce como la fórmula más bella del Universo? Si esto fuera cierto representaría que los antiguos constructores debieron entender el Universo de forma geométrica, como (de hecho) apuntan todas las evidencias. Y es que la fórmula de Euler es pura geometría, y, como tal, representa el lenguaje más perfecto en que puede expresarse el Universo: el lenguaje numérico.

Déjame explicarte la ecuación de Euler en términos coloquiales para que entiendas como convergen todos los conceptos, como podemos conciliar el antiguo conocimiento con nuestra forma, radicalmente opuesta, de pensar. Para ello utilizaré un razonamiento previo que considero irrefutable, ya que se basa en la más pura lógica. Y después haremos arqueología matemática.

Resultado de imagen de Conjeturar

Especular es conjeturar

Una conjetura no es más que una afirmación que aún no hemos podido refutar, que no sabemos si es o no cierta. En su versión opuesta una conjetura también es una afirmación, para la que tampoco nunca hemos podido demostrar que no sea cierta. De hecho todas las evidencias en las más importantes conjeturas matemáticas, después de millones o billones de intentos o experimentos, nos hacen pensar que éstas son ciertas, pero que aún no hemos encontrado la manera de demostrarlo inequívocamente.

Todas las conjeturas que tenemos hoy día, al menos en el campo que denominamos “Teoría de Números” indican que los números siguen en su composición algún tipo de patrón organizado, que…, de alguna manera, parecen comunicarse entre ellos. La más famosa de todas, la Conjetura de Riemann establece, por ejemplo, que los números primos siguen un criterio de densidad en su comportamiento. Si esto fuera cierto denotaría que los números tendrían de forma subyacente un criterio inteligente que dictaminaría su distribución. Si todas ellas fueran correctas implicaría que los números, de forma independiente, tienen un criterio subyacente que es totalmente independiente de la manera en que nos refiramos a él. En otras palabras, dicho patrón sería incluso independiente de las matemáticas, una especie de código fuente que es intemporal o, en otras palabras, que siempre ha sido y será.

Resultado de imagen de LAS MATEMÁTICAS DE LOS ANTIGUOS

 

 

“Los egipcios crearon un manual para geometría el cual daba demostraciones de suma y resta que posteriormente se transformaría en el primer papiro el cual tenía más de 84 problemas matemáticos y sus respectivas soluciones.”

Aunque suene antiguo decirlo, si todas esas conjeturas fueran ciertas, querría decir como pensaron los antiguos que los números son el Universo, pues siempre y en todo momento siguen un patrón organizado de comportamiento que es independiente incluso del espacio y del tiempo. Un patrón intemporal que siempre ha sido y será, y que siempre se cumplirá incluso en los extremos de nuestro Universo.

Por lo tanto si los números son intemporales e independientes de las matemáticas, podemos incluso prescindir de ellas y admirar la belleza conceptual (y visual) de la más pura identidad. Esta es la idea subyacente en este razonamiento.

Resultado de imagen de lA ECUACIÓN DE eULER

“Desde que la vi no la he podido olvidar… Relaciona los números imaginarios ( i = raíz cuadrada de ( –1)), con las potencias ( número e y logaritmos neperianos ) y con las funciones trigonométricas. Me ha permitido recordar, sin esfuerzo, fórmulas trigonométricas como la del seno o coseno de una suma de ángulos, del ángulo doble o mitad, y calcular, con facilidad, derivadas de funciones trigonométricas.”

La ecuación de Euler se considera (con permiso de Pitágoras) como la ecuación más bella de las matemáticas, sin ninguna duda. Keith Devlin se refirió a ella en los siguientes términos: “ Como un soneto de Shakespeare que capta la esencia del amor o un cuadro que saca a relucir la belleza de la forma, que es mucho más profundo que solo la piel, la ecuación de Euler llega a lo más profundo de la existencia”.

La ecuación de Euler “vive” en muchos mundos, es “algo” que trasciende al lenguaje matemático. Vamos a tratar de entender la ecuación de Euler desde su perspectiva más trascendente, desde una perspectiva más humana, para llegar a comprobar finalmente que la ecuación de Euler es capaz de conectar incluso nuestras conciencias, dando sentido a la existencia de un patrón espacio-temporal que nos dirá claramente que nunca podremos determinar lo que es o no real. Y es que este patrón es incluso capaz de determinar nuestra forma de pensar. Realmente se trata de una especie de “código fuente” universal.

“Nos la podemos encontrar en cualquier sitio, en cualquier expresión matemática pura o relacionada con algo tan prosaico como las relaciones de impedancias en un circuito de corriente alterna. En la función de onda de la mecánica cuántica o en cualquier expresión de naturaleza ondulatoria o periódica. En la técnica, en la física o en las matemáticas más abstractas ( Roger Penrose reflexiona– en su último libro,en el capítulo sobre las diferenciales complejas – lo que habría disfrutado Euler con todas las maravillas de su fórmula y de los números imaginarios ).”

Lo primero que hay que decir al respecto es que la ecuación de Euler no es una ecuación normal. En contra de las creencias no se trata de una fórmula ni de un teorema matemático. Todas estas ideas hacen referencia a la existencia de un criterio humano y racional, es decir algo que es consecuencia de nuestra forma de pensar. La ecuación de Euler va más allá, porque es independiente de todos nuestros criterios. Dicha ecuación es una identidad numérica que podemos calificar de universal e intemporal. Tan sólo necesitamos números (aunque sean irracionales) para describirla, no utiliza ninguna variable, ninguna x arbitraría, tan sólo utiliza números universales.

“La fórmula de Euler fué demostrada por primera vez por Roger Cotes en 1714, y luego redescubierta y popularizada por Euler en 1748. Es interesante notar que ninguno de los descubridores vió la interpretación geométrica ( circunferencia en el plano complejo): la visión de los números complejos como puntos en el plano surgió unos 50 años mas tarde con Caspar Wessel, y d’Argaud.”

En cualquier unidad siempre podremos inscribir, por ejemplo, la divina proporción, pues este valor es totalmente independiente de cualquier unidad de medida, el gran hándicap de la física. Toda distancia unitaria puede ser siempre dividida entre la media y la extrema razón. La divina proporción hace referencia a un tipo de equilibrio matemático, pero que también podemos observar en el mundo real, en la propia naturaleza. A esta relación hicieron referencia los antiguos egipcios con el símbolo de la balanza, o… inscribiendo sus medidas en las pirámides de Egipto. Bajo este punto de vista unificado también podemos comparar a esta ecuación, incluso, con nuestra propia evolución. Es decir… ¿Conoció otra civilización anterior este patrón? Esta es la idea subyacente, establecer que la identidad de Euler se puede entender de muchas formas diferentes, porque es independiente incluso del lenguaje.

Las matemáticas reflejan conceptos, ideas mentales, ideas abstractas que tienen lugar en un espacio mental e imaginario. En este contexto el simbolismo es necesario, para mecanizar de forma más eficiente el lenguaje que empleamos. La geometría también puede ser vista como un lenguaje conceptual e imaginario. La geometría es la parte más sensitiva, la más directa de todas las ramas matemáticas y, como tal, constituye un efectivo lenguaje visual.

Resultado de imagen de Los símbolos matemáticos más utilizados en física

Los símbolos matemáticos, como sabemos, son creaciones humanas, sin embargo en algunos casos incluso su simbolismo es independiente de las matemáticas, constituyen un lenguaje por sí mismo. Se trata del lenguaje áureo, un lenguaje propio que tienen estos valores sagrados e irracionales que aparecen en la identidad de Euler.

Keith Devlin nos decía que la ecuación de Euler es como un soneto de Shakespeare. Y debe de ser correcto, sobre todo si hacemos referencia al más famoso de todos ellos: “Ser o no ser, esa es la cuestión”. A lo que añadiríamos que, en efecto, esto es correcto, sólo que incompleto, porque ser o no ser también puede ser la solución. De esta forma podríamos compatibilizar la causa con el efecto o, en otros términos, comprobar cómo el “Todo” siempre está contenido en la parte. En términos totalmente opuestos, sería algo así como admitir que los últimos serán los primeros.

Ser o no ser expresa la existencia de dos formas diferentes de entender la realidad, en esencia expresa la dualidad, la necesaria presencia de dos conceptos opuestos entre ellos. Es como si nos dijera que la existencia del mundo físico y real que podemos observar necesitara de la existencia de un mundo opuesto, un mundo material que podemos simbolizar matemáticamente y, por lo tanto, que es meramente conceptual. En otras palabras, que las ideas matemáticas pueblan el mundo del alma, como decía Platón.

Resultado de imagen de La fórmula de Euler

                               Una igualdad llena de belleza

La ecuación de Euler puede ser vista desde diferentes simbolismos, por lo que también es independiente incluso del simbolismo propiamente matemático. Así pues, libera tu mente, observa la Identidad de Euler de forma diferente. No la veas de forma lineal, como si de un simple teorema se tratará, vamos a ver cómo la ecuación de Euler es una ecuación multi-dimensional, la llave que abre la puerta a dimensiones diferentes, el patrón que impone un orden al ritmo de lo infinito y lo irracional. Una eterna verdad que nos dice claramente que todo está conectado como si fuera una unidad, nos dice cómo se conecta el mundo irracional y arbitrario con nuestra idea de un mundo determinado.

La esencia del problema de conectar dimensiones diferentes la Ecuación de Euler lo resuelve de una forma elegante e impecable y, a su vez, imposible de modificar, pues tan sólo se basa en la probabilidad. La ecuación de Euler nos dice que hay que apelar siempre a la regla universal: la dualidad que los opuestos representan. Piensa, por ejemplo, que un cuadro, como al que hacía referencia Devlin y la realidad sólo son dos concepciones diferentes de una misma existencia, que el cuadro no es más que el reflejo en el mundo inmaterial de las ideas, una especie de holograma, un reflejo de lo que vemos en el mundo “real”.

Los únicos valores en el infinito matemático que cumplen siempre la regla de la dualidad son los valores áureos o sagrados. Son los únicos que tienen la capacidad de moverse entre dos planos diferentes de la realidad: el plano real y el plano irracional o imaginario. Podemos decir nuevamente que sus formas siempre han sido y serán. Pongamos un ejemplo para cada uno de ellos para entenderlo mejor.

Resultado de imagen de La divina proporciónResultado de imagen de La divina proporción

La divina proporción es el único valor matemático, cuyo valor (precisamente) coincide con el valor que representa su inversa. Realmente toda una incoherencia. Las matemáticas ocultan esta coincidencia, no le dan relevancia y relegan a una de las soluciones al plano de lo inexistente. Tan sólo la divina proporción, por tanto, es capaz de situarse a medio camino, realmente de forma equilibrada, entre el plano de lo que es real matemáticamente hablando y el plano opuesto, o el plano del (aparentemente) inexistente mundo imaginario. La divina proporción representa con exquisita perfección el concepto subyacente al número i, o número imaginario, la posibilidad de ser capaz de situarse en dos planos diferentes de la realidad.

Con pi pasa exactamente lo mismo. Pi es el único valor en el infinito matemático que puede dar lugar a la esfera tridimensional, una construcción matemática que situamos en una cuarta dimensión imaginaria.

Ricard Jiménez

¿Son importantes las ecuaciones?

Autor por Emilio Silvera    ~    Archivo Clasificado en Las ecuaciones    ~    Comentarios Comments (0)

RSS de la entrada Comentarios Trackback Suscribirse por correo a los comentarios

Desde siempre, cuando hemos oido mencionar la palabra “ecuaciones” nuestros sentidos se han puesto alerta y se han esperado lo peor. Y, sin embargo, no podemos dejar de reconocer que sin ellas, las matemáticas no tendrían “alma”, los científicos y los modernos técnicos de las maravillas del futuro, sin ellas, no podrían pasar, toda vez que, en sus guarismos están encerradas las claves de todo cuanto podemos hacer, de todo lo que podemos comprender, y, también, es la mejor manera que tenemos para explicar el Universo.

De manera muy breve, sin rpofundizar, dejémos aquí hoy algunas de esas ecuaciones que cambiaron el mundo.

La hipotenusa al cuadrado


Teorema de Pitágoras

cap01.jpg

¿Qué nos dice?
Como están relacionados los tres lados de un triángulo rectángulo.

¿Por qué es importante?
Nos proporciona un vínculo Importante entre la geometría y el álgebra, permitiéndonos calcular distancias en términos de coordenadas. También inspiró la trigonometría.

¿Qué provocó?
Topografía, navegación y, más recientemente, relatividad general y especial, la mejor de las actuales teorías del espacio, el tiempo y la gravedad.

Acortando los procesos
Logaritmos

cap02.jpg

¿Qué nos dice?
Cómo multiplicar números sumando, en su lugar, números que están relacionados.

¿Por qué es importante?
Sumar es mucho más simple que multiplicar.

¿Qué provocó?
Métodos eficientes para calcular fenómenos astronómicos como eclipses y órbitas planetarias. Modos rápidos de realizar cálculos científicos. La compañera fiel de los ingenieros, la regla de cálculo. Descomposición radiactiva y la psicofísica de la percepción humana.

Patrones del azar
Distribución normal

cap07.jpg

 

¿Qué dice?
La probabilidad de observar un valor concreto de un dato es mayor cerca del valor de la media y se desvanece rápidamente a medida que la diferencia con la media incrementa. Cómo de rápido se desvanece depende de una cantidad llamada desviación estándar.

¿Por qué es importante?
Define una familia especial de distribuciones de probabilidad con forma de campana, que son, con frecuencia, modelos buenos para observaciones comunes del mundo real.

¿Qué provocó?
El concepto de «hombre medio», testes de la importancia de los resultados experimentales, como pruebas médicas, y una tendencia desafortunada a tomar por defecto la campana de Gauss como si nada más existiese.

 

Buenas vibraciones
Ecuación de onda

cap08.jpg

 

¿Qué dice?
La aceleración de un pequeño segmento de la cuerda de un violín es proporcional al desplazamiento medio de los segmentos vecinos.

¿Por qué es importante?
Predice que la cuerda se moverá en ondas, y se generaliza de manera natural a otros sistemas físicos en los cuales aparecen ondas.

Ondas e instantes
Transformada de Fourier

cap09.jpg

 

¿Qué dice?
Cualquier patrón en el espacio y el tiempo se puede pensar como una superposición de patrones sinusoidales con diferentes frecuencias.

¿Por qué es importante?
Las frecuencias constituyentes se pueden usar para analizar los patrones, hacerlas a medida, extraer características importantes y eliminar ruido aleatorio.

¿Qué provocó?
La técnica de Fourier se usa muchísimo, por ejemplo, en tratamiento de imágenes y mecánica cuántica. Se usa para encontrar la estructura de moléculas biológicas grandes como el ADN, para comprimir datos de imágenes en fotografía digital, para limpiar grabaciones de audio viejas o dañadas y para analizar terremotos. Variantes modernas se usan para almacenar datos de huellas digitales de manera eficiente y mejorar escáneres médicos.

 

La ascensión de la humanidad
Ecuación de Navier-Stokes

 

cap10.jpg

¿Qué dice?
Es la segunda ley de movimiento de Newton disfrazada. La parte izquierda es la aceleración de una región pequeña de un fluido. La parte derecha son las fuerzas que actúan en ella: presión, tensión y las fuerzas internas de los cuerpos.

¿Por qué es importante?
Proporciona un modo realmente preciso de calcular cómo los fluidos se mueven. Esto es una característica clave en innumerables problemas científicos y tecnológicos.

¿Qué provocó?
Aviones de pasajeros modernos, submarinos rápidos y silenciosos, coches de Fórmula 1 que se mantienen en la pista a velocidades altas y avances médicos en el flujo sanguíneo en venas y arterias. Métodos computacionales para resolver ecuaciones, conocidos como mecánica de fluidos computacional o CFD (por su nombre en inglés computational fluid dynamics), son muy usados por ingenieros para mejorar la tecnología en sus áreas.

Ondas en el éter
Ecuaciones de Maxwell

 

cap11.jpg

 

¿Qué dicen?
La electricidad y el magnetismo no pueden desvanecerse sin más. Una región de un campo eléctrico girando crea un campo magnético perpendicular al giro. Una región de un campo magnético girando crea un campo eléctrico perpendicular al giro, pero en el sentido opuesto.

¿Por qué es importante?
Fue la primera unificación importante de fuerzas físicas, mostrando que la electricidad y el magnetismo están íntimamente interrelacionados.

¿Qué provocó?
La predicción de que las ondas electromagnéticas existen, desplazándose a la velocidad de la luz, de modo que la propia luz es una de dichas ondas. Esto motivó la invención de la radio, el radar, la televisión, las conexiones inalámbricas para los ordenadores y la mayoría de las comunicaciones modernas.

 

La ley y el desorden
Segunda ley de la termodinámica

cap12.jpg

 

¿Qué dice?
La cantidad de desorden en un sistema termodinámico siempre aumenta.

¿Por qué es importante?
Pone límites a cuánto trabajo útil puede extraerse a partir del calor.

¿Qué provocó?
Mejores máquinas de vapor, estimaciones de la eficiencia de energía renovable, el escenario de «la gran congelación», la prueba de que la materia está hecha de átomos, y conexiones paradójicas con la flecha del tiempo.

 

Una cosa es absoluta
Relatividad

cap13.jpg

 

¿Qué dice?
La materia contiene energía igual a su masa multiplicada por el cuadrado de la velocidad de la luz.

¿Por qué es importante?
La velocidad de la luz es enorme y su cuadrado es absolutamente monumental. Un kilogramo de materia liberaría alrededor del 40 % de la energía en el arma nuclear más grande que jamás ha explotado. Es parte de un paquete de ecuaciones que cambiaron nuestra visión del espacio, tiempo, materia y gravedad.

¿Qué provocó?
Indudablemente, física radicalmente nueva. Armas nucleares… bueno, solo quizá, aunque no tan directamente o de manera concluyente como los mitos urbanos reclaman. Agujeros negros, el Big Bang, GPS y navegación vía satélite.

 

Códigos, comunicaciones y ordenadores
Teoría de la información

cap15.jpg

¿Qué dice?
Define cuánta información contiene un mensaje, en términos de las probabilidades con las que los símbolos que lo componen tienen la posibilidad de darse.

¿Por qué es importante?
Es la ecuación que marca el comienzo de la era de la información. Estableció los límites en la eficiencia de las comunicaciones, permitiendo a los ingenieros dejar de buscar códigos que fuesen demasiado efectivos para existir. Es básica en las comunicaciones digitales de hoy en día: teléfonos, CDs, DVDs, Internet.

¿Qué provocó?
Códigos eficientes de detección y corrección de errores, usados en todo, desde CDs a sondas espaciales. Las aplicaciones incluyen estadística, inteligencia artificial, criptografía, y obtener significado de la secuencia de ADN.

 

El desequilibrio de la naturaleza
Teoría del caos

 

cap16.jpg

¿Qué dice?
Hace un modelo de cómo una población de criaturas vivas cambia de una generación a la siguiente, cuando hay límites en los recursos disponibles.

¿Por qué es importante?
Es una de las ecuaciones más simples que puede generar el caos determinista, comportamiento aparentemente aleatorio con causas no aleatorias.

¿Qué provocó?
La comprensión de que ecuaciones no lineales sencillas pueden crear dinámicas muy complejas, y que esa aleatoriedad aparente podría ocultar un orden escondido. Popularmente conocida como teoría del caos, este descubrimiento tiene innumerables aplicaciones en toda la ciencia, incluyendo el movimiento de los planetas del Sistema Solar, la predicción del tiempo, la dinámica de poblaciones en ecología, las estrellas variables, el modelado de terremotos y trayectorias eficientes para las sondas espaciales.

 

La fórmula de Midas
Ecuación de Black-Scholes

cap17.jpg

 

¿Qué dice?
Describe cómo el precio de un derivado financiero cambia en el tiempo, basándose en el principio de que cuando el precio es correcto, el derivado no conlleva riesgo y nadie puede sacar beneficio vendiéndolo a un precio diferente.

¿Por qué es importante?
Hace posible comerciar un derivado antes de que venza asignándole un valor «racional» acordado, de modo que puede convertirse en una mercancía virtual por derecho propio.

¿Qué provocó?
Crecimiento masivo del sector financiero, instrumentos financieros cada vez más complejos, aumento repentino, salpicado con quiebras, en la prosperidad económica, los turbulentos mercados de valores de los noventa del siglo pasado, la crisis financiera del 2008-2009, y la depresión económica actual.

 

“Cuando alguien pone por escrito una ecuación, no hay un repentino trueno tras el cual todo es diferente. La mayoría de las ecuaciones tiene poco o ningún efecto (yo las pongo por escrito todo el rato, y créeme, lo sé). Pero incluso las mejores y más influyentes ecuaciones necesitan ayuda para cambiar el mundo: modos eficientes de resolverlas, gente con la imaginación y el instinto para explotar lo que nos quieren decir, mecanismos, recursos, materiales, dinero. Teniendo esto en mente, las ecuaciones han establecido repetidamente nuevas direcciones para la humanidad, y actuado como nuestras guías a medida que las exploramos. “

Ian Stewart